期刊文献+
共找到118篇文章
< 1 2 6 >
每页显示 20 50 100
A review of carbon-based hybrid materials for supercapacitors 被引量:1
1
作者 Theodore Azemtsop Manfo Hannu Laaksonen 《新型炭材料(中英文)》 北大核心 2025年第1期81-110,共30页
Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effecti... Supercapacitors are gaining popularity due to their high cycling stability,power density,and fast charge and discharge rates.Researchers are ex-ploring electrode materials,electrolytes,and separat-ors for cost-effective energy storage systems.Ad-vances in materials science have led to the develop-ment of hybrid nanomaterials,such as combining fil-amentous carbon forms with inorganic nanoparticles,to create new charge and energy transfer processes.Notable materials for electrochemical energy-stor-age applications include MXenes,2D transition met-al carbides,and nitrides,carbon black,carbon aerogels,activated carbon,carbon nanotubes,conducting polymers,carbon fibers,and nanofibers,and graphene,because of their thermal,electrical,and mechanical properties.Carbon materials mixed with conducting polymers,ceramics,metal oxides,transition metal oxides,metal hydroxides,transition metal sulfides,trans-ition metal dichalcogenide,metal sulfides,carbides,nitrides,and biomass materials have received widespread attention due to their remarkable performance,eco-friendliness,cost-effectiveness,and renewability.This article explores the development of carbon-based hybrid materials for future supercapacitors,including electric double-layer capacitors,pseudocapacitors,and hy-brid supercapacitors.It investigates the difficulties that influence structural design,manufacturing(electrospinning,hydro-thermal/solvothermal,template-assisted synthesis,electrodeposition,electrospray,3D printing)techniques and the latest car-bon-based hybrid materials research offer practical solutions for producing high-performance,next-generation supercapacitors. 展开更多
关键词 Carbon-based hybrid material Structure design Electrode material Specific capacitance SUPERCAPACITORS
在线阅读 下载PDF
Trends and advances in the development of nanodiamond-graphene core-shell materials in heterogeneous catalysis
2
作者 Liyun Zhang Kang Gao +4 位作者 Chaoan Liang Guangjing Feng Jiali Sun Peng Zhang Yuxiao Ding 《Journal of Energy Chemistry》 2025年第7期398-426,共29页
Developing innovative catalysts continues to be a pivotal interest within the heterogeneous catalysis area.The carbonaceous material ND@G,featuring a sp^(2)/sp^(3)hybrid architecture,comprises a nanodiamond(ND)core st... Developing innovative catalysts continues to be a pivotal interest within the heterogeneous catalysis area.The carbonaceous material ND@G,featuring a sp^(2)/sp^(3)hybrid architecture,comprises a nanodiamond(ND)core structure encased within an ultrathin graphitic nanoshell(G),and has been widely exploited as a metal-free catalyst or a support for metal catalyst.Its unique curved zero-dimensional structure/surface and tunable defective surface characteristics endow it with outstanding performance in different heterogeneous catalytic systems.The present review summarized the construction of the diverse types of ND@G and a wide-ranging valorization of structure-activity relation with its catalytic mechanism in various reactions.The recent advancements in the impact of active sites’architecture and the interaction between metal and support(preventing the as-formed metal species migration and agglomeration based on ND@G)on the catalytic performance of supported metal catalysts are particularly highlighted.The current challenges and outlooks/opportunities confronted by ND@G materials in catalysis are prospected by virtue of its fundamental physicochemical characterizations and potential catalytic estimation.This in-depth analysis seeks to pave the way for effective utilizing the ND@G in catalytic processes.Based on our knowledge,we also identify the challenges along with this area and offer some perspectives on how to overcome them. 展开更多
关键词 sp^(2)/sp^(3)hybrid material Defect-rich graphene shell Metal-free catalyst Metal-support interaction Heterogeneous catalysis
在线阅读 下载PDF
Elevating Lithium and Sodium Storage Performance Through the Synergistic Integration of ZnS and Sulfurized Polyacrylonitrile Hybrid Anode Materials
3
作者 Ying Liu Mingxu Li +4 位作者 Dirfan Zabrian Dong-Ho Baek Hyun Woo Kim Jae-Kwang Kim Jou-Hyeon Ahn 《Energy & Environmental Materials》 2025年第4期95-107,共13页
High-performance lithium-ion batteries and sodium-ion batteries have been developed utilizing a hybrid anode material composed of zinc sulfide/sulfurized polyacrylonitrile.The in situ-generated zinc sulfide nanopartic... High-performance lithium-ion batteries and sodium-ion batteries have been developed utilizing a hybrid anode material composed of zinc sulfide/sulfurized polyacrylonitrile.The in situ-generated zinc sulfide nanoparticles serve as catalytic agents,significantly enhancing conductivity,shortening diffusion paths,and accelerating reaction kinetics.Simultaneously,the sulfurized polyacrylonitrile fibers form a three-dimensional matrix that not only provides a continuous network for rapid electron transfer but also prevents zinc sulfide nanoparticle aggregation and mitigates volume changes during charge-discharge cycles.Moreover,the heterointerface structure at the junction of zinc sulfide nanoparticles and the sulfurized polyacrylonitrile matrix increases the availability of active sites and facilitates both ion adsorption and electron transfer.As an anode material for lithium-ion batteries,the zinc sulfide/sulfurized polyacrylonitrile hybrid demonstrates a high reversible capacity of 1178 mAh g^(-1)after 100 cycles at a current density of 0.2 A g^(-1),maintaining a capacity of 788 mAh g^(-1)after 200 cycles at 1 A g^(-1).It also exhibits excellent sodium storage capabilities,retaining a capacity of 625 mAh g^(-1)after 150 cycles at 0.2 A g^(-1).Furthermore,ex-situ X-ray photoelectron spectroscopy,X-ray diffraction,7Li solid-state magic angle spinning nuclear magnetic resonance,and in situ Raman are employed to investigate the reaction mechanisms of the zinc sulfide/sulfurized polyacrylonitrile hybrid anode,providing valuable insights that pave the way for the advancement of hybrid anode materials in lithium-ion batteries and sodium-ion batteries. 展开更多
关键词 high current density hybrid anode material rechargeable Li-ion and Na-ion batteries sulfurized polyacrylonitrile zinc sulfide
在线阅读 下载PDF
Structural transformation from Waugh-type to Keggin-type polyoxomolybdate-based crystalline material for photo/electrocatalysis 被引量:1
4
作者 Pei-Sen Wang Zi-Tong Wang +5 位作者 Ya-Ya Tan Peng Chen Xue-Cheng Zhang Lu-Nan Zhang Yong-Ge Wei Lu-Bin Ni 《Rare Metals》 SCIE EI CAS CSCD 2024年第5期2241-2250,共10页
An inorganicDorganic hybrid crystalline material(SiMo_(12)O_(40))[Cu(2,2'-bipy)_(2)]_(2)·2H_(2)O(Complex 1,2,2'-bipy=2,2'-bipyridine)was synthesized for the first time by using 2,2'-bipy and trans... An inorganicDorganic hybrid crystalline material(SiMo_(12)O_(40))[Cu(2,2'-bipy)_(2)]_(2)·2H_(2)O(Complex 1,2,2'-bipy=2,2'-bipyridine)was synthesized for the first time by using 2,2'-bipy and transition metal copper to convert Waugh-type polyoxometalate[MnMo_(9)O_(3)_(2)]_(6-)into a Keggin polyoxometalate structure[SiMo_(12)O_(40)]^(4-)under hydrothermal conditions in glass vials.Single crystal tests and a series of characterizations were carried out on Complex 1.The structure of Complex 1 is composed of[SiMo_(12)O_(40)]^(4-)and[Cu^(Ⅱ)(2,2'-bipy)_(2)]^(2+).The five-coordinated Cu is connected to two 2,2'-bipy through CuDN bonds,forming an approximately square structure.Astonishingly,Complex 1 exhibited good photocatalytic performance for methylene blue degradation and electrocatalytic nitrite reduction properties simultaneously. 展开更多
关键词 POLYOXOMETALATES Inorganic-organic hybrid materials Photocatalytic ELECTROCATALYTIC
原文传递
MXene-based hybrid materials for electrochemical and photoelectrochemical H_(2) generation
5
作者 Jun Young Kim Seung Hun Roh +2 位作者 Chengkai Xia Uk Sim Jung Kyu Kim 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期111-125,I0004,共16页
The conversion of solar energy to produce clean hydrogen fuel through water splitting is an emerging strategy for efficiently storing solar energy in the form of solar fuel.This aligns with the increasing global deman... The conversion of solar energy to produce clean hydrogen fuel through water splitting is an emerging strategy for efficiently storing solar energy in the form of solar fuel.This aligns with the increasing global demand for the development of an ideal energy alternative to fossil fuels that does not emit greenhouse gases.Electrochemical(EC) and photoelectrochemical(PEC) water splitting technologies have garnered significant attention worldwide for advanced hydrogen solar fuel production in recent decades.To achieve sustainable green H_(2) production,it is essential to create efficient catalyst materials that are low-cost and can replace expensive noble metal-based catalysts.These characteristics make them an ideal catalyst material for the process.Two-dimensional MXenes with M_(n+1)X_(n) structure have been identified as a promising option for EC and PEC water splitting due to their superior hydrophilicity,metal-like conductivity,large surface area,and adjustable surface chemistry.Here,we present a summary of recent advancements in the synthesis and performance enhancement methods for MXene hybrid materials in hydrogen production through EC and PEC water splitting.Furthermore,we examine the challenges and insights associated with the rational design of MXene-based hybrid materials to facilitate efficient water splitting for sustainable solar fuel production. 展开更多
关键词 MXene Hybrid materials EC PEC HER OER Water splitting
在线阅读 下载PDF
High Performance Microwave Absorption Material Based on Metal-Backboned Polymer
6
作者 Jia-Ning Xu Kai-Wen Zeng +8 位作者 Yi-Feng Zhang Yi-Bei Yang Zi-Wei Liu Yue Liu Jia-Jia Wang Kai-Lin Zhang Yan-Ru-Zhen Wu Hao Sun Hui-Sheng Peng 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第12期1881-1887,I0006,共8页
Metal-backboned polymers with anisotropy microstructures are promising for conductive,optoelectronic,and magnetic functional materials.However,the structure-property relationships governing the interplay between the c... Metal-backboned polymers with anisotropy microstructures are promising for conductive,optoelectronic,and magnetic functional materials.However,the structure-property relationships governing the interplay between the chemical structure and electromagnetic property of the metal-backboned polymer have been rarely investigated.Here we report a carbon/nickel hybrid from metal-backboned polymer to serve as electromagnetic wave-absorbing materials,which exhibit high microwave absorption capacity and tunable absorption band.The presence of nickel backbones promote the generation of heterogeneous interfaces with carbon during calcination,thereby enhancing the wave-absorbing capacity of the carbon/nickel hybrid.The C/Ni hybrids show a minimal reflection loss of-49.1 dB at 13.04 GHz,and its frequency of the absorption band can be adjusted by controlling the thickness of the absorption layer. 展开更多
关键词 NICKEL Metal-backboned polymer CARBON Hybrid material
原文传递
Synthesis and characterization of hybrid organic-inorganic materials based on EA-MAn-APTES and silica 被引量:1
7
作者 邱凤仙 周钰明 +1 位作者 刘举正 张旭苹 《Journal of Southeast University(English Edition)》 EI CAS 2005年第1期63-67,共5页
Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTE... Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability. 展开更多
关键词 organic-inorganic hybrid material sol-gel process Ethyl acrylate maleicanhydride 3-aminopropyltriethoxysilane (APTES)
在线阅读 下载PDF
Organometallic modification of silica with europium endowing the fiuorescence properties: The key technique for numerical quality monitoring
8
作者 Junqing Wu Yiyang Zhang +4 位作者 Qingqing Hong Hui Yang Lifeng Zhang Ming Zhang Lei Yu 《Chinese Chemical Letters》 2025年第4期153-156,共4页
The micro-dispersion structure of silica fillers exerts significant infiuences on the performance characteristics of rubber-based products. How to monitor this parameter is an important issue in the rubber industry, b... The micro-dispersion structure of silica fillers exerts significant infiuences on the performance characteristics of rubber-based products. How to monitor this parameter is an important issue in the rubber industry, but there is currently no suitable technical solution for numerical monitoring that can be applied in automatic production line. The labeling of silica in rubber is a challenge that bottlenecks the development of numerical quality monitoring technology. In this work, we employed the organometallic europium to modify silica endowing the fiuorescence properties for characterization. It provides more feasible solutions for visually studying the relationship between the submicroscopic structure and macroscopic properties of inorganic-filled polymers, and is the key foundation for achieving numerical monitoring of rubber filler qualities in industry. 展开更多
关键词 FLUORESCENCE SILICA FILLERS Hybrid material Composites
原文传递
Hybrid CoMoO_(3)/CoMoO_(4) nanorods for enhanced lithium-ion battery performance
9
作者 Lijia Wan Tingting Zhang +4 位作者 Ran Sun Chunlai Huang Ting Lu Junping Hu Likun Pan 《International Journal of Minerals,Metallurgy and Materials》 2025年第8期1997-2006,共10页
Electrode materials that rely on conversion reactions for lithium-ion batteries(LIBs)possess high energy densities.However,a key issue in their design is bolstering their stability and minimizing volume variations dur... Electrode materials that rely on conversion reactions for lithium-ion batteries(LIBs)possess high energy densities.However,a key issue in their design is bolstering their stability and minimizing volume variations during lithiation and delithiation.Herein,an effect-ive strategy was devised to fulfill the fully reversible conversion reaction for lithium storage in CoMoO_(4) through the hybridization of Co-MoO_(3).CoMoO_(3)/CoMoO_(4) with a nanorod structure was synthesized via one-step annealing treatment after a solvothermal process.In such a structure,the CoMoO_(3)/CoMoO_(4) nanorod can considerably boost mechanical robustness and offer ample space to counteract volume fluctuations throughout successive cycles owing to the cooperative interaction between CoMoO_(3) and CoMoO_(4).CoMoO_(3)/CoMoO_(4) exhib-ited superior lithium-storage capacity(919.6 mAh/g at 0.1 A/g after 200 cycles)and cycling stability(683.4 mAh/g at 1 A/g after 600 cycles).CoMoO_(3)/CoMoO_(4) showed a high potential as an anode material for LIBs. 展开更多
关键词 ANODE CoMoO_(3)/CoMoO_(4) nanorod structure hybrid material electrode materials conversion reaction-type lithium-ion bat-teries
在线阅读 下载PDF
Construction of novel Pd/bacteria@ZIF-8 nanocomposite for size-selective catalysis
10
作者 Wei-Qiang Zhou Ze-Feng Long +7 位作者 Chuan Xu Jun-Ge Zhang Peng-Wei Huo Jia-Wei Liu Chen Zhou Quan Wang Wei Xue Long Zhang 《Rare Metals》 2025年第3期2103-2109,共7页
Hybrid materials with synergistic properties have been used for various applications.Herein,we report a green biosynthesis strategy for the fabrication of a novel Pd/bacteria@ZIF-8 composite,featuring a sandwiched str... Hybrid materials with synergistic properties have been used for various applications.Herein,we report a green biosynthesis strategy for the fabrication of a novel Pd/bacteria@ZIF-8 composite,featuring a sandwiched structure and size-selective capabilities.The Shewanella oneidensis(S.oneidensis)MR-1 was selected as the biological reductant to reduce Pd ions and synthesize Pd nanoparticles anchored on the surface of bacteria without the need for additional chemical reductants,bonding agents and toxic surfactants.This innovative sandwiched Pd/bacteria@ZIF-8 catalyst was further coated by the ZIF-8 to enhance its structural integrity.The as-prepared composite exhibits significant catalytic activity and excellent size-selective performance in the hydrogenation of olefins.This methodology opens up a horizon to designing size-selective catalysts through constructing the sandwiched structure. 展开更多
关键词 biological reductant reduce pd ions green biosynthesis chemical reductantsbonding agents shewanella oneidensis soneidensis mr pd nanoparticles toxic surfactant hybrid materials synergistic properties
原文传递
Unprecedented stepwise electron transfer and photocatalysis in supramolecular assembly derived hybrid single-layer two-dimensional nanosheets in water
11
作者 Yan Fan Jiao Tan +3 位作者 Cuijuan Zou Xuliang Hu Xing Feng Xin-Long Ni 《Chinese Chemical Letters》 2025年第4期199-204,共6页
Herein,a simple and effective outer-surface interactions assisted supramolecular hierarchical assembly has been first exploited to uniformly distribute tungstosilicic acid(TSA)inside the porous structure of cucurbit[1... Herein,a simple and effective outer-surface interactions assisted supramolecular hierarchical assembly has been first exploited to uniformly distribute tungstosilicic acid(TSA)inside the porous structure of cucurbit[10]uril-based single-layer 2D supramolecular-organic-frameworks(Q[10]-SOFs)in water.Importantly,the 2D Q[10]-SOFs can further serve as light harvesting antenna,achieving fast energy transfer to the embedded redox-active TSA upon photoexcitation,resulting in efficient visible light-driven selective oxidation of benzyl alcohols into the corresponding aldehydes in high yield at room temperature.Further studies revealed that the integrated of 2D Q[10]-SOFs and TSA played a key role in the catalytic process,due to the presence of a novel stepwise electron transfer route in the single-layer hybrid 2D structures. 展开更多
关键词 Hybrid single-layer 2D materials Host-vip recognition Outer-surface interactions PHOTOCATALYSIS
原文传递
Metal sulfides based composites as promising efficient microwave absorption materials:A review 被引量:8
12
作者 Bin Li Fenglong Wang +7 位作者 Kejun Wang Jing Qiao Dongmei Xu Yunfei Yang Xue Zhang Longfei Lyu Wei Liu Jiurong Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第9期244-268,共25页
The increasingly severe electromagnetic microwave pollution raises higher requirements for the development of efficient microwave absorption(MA)materials.Metal sulfides are regarded as potential robust MA materials be... The increasingly severe electromagnetic microwave pollution raises higher requirements for the development of efficient microwave absorption(MA)materials.Metal sulfides are regarded as potential robust MA materials because of their unique optical,thermal,electrical,and magnetic properties,as well as the controllable microstructures.However,due to the limited MA performances of unary metal sulfides,morphology regulations and foreign materials hybridizations are adopted as effective strategies to improve their MA performances.Recent years witnessed the fast research progresses on the metal sulfides based MA materials and thus,a systematic literature survey on the materials design,fabrication,characterizations,MA behaviors,and the mechanisms behind is,highly desirable to summarize the rapid progress of this hot research area so as to provide guidance for the future development trend.This review firstly reviewed the research background,research progress,and basic principles of MA materials.Subsequently,the present synthetic methods and performance improvement strategies of metal sulfides based MA materials are systematically introduced.Then,by comparing the MA properties of one-dimensional,two-dimensional,and three-dimensional metal sulfides based composites,the influence of dimensionality and morphology on the MA properties are analyzed.By summarizing the research process of metal sulfides/dielectrics composites,metal sulfides/magnets composites,and metal sulfides/dielectrics/magnets composites MA materials,the influence of foreign materials hybridizations on the loss mechanisms and impedance matching conditions of metal sulfides based composites are revealed.Finally,the challenges and development prospects of metal sulfides based MA materials are presented.This review would provide a comprehensive understanding and insightful guidance for the exploration and development of efficient MA materials with thin thickness,light weight,wide absorption bandwidth,and strong absorption intensity. 展开更多
关键词 Metal sulfides Microwave absorption Structure regulation materials hybridization Impedance matching
原文传递
A perspective on carbon materials for future energy application 被引量:17
13
作者 Dang Sheng Su Gabriele Centi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期151-173,共23页
Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and ou... Nanocarbon materials play a critical role in the development of new or improved technologies and devices for sustainable production and use of renewable energy. This perspective paper defines some of the trends and outlooks in this exciting area, with the effort of evidencing some of the possibilities offered from the growing level of knowledge, as testified from the exponentially rising number of publications, and putting bases for a more rational design of these nanomaterials. The basic members of the new carbon family are fullerene, graphene, and carbon nanotube. Derived from them are carbon quantum dots, nanohorn, nanofiber, nano ribbon, nanocapsulate, nanocage and other nanomorphologies. Second generation nanocarbons are those which have been modified by surface functionalization or doping with heteroatoms to create specific tailored properties. The third generation of nanocarbons is the nanoarchitectured supramolecular hybrids or composites of the first and second genera- tion nanocarbons, or with organic or inorganic species. The advantages of the new carbon materials, relating to the field of sustainable energy, are discussed, evidencing the unique properties that they offer for developing next generation solar devices and energy storage solutions. 展开更多
关键词 NANOCARBON CNT GRAPHENE hybrid carbon materials sustainable energy energy storage and conversion solar cells Li-batteries supercapac-itors
在线阅读 下载PDF
Nanocellulose-Graphene Hybrids: Advanced Functional Materials as Multifunctional Sensing Platform 被引量:9
14
作者 Abdelrahman Brakat Hongwei Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第6期231-267,共37页
Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications.However,i... Naturally derived nanocellulose with unique physiochemical properties and giant potentials as renewable smart nanomaterials opens up endless novel advanced functional materials for multi-sensing applications.However,integrating inorganic functional two-dimensional carbon materials such as graphene has realized hybrid organic-inorganic nanocomposite materials with precisely tailored properties and multi-sensing abilities.Altogether,the affinity,stability,dispersibility,modification,and functionalization are some of the key merits permitting their synergistic interfacial interactions,which exhibited highly advanced multifunctional hybrid nanocomposites with desirable properties.Moreover,the high performance of such hybrids could be achievable through green and straightforward approaches.In this context,the review covered the most advanced nanocellulose-graphene hybrids,focusing on their synthetization,functionalization,fabrication,and multi-sensing applications.These hybrid films exhibited great potentials as a multifunctional sensing platform for numerous mechanical,environmental,and human bio-signals detections,mimicking,and in-situ monitoring. 展开更多
关键词 NANOCELLULOSE GRAPHENE NANOCOMPOSITES Hybrid materials Multi-sensing
在线阅读 下载PDF
Hierarchical porous cellulose/lanthanide hybrid materials as luminescent sensor 被引量:6
15
作者 Wentao Fan Jiaojiao Du +2 位作者 Junfeng Kou Zeyu Zhang Fengyi Liu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第10期1036-1043,共8页
Photoluminescent hybrid materials containing carboxymethyl cellulose and lanthanide ions(Eu3+, Tb3+)were prepared by a facile method under ambient conditions. Lanthanide ions were covalently grafted to the cellulo... Photoluminescent hybrid materials containing carboxymethyl cellulose and lanthanide ions(Eu3+, Tb3+)were prepared by a facile method under ambient conditions. Lanthanide ions were covalently grafted to the cellulose framework through coordination with the carboxylic groups of the cellulose. Hybrid materials were fabricated as hydrogel and aerogel. As shown by SEM and pore parameters, aerogel materials which were obtained by supercritical CO2 drying show hierarchical porous structure. The photoluminescence spectrum of the hybrid materials shows the characteristic red emission of Eu3+ ion and green emission of Tb3+. Further luminescent investigations reveal that these hybrid materials can detect Fe3+ with relative selectivity and high sensitivity, which suggests that the hybrid materials could be a promising luminescent probe for selectively sensing Fe3+ ion. 展开更多
关键词 LANTHANIDE CELLULOSE Hybrid materials Luminescent sensor Rare earths
原文传递
Novel Hybrid Nanoparticles of Vanadium Nitride/Porous Carbon as an Anode Material for Symmetrical Supercapacitor 被引量:5
16
作者 Yunlong Yang Kuiwen Shen +5 位作者 Ying Liu Yongtao Tan Xiaoning Zhao Jiayu Wu Xiaoqin Niu Fen Ran 《Nano-Micro Letters》 SCIE EI CAS 2017年第1期89-103,共15页
Hybrid materials of vanadium nitride and porous carbon nanoparticles(VN/PCNPs) were fabricated by a facile pyrolysis process of vanadium pentoxide(V_2O_5) xerogel and melamine at relatively low temperature of 800 ... Hybrid materials of vanadium nitride and porous carbon nanoparticles(VN/PCNPs) were fabricated by a facile pyrolysis process of vanadium pentoxide(V_2O_5) xerogel and melamine at relatively low temperature of 800 °C for supercapacitor application. The effects of the feed ratio of V_2O_5 to melamine(r), and nitrogen flow rate on the microstructure and electrochemical performance were also investigated. It was found that the size of the as-synthesized nanoparticles is about 20 nm. Both r value and N_2 flow rate have enormous impacts on morphology and microstructure of the nanoparticle, which correspondingly determined the electrochemical performance of the material. The VN/C hybrid nanoparticles exhibited high capacitive properties, and a maximum specific capacitance of 255.0 Fg^(-1) was achieved at a current density of 1.0 Ag^(-1) in 2 M KOH aqueous electrolyte and the potential range from 0 to -1.15 V. In addition,symmetrical supercapacitor fabricated with the as-synthesized VN/PCNPs presents a high specific capacitance of 43.5 F g^(-1) at 0.5 A g^(-1) based on the entire cell, and an energy density of 8.0 Wh kg^(-1) when the power density was 575 W kg^(-1). Even when the power density increased to 2831.5 W kg^(-1), the energy density still remained 6.1 Wh kg^(-1). 展开更多
关键词 SUPERCAPACITORS NANOPARTICLE Vanadium nitride Porous carbon Hybrid materials
在线阅读 下载PDF
SYNTHESIS OF MESOPOROUS POLY(STYRENE-co-MALEIC ANHYDRIDE)/SILICA HYBRID MATERIALS VIA A NONSURFACTANT-TEMPLATED SOL-GEL PROCESS 被引量:6
17
作者 Jie-bin Pang Kun-yuan Qiu Yen Wei Department of Polymer Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China. Department of Chemistry, Drexel University, Philadelphia, Pennsylvania 19104, USA. 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2000年第5期469-472,共4页
Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydrid... Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase. 展开更多
关键词 mesoporous hybrid material poly(styrene-co-maleic anhydride)/silica citric acid nonsurfactant template sol-gel process
在线阅读 下载PDF
Characteristic evaluation of Al_2O_3/CNTs hybrid materials for micro-electrical discharge machining 被引量:4
18
作者 Hyun-Seok TAK Chang-Seung HA +3 位作者 Ho-Jun LEE Hyung-Woo LEE Young-Keun JEONG Myung-Chang KANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第A01期28-32,共5页
The characteristic evaluation of aluminum oxide (A1203)/carbon nanotubes (CNTs) hybrid composites for micro-electrical discharge machining (EDM) was described. Alumina matrix composites reinforced with CNTs were... The characteristic evaluation of aluminum oxide (A1203)/carbon nanotubes (CNTs) hybrid composites for micro-electrical discharge machining (EDM) was described. Alumina matrix composites reinforced with CNTs were fabricated by a catalytic chemical vapor deposition method. A1203 composites with different CNT concentrations were synthesized. The electrical characteristic of A1203/CNTs composites was examined. These composites were machined by the EDM process according to the various EDM parameters, and the characteristics of machining were analyzed using field emission scanning electron microscope (FESEM). The electrical conductivity has a increasing tendency as the CNTs content is increased and has a critical point at 5% A1203 (volume fraction). In the machining accuracy, many tangles of CNT in A1203/CNTs composites cause violent spark. Thus, it causes the poor dimensional accuracy and circularity. The results show that conductivity of the materials and homogeneous distribution of CNTs in the matrix are important factors for micro-EDM of A1203/CNTs hybrid composites. 展开更多
关键词 A1203/CNTs hybrid materials micro-electrical discharge machining MICRO-HOLE electrical conductivity
在线阅读 下载PDF
Recent progress on lanthanide complexes/clay minerals hybrid luminescent materials 被引量:3
19
作者 Ga Zhang Lefu Mei +4 位作者 Junjie Ding Ke Su Qingfeng Guo Guocheng Lv Libing Liao 《Journal of Rare Earths》 SCIE EI CAS CSCD 2022年第9期1360-1370,I0001,共12页
The unique luminescent performance of lanthanide complexes/clay minerals hybrid materials has been fascinating many researchers for recent decades.It not only retains the excellent luminescent characteristics of lanth... The unique luminescent performance of lanthanide complexes/clay minerals hybrid materials has been fascinating many researchers for recent decades.It not only retains the excellent luminescent characteristics of lanthanide complexes but also improves the poor stability of the complexes.In this article,we introduce the luminescence mechanism of lanthanide complexes and point out the necessity of their combination with clay minerals.After the analysis of the structure and interlayer environment differences of 1:1-type and 2:1-type clay minerals,the intercalation methods(covalent grafting and ion exchange)appropriate for different clay minerals are summarized with examples.Based on the luminescence characteristics of the hybrid materials,the applications of these materials as luminescent probes in recognition of specific metal cations and molecules,detection of pH value,and temperature are reviewed.Finally,the current problems in the preparation of lanthanide complexes/clay minerals hybrid luminescent materials and shortcomings that need improvement in their performance are analyzed,and the application prospect is forecast. 展开更多
关键词 LUMINESCENCE Hybrid materials Lanthanide complexes Clay minerals Luminescent probes Rare earths
原文传递
Novel luminescent europium-centered hybrid material covalently grafted with organically modified titania via 2-substituted imidazophenanthroline for fluorescence sensing 被引量:2
20
作者 Fenghan Wei Chao Bai +3 位作者 Huai-Ming Hu Shi He Xiaofang Wang Ganglin Xue 《Journal of Rare Earths》 SCIE EI CAS CSCD 2021年第6期666-673,I0002,共9页
By employing a rational approach,we prepared a novel kind of luminescent europium-centered hybrid material named Eu(tta)_(3)NCP-TiO_(2).The resulting material was characterized by FT-IR spectra,SEM,X-ray diffraction,t... By employing a rational approach,we prepared a novel kind of luminescent europium-centered hybrid material named Eu(tta)_(3)NCP-TiO_(2).The resulting material was characterized by FT-IR spectra,SEM,X-ray diffraction,thermogravimetric analysis,and photoluminescence spectra.The hybrid material features the combined advantages of the europium complex and the titania host,exhibiting not only good thermostability,but also long luminescence lifetime.Owing to the excellent luminescence of this material,the application in detecting organic small molecule solvents and metal ions was explored systematically.Significantly,Eu(tta)_(3)NCP-TiO_(2) exhibits superior detection for nitrobenzene molecule and Cu^(2+) ion in DMF(N,N-dimethylformamide) medium.Furthermore,the limit of detection(LOD) of Eu(tta)_(3)NCP-TiO_(2) for nitrobenzene and Cu^(2+) ion can be counted as 5.593× 10^(-5) and 9.566 ×10^(-5) mol/L,respectively.The results demonstrate that Eu(tta)_(3)NCP-TiO_(2) can serve as an efficient fluorescence probe for the detection of sensing of nitrobenzene and Cu^(2+) ion. 展开更多
关键词 Hybrid material Ternary europium complex Imidazophenanthroline TITANIA Fluorescence sensing Rare earths
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部