In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the a...In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.展开更多
In this paper,a self-developed master-slave follow-up disc cutter is used to conduct rock-breaking tests on hard sandstone samples.Different working parameters were employed in the tests(e.g.cutting depth,cutting spee...In this paper,a self-developed master-slave follow-up disc cutter is used to conduct rock-breaking tests on hard sandstone samples.Different working parameters were employed in the tests(e.g.cutting depth,cutting speed,cutting angle,and rotational speed)in order to explore their influences on cutting performance.The results indicate that the thrust,torque,vibration velocity,and roughness all increased continuously with increase of the propulsion speed and cutting depth.At the same time,the specific energy consumption was found to decrease continuously.As the rotational speed was increased,the thrust increased at first and then decreased.In contrast,the torque and roughness continuously decreased,and the specific energy consumption and vibration speed continuously increased.When the cutting angle was increased,the thrust remained unchanged.However,the torque,specific energy consumption,and vibration speed all decreased continuously,and the roughness increased continuously.The temperature of the surface of the cutting tool was found to be relatively uniformly distributed during the rock-breaking process;the highest temperatures generated were in the range of 200-300℃.As the propulsion speed,cutting depth,and cutting angle were increased,the proportion of tensile fractures produced appeared to increase and the proportion of shear fractures decreased.As the rotational speed was increased,the proportion of tensile fractures decreased and the proportion of shear fractures increased.The results could provide useful information on the rock-breaking behavior involved and can be used to offer technical support for engineers using master-slave follow-up disc cutters in the field.展开更多
This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling m...This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.展开更多
Upon flaws of current blockchain platforms of heavyweight, large capacity of ledger, and time-consuming of synchronization of data, in this paper, we proposed a new paradigm of master-slave blockchain scheme(MSB) for ...Upon flaws of current blockchain platforms of heavyweight, large capacity of ledger, and time-consuming of synchronization of data, in this paper, we proposed a new paradigm of master-slave blockchain scheme(MSB) for pervasive computing that suitable for general PC, mobile device such as smart phones or PADs to participants in the working of mining and verification, in which we separated traditional blockchain model in 2 layer defined as master node layer and a series of slavery agents layer, then we proposed 2 approaches for partially computing model(PCM) and non-computing of model(NCM) in the MSB blockchain, Finally large amounts of simulations manifest the proposed master-slave blockchain scheme is feasible, extendible and suitable for pervasive computing especially in the 5 G generation environment, and can apply in the DRM-related applications.展开更多
This paper addresses a master-slave synchro- nization strategy for complex dynamic systems based on feedback control. This strategy is applied to 3-DOF pla- nar manipulators in order to obtain synchronization in such ...This paper addresses a master-slave synchro- nization strategy for complex dynamic systems based on feedback control. This strategy is applied to 3-DOF pla- nar manipulators in order to obtain synchronization in such complicated as chaotic motions of end-effectors. A chaotic curve is selected from Duffing equation as the trajectory of master end-effector and a piecewise approximation method is proposed to accurately represent this chaotic trajectory of end-effectors. The dynamical equations of master-slave manipulators with synchronization controller are derived, and the Lyapunov stability theory is used to determine the stability of this controlled synchronization system. In numer- ical experiments, the synchronous motions of end-effectors as well as three joint angles and torques of master-slave manipulators are studied under the control of the proposed synchronization strategy. It is found that the positive gain matrix affects the implementation of synchronization con- trol strategy. This synchronization control strategy proves the synchronization's feasibility and controllability for com- plicated motions generated by master-slave manipulators.展开更多
The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple li...The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time- varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method.展开更多
As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the...As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the leading cause.Hence,the solution may rest with the synchronization of those heating processes in MCHR system.This paper proposes a’Master-Slave’generalized predictive synchronization control(MS-GPSC)method with’Mr.Slowest’strategy for preheating stage of MCHR system.The core of the proposed method is choosing the heating process with slowest dynamics as the’Master’to track the setpoint,while the other heating processes are treated as‘Slaves’tracking the output of’Master’.This proposed method is shown to have the good ability of temperature synchronization.The corresponding analysis is conducted on parameters tuning and stability,simulations and experiments show the strategy is effective.展开更多
A 3 DOF master-slave telerobot system is established for study on force telepresence technology. A force feedback and position control scheme is adopted in the bilateral force response control system,and force fidelit...A 3 DOF master-slave telerobot system is established for study on force telepresence technology. A force feedback and position control scheme is adopted in the bilateral force response control system,and force fidelity and controllability experiments demonstrate feasibility of the con-trol system.展开更多
The fluidic oscillator is an instrument that can continuously generate a spatially sweeping jet entirely based on its internal geometry without any moving parts.However,the traditional fluidic oscillator has an inhere...The fluidic oscillator is an instrument that can continuously generate a spatially sweeping jet entirely based on its internal geometry without any moving parts.However,the traditional fluidic oscillator has an inherent limitation,that is,the spreading angle cannot be controlled independently,rather by the jet volume flow rate and internal geometry.Accordingly,two types of fluidic oscillators based on the master-slave design are developed in current study to decouple this correlation.In both designs,the master layer inherits the similar oscillation mechanisms of a sweeping jet,and the slave layer resembles a steady jet channel.The difference between the two designs is that Design A has a short diverging exit in the slave layer,but Design B adds a long interaction chamber in the exit channel to intensify flow instability.The external flow fields and governing oscillation properties of these two designs are experimentally explored with time-resolved Particle Image Velocimetry(PIV),while the internal flow dynamics and driving oscillation mechanisms are numerically investigated.By fixing the total volume flow rate,the jet spreading angle of Design A can be increased smoothly from 0°to above 100°by increasing the proportion of master layer’s flow rate from 0 to 100%.For Design B,the control authority of the master layer is significantly enhanced by adding the interaction chamber in the slave layer.In addition,the added chamber causes notable jet oscillation even when the master layer has none input.展开更多
This paper proposes an adaptive synchronization problem for the master and slave structure of linear systems with nonlinear perturbations and mixed time-varying delays comprising different discrete and distributed tim...This paper proposes an adaptive synchronization problem for the master and slave structure of linear systems with nonlinear perturbations and mixed time-varying delays comprising different discrete and distributed time delays. Using an appropriate Lyapunov-Krasovskii functional, some delay-dependent sufficient conditions and an adaptation law including the master-slave parame- ters are established for designing a delayed synchronization law in terms of linear matrix inequalities(LMIs). The time-varying controller guarantees the H ∞ synchronization of the two coupled master and slave systems regardless of their initial states. Particularly, it is shown that the synchronization speed can be controlled by adjusting the updated gain of the synchronization signal. Two numerical examples are given to demonstrate the effectiveness of the method.展开更多
Welding seam tracking precision was decreased due to human hand tremor during the master-slave welding teleoperation. To solve this problem, a master-slave robot remote welding system was built, the system consisted o...Welding seam tracking precision was decreased due to human hand tremor during the master-slave welding teleoperation. To solve this problem, a master-slave robot remote welding system was built, the system consisted of a master manipulator with six degree of freedom ( DOF ) , an industrial computer control system and a slave Motoman HP3 J robot, and human hand tremor and digital filtering were discussed. An optimal digital filter was designed to clean human tremor signal for improving the welding seam tracking precision. The experimental results show that the digital filter suppresses the operator' s tremor signal.展开更多
Aiming at the weaknesses of LON bus, combining the coexistence of fieldbus and DCS (Distribu ted Control Systems) in control networks, the authors introduce a hierarchical hybrid control network design based on LON an...Aiming at the weaknesses of LON bus, combining the coexistence of fieldbus and DCS (Distribu ted Control Systems) in control networks, the authors introduce a hierarchical hybrid control network design based on LON and master slave RS 422/485 protocol. This design adopts LON as the trunk, master slave RS 422/485 control networks are connected to LON as special subnets by dedicated gateways. It is an implementation method for isomerous control network integration. Data management is ranked according to real time requirements for different network data. The core components, such as control network nodes, router and gateway, are detailed in the paper. The design utilizes both communication advantage of LonWorks technology and the more powerful control ability of universal MCUs or PLCs, thus it greatly increases system response speed and performance cost ratio.展开更多
This study aims to address the feasibility of planned islanding operation and to investigate the effect of unplanned islanding using the master-slave islanding method for controlling the distributed generation units d...This study aims to address the feasibility of planned islanding operation and to investigate the effect of unplanned islanding using the master-slave islanding method for controlling the distributed generation units during grid-connected and islanding operation. Neplan desktop power simulation tool was used for the modelling and simulation of a realistic MV network with four different distributed generation technologies (diesel, gas, hydro and wind) along with their excitation and governor control systems, while an exponential model was used to represent the loads in the network. The dynamic and steady state behavior of the four distributed generation technologies were investigated during grid-connected operation and two transition modes to the islanding situation, planned and unplanned. The obtained results that validated through various case studies have shown that a suitable planned islanding transition could provide support to critical loads at the event of electricity utility outages.展开更多
Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely us...Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely used for artificial spiking synapses due to their relatively poor memrisitve performance.Here,for the first time,we present an organic memristor based on an electropolymerized dopamine-based memristive layer.This polydopamine-based memristor demonstrates the improve-ments in key performance,including a low threshold voltage of 0.3 V,a thin thickness of 16 nm,and a high parasitic capaci-tance of about 1μF·mm^(-2).By leveraging these properties in combination with its stable threshold switching behavior,we con-struct a capacitor-free and low-power artificial spiking neuron capable of outputting the oscillation voltage,whose spiking fre-quency increases with the increase of current stimulation analogous to a biological neuron.The experimental results indicate that our artificial spiking neuron holds potential for applications in neuromorphic computing and systems.展开更多
Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford...Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford a broad range of applications in the domain of electric vehicles(EVs).Standard copper magnetic wire and low-carbon steel laminations are used to construct SRMs,which give them high efficiency in the range of 85-95%.Despite SRM's desirable features over traditional motor-speed drives,high torque ripples and radial distortions constrain their deployment in EVs.Precise rotor position is imperative for effective management of the speed and torque of SRMs.This paper provides an illustrative compendium on review of the torque-speed control and ripple mitigation techniques using design enhancements and control methods for SRM drives for EV applications.The various schemes were evaluated on their performance metricsoperational speed range,control complexity,practical realization,need for pre-stored parameters(look-up tables of current,inductance and torque profiles)and motor controller memory requirements.The findings provide valuable insights into balancing the gains and trade-offs associated with EV applications.Furthermore,they pinpoint opportunities for enhancement by analyzing the cost and technical aspects of different SRM controllers.展开更多
Content Addressable Memory (CAM) is a type of memory used for high-speed search applications. Due to parallel comparison feature, the CAM memory leads to large power consumption which is caused by frequent pre-charge ...Content Addressable Memory (CAM) is a type of memory used for high-speed search applications. Due to parallel comparison feature, the CAM memory leads to large power consumption which is caused by frequent pre-charge or discharge of match line. In this paper, CAM for automatic charge balancing with self-control mechanism is proposed to control the voltage swing of ML for reducing the power consumption of CAM. Another technique to reduce the power dissipation is to use MSML, it combines the master-slave architecture with charge minimization technique. Unlike the conventional design, only one match line (ML) is used, whereas in Master-Slave Match Line (MSML) one master ML and several slave MLs are used to reduce the power dissipation in CAM caused by match lines (MLs). Theoretically, the match line (ML) reduces the power consumption up to 50% which is independent of search and match case. The simulation results using Cadence tool of MSML show the reduced power consumption in CAM and modified CAM cell.展开更多
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th...Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.展开更多
Dear Editor,This letter studies finite-time stability (FTS) of impulsive and switched hybrid systems with delay-dependent impulses. Some conditions, based on Lyapunov method, are proposed for ensuring FTS and estimati...Dear Editor,This letter studies finite-time stability (FTS) of impulsive and switched hybrid systems with delay-dependent impulses. Some conditions, based on Lyapunov method, are proposed for ensuring FTS and estimating settling-time function (STF) of the hybrid systems.When switching dynamics are FTS and impulsive dynamics involve destabilizing delay-dependent impulses, the FTS is retained if the impulses occur infrequently.展开更多
文摘In this article, a synchronization problem for master-slave Markovian switching complex dynamical networks with time-varying delays in nonlinear function via sliding mode control is investigated. On the basis of the appropriate Lyapunov-Krasovskii functional, introducing some free weighting matrices, new synchronization criteria are derived in terms of linear matrix inequalities (LMIs). Then, an integral sliding surface is designed to guarantee synchronization of master-slave Markovian switching complex dynamical networks, and the suitable controller is synthesized to ensure that the trajectory of the closed-loop error system can be driven onto the prescribed sliding mode surface. By using Dynkin's formula, we established the stochastic stablity of master-slave system. Finally, numerical example is provided to demonstrate the effectiveness of the obtained theoretical results.
基金study was supported by the National Key Research and Development Program of China(Grant No.2023YFC2907202)the National Natural Science Foundation of China(Grant No.52404116)the Postdoctoral Fellowship Program of CPSF(Grant No.GZB20240129).
文摘In this paper,a self-developed master-slave follow-up disc cutter is used to conduct rock-breaking tests on hard sandstone samples.Different working parameters were employed in the tests(e.g.cutting depth,cutting speed,cutting angle,and rotational speed)in order to explore their influences on cutting performance.The results indicate that the thrust,torque,vibration velocity,and roughness all increased continuously with increase of the propulsion speed and cutting depth.At the same time,the specific energy consumption was found to decrease continuously.As the rotational speed was increased,the thrust increased at first and then decreased.In contrast,the torque and roughness continuously decreased,and the specific energy consumption and vibration speed continuously increased.When the cutting angle was increased,the thrust remained unchanged.However,the torque,specific energy consumption,and vibration speed all decreased continuously,and the roughness increased continuously.The temperature of the surface of the cutting tool was found to be relatively uniformly distributed during the rock-breaking process;the highest temperatures generated were in the range of 200-300℃.As the propulsion speed,cutting depth,and cutting angle were increased,the proportion of tensile fractures produced appeared to increase and the proportion of shear fractures decreased.As the rotational speed was increased,the proportion of tensile fractures decreased and the proportion of shear fractures increased.The results could provide useful information on the rock-breaking behavior involved and can be used to offer technical support for engineers using master-slave follow-up disc cutters in the field.
文摘This paper investigates the problem of cluster synchronization of master-slave complex net-works with time-varying delay via linear and adaptive feedback pinning controls.We need not non-delayed and delayed coupling matrices to be symmetric or irreducible.We have the advantages of using adaptive control method to reduce control gain and pinning control technology to reduce cost.By con-structing Lyapunov function,some sufficient synchronization criteria are established.Finally,numerical examples are employed to illustrate the effectiveness of the proposed approach.
基金supported by the National Natural Science Foundation of China under Grant 61272519the Research Funds of Blockchain Joint Lab between BUPT and BCTthe joint Blockchain and Security Lab between BUPT and CAPSTONE
文摘Upon flaws of current blockchain platforms of heavyweight, large capacity of ledger, and time-consuming of synchronization of data, in this paper, we proposed a new paradigm of master-slave blockchain scheme(MSB) for pervasive computing that suitable for general PC, mobile device such as smart phones or PADs to participants in the working of mining and verification, in which we separated traditional blockchain model in 2 layer defined as master node layer and a series of slavery agents layer, then we proposed 2 approaches for partially computing model(PCM) and non-computing of model(NCM) in the MSB blockchain, Finally large amounts of simulations manifest the proposed master-slave blockchain scheme is feasible, extendible and suitable for pervasive computing especially in the 5 G generation environment, and can apply in the DRM-related applications.
基金supported by the Key Project of Chinese Ministry of Education(108037)the National Natural Science Foundation of China(10402008 and 50535010)
文摘This paper addresses a master-slave synchro- nization strategy for complex dynamic systems based on feedback control. This strategy is applied to 3-DOF pla- nar manipulators in order to obtain synchronization in such complicated as chaotic motions of end-effectors. A chaotic curve is selected from Duffing equation as the trajectory of master end-effector and a piecewise approximation method is proposed to accurately represent this chaotic trajectory of end-effectors. The dynamical equations of master-slave manipulators with synchronization controller are derived, and the Lyapunov stability theory is used to determine the stability of this controlled synchronization system. In numer- ical experiments, the synchronous motions of end-effectors as well as three joint angles and torques of master-slave manipulators are studied under the control of the proposed synchronization strategy. It is found that the positive gain matrix affects the implementation of synchronization con- trol strategy. This synchronization control strategy proves the synchronization's feasibility and controllability for com- plicated motions generated by master-slave manipulators.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60904046, 60972164, 60974071, and 60804006)the Special Fund for Basic Scientific Research of Central Colleges, Northeastern University, China (Grant No. 090604005)+2 种基金the Science and Technology Program of Shenyang (Grant No. F11-264-1-70)the Program for Liaoning Excellent Talents in University (Grant No. LJQ2011137)the Program for Liaoning Innovative Research Team in University (Grant No. LT2011019)
文摘The networked synchronization problem of a class of master-slave chaotic systems with time-varying communication topologies is investigated in this paper. Based on algebraic graph theory and matrix theory, a simple linear state feedback controller is designed to synchronize the master chaotic system and the slave chaotic systems with a time- varying communication topology connection. The exponential stability of the closed-loop networked synchronization error system is guaranteed by applying Lyapunov stability theory. The derived novel criteria are in the form of linear matrix inequalities (LMIs), which are easy to examine and tremendously reduce the computation burden from the feedback matrices. This paper provides an alternative networked secure communication scheme which can be extended conveniently. An illustrative example is given to demonstrate the effectiveness of the proposed networked synchronization method.
基金supported in part by National Natural Science Foundation of China(62203127)Basic and Applied Basic Research Project of Guangzhou City(2023A04J1712)+1 种基金The Foshan-HKUST Projects Program(FSUST19-FYTRI01)GDAS’Project of Science and Technology Development(2020GDASYL-20200202001).
文摘As a key component of injection molding,multi-cavity hot runner(MCHR)system faces the crucial problem of polymer melt filling imbalance among the cavities.The thermal imbalance in the system has been considered as the leading cause.Hence,the solution may rest with the synchronization of those heating processes in MCHR system.This paper proposes a’Master-Slave’generalized predictive synchronization control(MS-GPSC)method with’Mr.Slowest’strategy for preheating stage of MCHR system.The core of the proposed method is choosing the heating process with slowest dynamics as the’Master’to track the setpoint,while the other heating processes are treated as‘Slaves’tracking the output of’Master’.This proposed method is shown to have the good ability of temperature synchronization.The corresponding analysis is conducted on parameters tuning and stability,simulations and experiments show the strategy is effective.
文摘A 3 DOF master-slave telerobot system is established for study on force telepresence technology. A force feedback and position control scheme is adopted in the bilateral force response control system,and force fidelity and controllability experiments demonstrate feasibility of the con-trol system.
基金financial support from the National Natural Science Foundation of China(Nos.12072196 and 11702172)Science and Technology Commission of Shanghai Municipality(No.19JC1412900)+1 种基金Aeronautics Power Foundation(No.6141B09050393)Key Laboratory of Aerodynamic Noise Control(No.ANCL20190106)extended to this study。
文摘The fluidic oscillator is an instrument that can continuously generate a spatially sweeping jet entirely based on its internal geometry without any moving parts.However,the traditional fluidic oscillator has an inherent limitation,that is,the spreading angle cannot be controlled independently,rather by the jet volume flow rate and internal geometry.Accordingly,two types of fluidic oscillators based on the master-slave design are developed in current study to decouple this correlation.In both designs,the master layer inherits the similar oscillation mechanisms of a sweeping jet,and the slave layer resembles a steady jet channel.The difference between the two designs is that Design A has a short diverging exit in the slave layer,but Design B adds a long interaction chamber in the exit channel to intensify flow instability.The external flow fields and governing oscillation properties of these two designs are experimentally explored with time-resolved Particle Image Velocimetry(PIV),while the internal flow dynamics and driving oscillation mechanisms are numerically investigated.By fixing the total volume flow rate,the jet spreading angle of Design A can be increased smoothly from 0°to above 100°by increasing the proportion of master layer’s flow rate from 0 to 100%.For Design B,the control authority of the master layer is significantly enhanced by adding the interaction chamber in the slave layer.In addition,the added chamber causes notable jet oscillation even when the master layer has none input.
文摘This paper proposes an adaptive synchronization problem for the master and slave structure of linear systems with nonlinear perturbations and mixed time-varying delays comprising different discrete and distributed time delays. Using an appropriate Lyapunov-Krasovskii functional, some delay-dependent sufficient conditions and an adaptation law including the master-slave parame- ters are established for designing a delayed synchronization law in terms of linear matrix inequalities(LMIs). The time-varying controller guarantees the H ∞ synchronization of the two coupled master and slave systems regardless of their initial states. Particularly, it is shown that the synchronization speed can be controlled by adjusting the updated gain of the synchronization signal. Two numerical examples are given to demonstrate the effectiveness of the method.
基金This research is supported by National Natural Science Foundation of China (No. 50905043).
文摘Welding seam tracking precision was decreased due to human hand tremor during the master-slave welding teleoperation. To solve this problem, a master-slave robot remote welding system was built, the system consisted of a master manipulator with six degree of freedom ( DOF ) , an industrial computer control system and a slave Motoman HP3 J robot, and human hand tremor and digital filtering were discussed. An optimal digital filter was designed to clean human tremor signal for improving the welding seam tracking precision. The experimental results show that the digital filter suppresses the operator' s tremor signal.
文摘Aiming at the weaknesses of LON bus, combining the coexistence of fieldbus and DCS (Distribu ted Control Systems) in control networks, the authors introduce a hierarchical hybrid control network design based on LON and master slave RS 422/485 protocol. This design adopts LON as the trunk, master slave RS 422/485 control networks are connected to LON as special subnets by dedicated gateways. It is an implementation method for isomerous control network integration. Data management is ranked according to real time requirements for different network data. The core components, such as control network nodes, router and gateway, are detailed in the paper. The design utilizes both communication advantage of LonWorks technology and the more powerful control ability of universal MCUs or PLCs, thus it greatly increases system response speed and performance cost ratio.
文摘This study aims to address the feasibility of planned islanding operation and to investigate the effect of unplanned islanding using the master-slave islanding method for controlling the distributed generation units during grid-connected and islanding operation. Neplan desktop power simulation tool was used for the modelling and simulation of a realistic MV network with four different distributed generation technologies (diesel, gas, hydro and wind) along with their excitation and governor control systems, while an exponential model was used to represent the loads in the network. The dynamic and steady state behavior of the four distributed generation technologies were investigated during grid-connected operation and two transition modes to the islanding situation, planned and unplanned. The obtained results that validated through various case studies have shown that a suitable planned islanding transition could provide support to critical loads at the event of electricity utility outages.
基金support from the Beijing Natural Science Foundation-Xiaomi Innovation Joint Fund(No.L233009)National Natural Science Foundation of China(NSFC Nos.62422409,62174152,and 62374159)from the Youth Innovation Promotion Association of Chinese Academy of Sciences(No.2020115).
文摘Memristors have a synapse-like two-terminal structure and electrical properties,which are widely used in the construc-tion of artificial synapses.However,compared to inorganic materials,organic materials are rarely used for artificial spiking synapses due to their relatively poor memrisitve performance.Here,for the first time,we present an organic memristor based on an electropolymerized dopamine-based memristive layer.This polydopamine-based memristor demonstrates the improve-ments in key performance,including a low threshold voltage of 0.3 V,a thin thickness of 16 nm,and a high parasitic capaci-tance of about 1μF·mm^(-2).By leveraging these properties in combination with its stable threshold switching behavior,we con-struct a capacitor-free and low-power artificial spiking neuron capable of outputting the oscillation voltage,whose spiking fre-quency increases with the increase of current stimulation analogous to a biological neuron.The experimental results indicate that our artificial spiking neuron holds potential for applications in neuromorphic computing and systems.
基金supported in part by the Universitat Politècnica de València under grant PAID-10-21supported through AMRITA Seed Grant(Proposal ID:ASG2022188)。
文摘Switched Reluctance Motors(SRMs),outfitted with rugged construction,good speed range,high torque density,and rare earth-free nature that outweigh induction motors(IM)and permanent magnet synchronous motor(PMSM),afford a broad range of applications in the domain of electric vehicles(EVs).Standard copper magnetic wire and low-carbon steel laminations are used to construct SRMs,which give them high efficiency in the range of 85-95%.Despite SRM's desirable features over traditional motor-speed drives,high torque ripples and radial distortions constrain their deployment in EVs.Precise rotor position is imperative for effective management of the speed and torque of SRMs.This paper provides an illustrative compendium on review of the torque-speed control and ripple mitigation techniques using design enhancements and control methods for SRM drives for EV applications.The various schemes were evaluated on their performance metricsoperational speed range,control complexity,practical realization,need for pre-stored parameters(look-up tables of current,inductance and torque profiles)and motor controller memory requirements.The findings provide valuable insights into balancing the gains and trade-offs associated with EV applications.Furthermore,they pinpoint opportunities for enhancement by analyzing the cost and technical aspects of different SRM controllers.
文摘Content Addressable Memory (CAM) is a type of memory used for high-speed search applications. Due to parallel comparison feature, the CAM memory leads to large power consumption which is caused by frequent pre-charge or discharge of match line. In this paper, CAM for automatic charge balancing with self-control mechanism is proposed to control the voltage swing of ML for reducing the power consumption of CAM. Another technique to reduce the power dissipation is to use MSML, it combines the master-slave architecture with charge minimization technique. Unlike the conventional design, only one match line (ML) is used, whereas in Master-Slave Match Line (MSML) one master ML and several slave MLs are used to reduce the power dissipation in CAM caused by match lines (MLs). Theoretically, the match line (ML) reduces the power consumption up to 50% which is independent of search and match case. The simulation results using Cadence tool of MSML show the reduced power consumption in CAM and modified CAM cell.
基金received funding from the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633)2023 University Student Innovation and Entrepreneurship Training Program(202311463009Z)+1 种基金Changzhou Science and Technology Support Project(CE20235045)Open Project of Jiangsu Key Laboratory of Power Transmission&Distribution Equipment Technology(2021JSSPD12).
文摘Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.
基金supported by the National Natural Science Foundation of China(61833005)
文摘Dear Editor,This letter studies finite-time stability (FTS) of impulsive and switched hybrid systems with delay-dependent impulses. Some conditions, based on Lyapunov method, are proposed for ensuring FTS and estimating settling-time function (STF) of the hybrid systems.When switching dynamics are FTS and impulsive dynamics involve destabilizing delay-dependent impulses, the FTS is retained if the impulses occur infrequently.