期刊导航
期刊开放获取
vip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进Mask-Scoring R-CNN的肌纤维自动分割与表型计算方法研究
1
作者
沃靖杰
田绪红
+3 位作者
尹令
杨杰
姚泽锴
蔡更元
《华中农业大学学报》
北大核心
2025年第2期134-144,共11页
为解决人工手动分割与半自动分割的精度及效率问题以及通用分割模型在面对各种噪声干扰时的表现不足,提出改进Mask-Scoring R-CNN的实例分割模型,实现对肌纤维细胞的高效分割。在Mask-Scoring R-CNN模型中引入CBAM(convolutional block ...
为解决人工手动分割与半自动分割的精度及效率问题以及通用分割模型在面对各种噪声干扰时的表现不足,提出改进Mask-Scoring R-CNN的实例分割模型,实现对肌纤维细胞的高效分割。在Mask-Scoring R-CNN模型中引入CBAM(convolutional block attention module)注意力机制,并对其进行改进,强化模型对特征信息的提取与表达,从而提升分割效果与模型在肌纤维分割任务中的泛化能力。改进Mask-Scoring RCNN模型在103张测试集的测试结果显示,表型数据测定值的均方根误差均比原模型更小,肌纤维总数均方根误差从2.08降至1.26,面积均方根误差从212.21μm^(2)降低至181.36μm^(2),平均直径均方根误差从2.87μm降低至1.47μm。试验结果表明改进后的模型能有效应对含噪声的肌纤维图像,在常见的噪声环境下依然能够准确分割出每个肌纤维。
展开更多
关键词
实例分割
mask-scoring
R-CNN
猪肉肌纤维表型
细胞分割
注意力机制
在线阅读
下载PDF
职称材料
题名
基于改进Mask-Scoring R-CNN的肌纤维自动分割与表型计算方法研究
1
作者
沃靖杰
田绪红
尹令
杨杰
姚泽锴
蔡更元
机构
华南农业大学数学与信息学院
国家生猪种业工程技术研究中心
猪禽种业全国重点实验室
华南农业大学动物科学学院
出处
《华中农业大学学报》
北大核心
2025年第2期134-144,共11页
基金
国家自然科学基金项目(32172780)
国家重点研发项目(2023YFD1300202)。
文摘
为解决人工手动分割与半自动分割的精度及效率问题以及通用分割模型在面对各种噪声干扰时的表现不足,提出改进Mask-Scoring R-CNN的实例分割模型,实现对肌纤维细胞的高效分割。在Mask-Scoring R-CNN模型中引入CBAM(convolutional block attention module)注意力机制,并对其进行改进,强化模型对特征信息的提取与表达,从而提升分割效果与模型在肌纤维分割任务中的泛化能力。改进Mask-Scoring RCNN模型在103张测试集的测试结果显示,表型数据测定值的均方根误差均比原模型更小,肌纤维总数均方根误差从2.08降至1.26,面积均方根误差从212.21μm^(2)降低至181.36μm^(2),平均直径均方根误差从2.87μm降低至1.47μm。试验结果表明改进后的模型能有效应对含噪声的肌纤维图像,在常见的噪声环境下依然能够准确分割出每个肌纤维。
关键词
实例分割
mask-scoring
R-CNN
猪肉肌纤维表型
细胞分割
注意力机制
Keywords
instance segmentation
mask-scoring
R-CNN
phenotype of pork muscle fiber
cell segmentation
attention mechanism
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进Mask-Scoring R-CNN的肌纤维自动分割与表型计算方法研究
沃靖杰
田绪红
尹令
杨杰
姚泽锴
蔡更元
《华中农业大学学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部