期刊文献+
共找到792,404篇文章
< 1 2 250 >
每页显示 20 50 100
Research on crack detection method for shallow-buried underground compressed air energy storage cavern based on improved mask R-CNN model
1
作者 Nan Zhang Xinrong Gao +3 位作者 Xingping Lai Huicong Xu Yuanxi Liu Hongling Ma 《Earth Energy Science》 2025年第3期203-212,共10页
This paper proposes a detection method based on an improved Mask Region-based Convolutional Neural Network(Mask R-CNN)model for crack recognition in shallow-buried compressed air energy storage(CAES)cavern linings,ena... This paper proposes a detection method based on an improved Mask Region-based Convolutional Neural Network(Mask R-CNN)model for crack recognition in shallow-buried compressed air energy storage(CAES)cavern linings,enabling a comprehensive safety assessment of gas storage caverns.Flexible concrete samples are prepared to simulate the crack characteristics of the sealing lining,providing data support for the recognition module.The Convolutional Block Attention Module is introduced into the ResNet-50 backbone to adaptively adjust feature map weights and enhance feature extraction.Additionally,the mask segmentation loss function is optimized by combining Binary Cross-Entropy loss and Dice loss to improve crack region recognition.Experimental results show that the improved Mask R-CNN model achieves a mean average precision of 89.3%,a 17.2%improvement over the original model,and an intersection over union of 88.41%.Compared to RCNN,Faster R-CNN,YOLOv5,and SSD,the improved model shows superior performance with higher average precision(AP)50:95,AP50,and AP75 values in crack recognition tasks.The proposed method effectively identifies cracks in the flexible concrete sealing lining of shallow-buried CAES caverns,contributing significantly to the prevention of gas storage leaks and providing a valuable approach for the comprehensive safety assessment of CAES gas storage caverns. 展开更多
关键词 Compressed Air Energy Storage Crack Recognition mask R-CNN Attention Mechanism
在线阅读 下载PDF
A Mask-Guided Latent Low-Rank Representation Method for Infrared and Visible Image Fusion
2
作者 Kezhen Xie Syed Mohd Zahid Syed Zainal Ariffin Muhammad Izzad Ramli 《Computers, Materials & Continua》 2025年第7期997-1011,共15页
Infrared and visible image fusion technology integrates the thermal radiation information of infrared images with the texture details of visible images to generate more informative fused images.However,existing method... Infrared and visible image fusion technology integrates the thermal radiation information of infrared images with the texture details of visible images to generate more informative fused images.However,existing methods often fail to distinguish salient objects from background regions,leading to detail suppression in salient regions due to global fusion strategies.This study presents a mask-guided latent low-rank representation fusion method to address this issue.First,the GrabCut algorithm is employed to extract a saliency mask,distinguishing salient regions from background regions.Then,latent low-rank representation(LatLRR)is applied to extract deep image features,enhancing key information extraction.In the fusion stage,a weighted fusion strategy strengthens infrared thermal information and visible texture details in salient regions,while an average fusion strategy improves background smoothness and stability.Experimental results on the TNO dataset demonstrate that the proposed method achieves superior performance in SPI,MI,Qabf,PSNR,and EN metrics,effectively preserving salient target details while maintaining balanced background information.Compared to state-of-the-art fusion methods,our approach achieves more stable and visually consistent fusion results.The fusion code is available on GitHub at:https://github.com/joyzhen1/Image(accessed on 15 January 2025). 展开更多
关键词 Infrared and visible image fusion latent low-rank representation saliency mask extraction weighted fusion strategy
在线阅读 下载PDF
A New Inversion-free Iterative Method for Solving the Nonlinear Matrix Equation and Its Application in Optimal Control
3
作者 GAO Xiangyu XIE Weiwei ZHANG Lina 《应用数学》 北大核心 2026年第1期143-150,共8页
In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to ... In this paper,we consider the maximal positive definite solution of the nonlinear matrix equation.By using the idea of Algorithm 2.1 in ZHANG(2013),a new inversion-free method with a stepsize parameter is proposed to obtain the maximal positive definite solution of nonlinear matrix equation X+A^(*)X|^(-α)A=Q with the case 0<α≤1.Based on this method,a new iterative algorithm is developed,and its convergence proof is given.Finally,two numerical examples are provided to show the effectiveness of the proposed method. 展开更多
关键词 Nonlinear matrix equation Maximal positive definite solution Inversion-free iterative method Optimal control
在线阅读 下载PDF
Long-range masked autoencoder for pre-extraction of trajectory features in within-visual-range maneuver recognition
4
作者 Feilong Jiang Hutao Cui +2 位作者 Yuqing Li Minqiang Xu Rixin Wang 《Defence Technology(防务技术)》 2026年第1期301-315,共15页
In the field of intelligent air combat,real-time and accurate recognition of within-visual-range(WVR)maneuver actions serves as the foundational cornerstone for constructing autonomous decision-making systems.However,... In the field of intelligent air combat,real-time and accurate recognition of within-visual-range(WVR)maneuver actions serves as the foundational cornerstone for constructing autonomous decision-making systems.However,existing methods face two major challenges:traditional feature engineering suffers from insufficient effective dimensionality in the feature space due to kinematic coupling,making it difficult to distinguish essential differences between maneuvers,while end-to-end deep learning models lack controllability in implicit feature learning and fail to model high-order long-range temporal dependencies.This paper proposes a trajectory feature pre-extraction method based on a Long-range Masked Autoencoder(LMAE),incorporating three key innovations:(1)Random Fragment High-ratio Masking(RFH-Mask),which enforces the model to learn long-range temporal correlations by masking 80%of trajectory data while retaining continuous fragments;(2)Kalman Filter-Guided Objective Function(KFG-OF),integrating trajectory continuity constraints to align the feature space with kinematic principles;and(3)Two-stage Decoupled Architecture,enabling efficient and controllable feature learning through unsupervised pre-training and frozen-feature transfer.Experimental results demonstrate that LMAE significantly improves the average recognition accuracy for 20-class maneuvers compared to traditional end-to-end models,while significantly accelerating convergence speed.The contributions of this work lie in:introducing high-masking-rate autoencoders into low-informationdensity trajectory analysis,proposing a feature engineering framework with enhanced controllability and efficiency,and providing a novel technical pathway for intelligent air combat decision-making systems. 展开更多
关键词 Within-visual-range maneuver recognition Trajectory feature pre-extraction Long-range masked autoencoder Kalman filter constraints Intelligent air combat
在线阅读 下载PDF
Crushing evolution in pebble bed based on a novel method:a crushable DEM study
5
作者 Jian Wang Ming‑Zhun Lei +4 位作者 Ming‑Zong Liu Qi‑Gang Wu Zi‑Cong Cai Kai‑Song Wang Hai‑Shun Deng 《Nuclear Science and Techniques》 2026年第1期212-224,共13页
In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical m... In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical model,and its validity was verified using a simple impact test.A crushable discrete element method(DEM)framework is built based on the previously established theoretical model.The tensile strength,which considers the fractal theory,size effect,and Weibull variation,was assigned to each generated particle.The assigned strength is then used for crush detection by comparing it with its maximum tensile stress.Mass conservation is ensured by inserting a series of sub-particles whose total mass was equal to the quality loss.Based on the crushable DEM framework,a numerical simulation of the crushing behavior of a pebble bed with hollow cylindrical geometry under a uniaxial compression test was performed.The results of this investigation showed that the particle withstands the external load by contact and sliding at the beginning of the compression process,and the results confirmed that crushing can be considered an important method of resisting the increasing external load.A relatively regular particle arrangement aids in resisting the load and reduces the occurrence of particle crushing.However,a limit exists to the promotion of resistance.When the strain increases beyond this limit,the distribution of the crushing position tends to be isotropic over the entire pebble bed.The theoretical model and crushable DEM framework provide a new method for exploring the pebble bed in a fusion reactor,considering particle crushing. 展开更多
关键词 Crushing behavior Granular material Discrete element method Pebble bed Fractal theory
在线阅读 下载PDF
A Deep Reinforcement Learning-Based Partitioning Method for Power System Parallel Restoration
6
作者 Changcheng Li Weimeng Chang +1 位作者 Dahai Zhang Jinghan He 《Energy Engineering》 2026年第1期243-264,共22页
Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision... Effective partitioning is crucial for enabling parallel restoration of power systems after blackouts.This paper proposes a novel partitioning method based on deep reinforcement learning.First,the partitioning decision process is formulated as a Markov decision process(MDP)model to maximize the modularity.Corresponding key partitioning constraints on parallel restoration are considered.Second,based on the partitioning objective and constraints,the reward function of the partitioning MDP model is set by adopting a relative deviation normalization scheme to reduce mutual interference between the reward and penalty in the reward function.The soft bonus scaling mechanism is introduced to mitigate overestimation caused by abrupt jumps in the reward.Then,the deep Q network method is applied to solve the partitioning MDP model and generate partitioning schemes.Two experience replay buffers are employed to speed up the training process of the method.Finally,case studies on the IEEE 39-bus test system demonstrate that the proposed method can generate a high-modularity partitioning result that meets all key partitioning constraints,thereby improving the parallelism and reliability of the restoration process.Moreover,simulation results demonstrate that an appropriate discount factor is crucial for ensuring both the convergence speed and the stability of the partitioning training. 展开更多
关键词 Partitioning method parallel restoration deep reinforcement learning experience replay buffer partitioning modularity
在线阅读 下载PDF
An improved open-top dynamic chambers method for measuring the exchange fluxes of N_(2)O,NO and NH_(3) from farmland
7
作者 Minhang Tan Yining Hu +6 位作者 Yifei Song Zixuan Huang Yujing Mu Junfeng Liu Chenglong Zhang Pengfei Liu Yuanyuan Zhang 《Journal of Environmental Sciences》 2026年第1期535-545,共11页
The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environmen... The application of nitrogen fertilizers in agricultural fields can lead to the release of nitrogen-containing gases(NCGs),such as NO_(x),NH_(3) and N_(2)O,which can significantly impact regional atmospheric environment and con-tribute to global climate change.However,there remain considerable research gaps in the accurate measurement of NCGs emissions from agricultural fields,hindering the development of effective emission reduction strategies.We improved an open-top dynamic chambers(OTDCs)system and evaluated the performance by comparing the measured and given fluxes of the NCGs.The results showed that the measured fluxes of NO,N_(2)O and NH_(3)were 1%,2%and 7%lower than the given fluxes,respectively.For the determination of NH_(3) concentration,we employed a stripping coil-ion chromatograph(SC-IC)analytical technique,which demonstrated an absorption efficiency for atmospheric NH_(3) exceeding 96.1%across sampling durations of 6 to 60 min.In the summer maize season,we utilized the OTDCs system to measure the exchange fluxes of NO,NH_(3),and N_(2)O from the soil in the North China Plain.Substantial emissions of NO,NH_(3) and N_(2)O were recorded following fertilization,with peaks of 107,309,1239 ng N/(m^(2)·s),respectively.Notably,significant NCGs emissions were observed following sus-tained heavy rainfall one month after fertilization,particularly with NH_(3) peak being 4.5 times higher than that observed immediately after fertilization.Our results demonstrate that the OTDCs system accurately reflects the emission characteristics of soil NCGs and meets the requirements for long-term and continuous flux observation. 展开更多
关键词 Open-top dynamic chambers Nitrogen-containing gases Soil emissions North China Plain method evaluation
原文传递
Numerical Simulation of the Welding Deformation of Marine Thin Plates Based on a Temperature Gradient-thermal Strain Method
8
作者 Lin Wang Yugang Miao +3 位作者 Zhenjian Zhuo Chunxiang Lin Benshun Zhang Duanfeng Han 《哈尔滨工程大学学报(英文版)》 2026年第1期122-135,共14页
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t... Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates. 展开更多
关键词 Marine thin plate Welding deformation Numerical simulation Temperature gradient-thermal strain method Shell element
在线阅读 下载PDF
Precision and trueness of a method for determing antimony content in groundwater using hydride generation-atomic fluorescence spectrometry
9
作者 Bing-bing Liu Lin Zhang Ke Li 《Journal of Groundwater Science and Engineering》 2026年第1期49-58,共10页
At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systema... At present,there is currently a lack of unified standard methods for the determination of antimony content in groundwater in China.The precision and trueness of related detection technologies have not yet been systematically and quantitatively evaluated,which limits the effective implementation of environmental monitoring.In response to this key technical gap,this study aimed to establish a standardized method for determining antimony in groundwater using Hydride Generation–Atomic Fluorescence Spectrometry(HG-AFS).Ten laboratories participated in inter-laboratory collaborative tests,and the statistical analysis of the test data was carried out in strict accordance with the technical specifications of GB/T 6379.2—2004 and GB/T 6379.4—2006.The consistency and outliers of the data were tested by Mandel's h and k statistics,the Grubbs test and the Cochran test,and the outliers were removed to optimize the data,thereby significantly improving the reliability and accuracy.Based on the optimized data,parameters such as the repeatability limit(r),reproducibility limit(R),and method bias value(δ)were determined,and the trueness of the method was statistically evaluated.At the same time,precision-function relationships were established,and all results met the requirements.The results show that the lower the antimony content,the lower the repeatability limit(r)and reproducibility limit(R),indicating that the measurement error mainly originates from the detection limit of the method and instrument sensitivity.Therefore,improving the instrument sensitivity and reducing the detection limit are the keys to controlling the analytical error and improving precision.This study provides reliable data support and a solid technical foundation for the establishment and evaluation of standardized methods for the determination of antimony content in groundwater. 展开更多
关键词 Mandel's h and k statistics Grubbs test Cochran test Repeatability limit Reproducibility limit method bias value
在线阅读 下载PDF
基于Mask R⁃CNN的多类建筑物损伤识别方法 被引量:2
10
作者 杨敬松 王煜鑫 +2 位作者 李智涛 卢泽葳 彭福民 《防灾减灾工程学报》 北大核心 2025年第3期562-570,共9页
地震发生后快速对建筑物损伤进行识别,可以提高灾害损失评估的效率,并为救援提供有效地决策支持。针对因背景干扰带来的重要特征表达能力弱的问题,提出一种基于深度学习框架Mask R‑CNN的多建筑物损伤识别方法。首先,对样本图像进行预处... 地震发生后快速对建筑物损伤进行识别,可以提高灾害损失评估的效率,并为救援提供有效地决策支持。针对因背景干扰带来的重要特征表达能力弱的问题,提出一种基于深度学习框架Mask R‑CNN的多建筑物损伤识别方法。首先,对样本图像进行预处理,克服复杂环境背景因素干扰,并进行多途径扩增,得到用于深度学习的扩增样本数据集。其次,优化特征提取网络,采用嵌入注意力机制模块SE的MobileNetv3网络作为主干网络,增加模型对建筑物损伤空间及语义信息的提取,有效避免背景对模型性能的影响,改进损失函数,避免遗漏类别和类别错分现象,同时引入迁移学习,降低训练成本;最后,采用定性分析和定量评估相结合的手段,多维度评估模型泛化能力和鲁棒性。改进后的Mask R‑CNN模型的平均精度达到了84.34%,相对于原始的Mask R‑CNN模型,精度提高了9.12%。结果表明,改进后的模型在识别含有多种损伤特征和噪声背景的建筑物损伤图像方面表现良好,可以为地震后建筑物的损伤评估提供有效地技术支持。 展开更多
关键词 人工智能 建筑物损伤识别 mask R‑CNN 实例分割
原文传递
基于改进Mask R-CNN的航空铸件智能检测技术研究
11
作者 张祥春 彭文胜 +4 位作者 楚峻溢 曾照洋 王振宇 魏明贤 徐然 《航空制造技术》 北大核心 2025年第23期26-33,共8页
针对航空产品研制生产过程中由于质量缺陷产生原因复杂、缺陷特征种类多、检测要求高而缺少有效智能检测方法的问题,首先通过系统梳理航空装备智能检测技术研究现状,总结了面向此应用场景和针对具体缺陷特征开展智能检测方法研究的思路... 针对航空产品研制生产过程中由于质量缺陷产生原因复杂、缺陷特征种类多、检测要求高而缺少有效智能检测方法的问题,首先通过系统梳理航空装备智能检测技术研究现状,总结了面向此应用场景和针对具体缺陷特征开展智能检测方法研究的思路和实施途径;其次,设计了融合全局特征金字塔网络的Mask R-CNN改进算法,并面向缺陷特征复杂和检测要求比较高的航空铸件,利用剪切、翻转、Overlap切图和Mosaic等数据增广技术构建了航空铸件数字射线检测缺陷特征数据集;最后利用改进算法及构建的数据集对航空铸件中的疏松、裂纹及高密度夹杂3类缺陷进行测试与验证试验。试验结果表明,所提改进算法的检测精度达93.25%,召回率达96.51%,具有良好检测效果。 展开更多
关键词 深度学习 智能检测 航空铸件 mask R-CNN 全局特征金字塔网络 数据增广
在线阅读 下载PDF
基于轻量化Mask R⁃CNN的车型检测算法
12
作者 许超 杨丰熙 +1 位作者 李博 王浩宇 《现代电子技术》 北大核心 2025年第21期127-136,共10页
车型检测对智能交通系统具有重要意义,其为智能交通系统的车辆管理能力提供了有效保障。针对现有算法通常较为复杂,并不能较好地适配于实际应用中的车型检测,文中提出一种基于改进Mask R⁃CNN的轻量化车型检测算法。首先,将特征提取网络... 车型检测对智能交通系统具有重要意义,其为智能交通系统的车辆管理能力提供了有效保障。针对现有算法通常较为复杂,并不能较好地适配于实际应用中的车型检测,文中提出一种基于改进Mask R⁃CNN的轻量化车型检测算法。首先,将特征提取网络替换为FasterNet特征提取网络,在降低算法复杂度的同时提升算法精度;其次,构建基于DO卷积的改进FPN特征融合网络,使算法既降低复杂度又提升精度;最后,将损失函数替换为Smooth L_(1)损失函数,在不改变当前算法复杂度的情况下对算法精度实现了进一步提升。实验结果表明,所提算法兼顾精度与实时性需求,且具有较好的泛化能力,更适配于实际应用中的车型检测。 展开更多
关键词 mask R⁃CNN 车型检测 主干网络 特征融合 损失函数 轻量化
在线阅读 下载PDF
基于改进Mask R-CNN的建筑屋面光伏利用潜力评估研究——以长春市工业厂房为例 被引量:1
13
作者 周春艳 路少石 《建筑与文化》 2025年第3期244-247,共4页
近年来,中国的能源需求随着经济的发展而快速增长。在建筑屋面上利用太阳能资源是实现我国“碳达峰、碳中和”目标的重要途径。文章提出了一种改进后的Mask R-CNN深度学习算法,通过将原模型中的FPN网络改进为PAN网络来提升模型对于图像... 近年来,中国的能源需求随着经济的发展而快速增长。在建筑屋面上利用太阳能资源是实现我国“碳达峰、碳中和”目标的重要途径。文章提出了一种改进后的Mask R-CNN深度学习算法,通过将原模型中的FPN网络改进为PAN网络来提升模型对于图像特征的提取能力,从而提高光伏潜力的评估效率。文章以长春市中心城市区的工业厂房为研究对象并评估其屋面的光伏利用潜力,最终计算得到长春市中心城区的工业厂房屋面面积为82.48×10^(6)m^(2),光伏利用潜力为144.4375×10^(8)kWh/年,可为长春市城市工业厂房屋顶光伏发展规划提供依据。 展开更多
关键词 mask R-CNN 建筑屋面 光伏利用潜力 长春市工业厂房
在线阅读 下载PDF
基于改进Mask R-CNN的低空遥感实例分割算法
14
作者 李冰锋 王光耀 崔立志 《兵器装备工程学报》 北大核心 2025年第2期168-176,共9页
针对遥感领域图像目标繁杂、检测和分割精度不高的问题,提出一种改进Mask R-CNN算法。设计PMResNet-50结构作为主干网络,其中金字塔挤压注意模块可以促进局部和全局通道注意之间的信息交互作用,多层次特征聚合模块可以提高PMResNet-50... 针对遥感领域图像目标繁杂、检测和分割精度不高的问题,提出一种改进Mask R-CNN算法。设计PMResNet-50结构作为主干网络,其中金字塔挤压注意模块可以促进局部和全局通道注意之间的信息交互作用,多层次特征聚合模块可以提高PMResNet-50对输入通道语义信息的高效聚合作用。在RoI Align前引入自校准卷积模块来扩大卷积层的感受野大小并对边界框和掩码框执行校准操作。在分割分支使用掩码预测平衡损失函数,对每个类别的正负样本梯度进行平衡,实现对损失梯度的平滑降低处理。在自建低空遥感数据集和iSAID-Reduce100数据集上进行测试,实验结果表明:改进后的算法在自建数据集上box AP和mask AP分别提升17.9%和15.0%,在iSAID-Reduce100数据集上box AP和mask AP达到49.62%和50.27%,该算法很好地完成了对遥感目标的检测和分割。 展开更多
关键词 深度学习 图像处理 遥感图像 实例分割 改进mask R-CNN算法 ResNet-50
在线阅读 下载PDF
基于Fishmeal-Mask2Former分割模型的掺假鱼粉显微图像识别方法
15
作者 牛智有 李武瑛妮 +2 位作者 孔宪锐 耿婕 王伟霞 《农业机械学报》 北大核心 2025年第7期679-690,共12页
针对传统显微镜检法在鱼粉掺假识别中面临的肉眼辨别难度大、识别效率低的问题,提出一种改进Maskedattention Mask Transformer(Mask2Former)的鱼粉显微图像掺假识别模型,以实现高分辨条件下、复杂鱼粉背景中对异状多目标掺假特征的自... 针对传统显微镜检法在鱼粉掺假识别中面临的肉眼辨别难度大、识别效率低的问题,提出一种改进Maskedattention Mask Transformer(Mask2Former)的鱼粉显微图像掺假识别模型,以实现高分辨条件下、复杂鱼粉背景中对异状多目标掺假特征的自动化识别与分割。以鱼粉中掺杂动物源性肉粉为研究对象,构建了:Fishmeal掺假鱼粉显微图像数据集,通过形态学分析将掺假特征细分为异常肌肉、骨骼、皮肤、血液和毛发5类组织;开发基于颜色阈值相似性的交互式标注软件,实现逐像素的提示性精确标注;改进Mask2Former分割模型架构,融合ResNet50骨干网络、多头注意力机制和多尺度特征处理机制,增强了鱼粉多样化特征的融合效果;引入重复加权双向特征金字塔网络(Bidirectional feature pyramid network,BiFPN)改进像素解码器,提升了小目标分割能力;引入可学习的尺度级嵌入和掩码注意力(Masked Attention)模块,通过限制交叉注意力关注范围提高了模型细节表现力;在Multi-head Attention层后加入dropout操作防止过拟合。实验结果表明,改进后的Fishmeal-Mask2Former在样本真伪判别阶段整体分类准确率达到98.56%,在精细分割阶段对异常掺假特征定性识别平均精确率达到80.52%、召回率为76.01%、F1分数为78.86%,分割模型平均准确度提升至82.08%,较传统方法具有显著优势。此外,设计分割结果可视化界面,为鱼粉品质检测中的掺假检测环节提供了一种直观、准确与高效的显微视觉自动化识别方法。 展开更多
关键词 鱼粉 掺假 语义分割 显微图像 mask2 Former 计算机辅助诊断
在线阅读 下载PDF
基于Mask R-CNN改进的树冠分割
16
作者 王春玲 温晓晖 《遥感信息》 北大核心 2025年第6期1-8,共8页
为解决自然森林中存在的树冠重叠、边界干扰等复杂环境因素对树冠难以精准识别分割的问题,提出一种改进的Mask R-CNN语义分割网络模型。以ResNet50为主干网络提取特征,提出了一种路径增强的特征金字塔网络(enhanced feature pyramid net... 为解决自然森林中存在的树冠重叠、边界干扰等复杂环境因素对树冠难以精准识别分割的问题,提出一种改进的Mask R-CNN语义分割网络模型。以ResNet50为主干网络提取特征,提出了一种路径增强的特征金字塔网络(enhanced feature pyramid network,EFPN),设计了一种多分支膨胀卷积模块(multiple branch dilated convolution,MBD),加强底层特征的提取,保证信息完整性和连续性;提出了一种联合注意力模块(united attention,UA),通过加强对重要特征的捕捉,提升了模型的泛化能力。在使用Labelme工具进行自主标注的森林树冠图像数据集中,树冠分割的平均交并比IoU和F1评分高达85.06%和91.91%,比其他先进模型有较明显的性能提升。该方法能够准确分割自然环境中的森林树冠,对于掌握森林生长状况、评估森林火灾、促进恢复工作以及优化森林管理具有重要的实际意义。 展开更多
关键词 mask R-CNN 树冠分割 特征增强 注意力机制 FPN
在线阅读 下载PDF
基于Mask R—CNN的轻量级草莓实例分割算法
17
作者 王成军 江诚婕 +1 位作者 丁凡 柳炜 《中国农机化学报》 北大核心 2025年第7期118-123,F0003,共7页
针对果园采摘环境复杂、草莓与周边环境难以精确分割、现有模型处理速度无法实现快速分割等问题,提出一种基于Mask R—CNN的轻量级草莓实例分割算法。在原始Mask R—CNN算法的基础上进行改进,采用MobileNetV3网络替代原始的ResNet101骨... 针对果园采摘环境复杂、草莓与周边环境难以精确分割、现有模型处理速度无法实现快速分割等问题,提出一种基于Mask R—CNN的轻量级草莓实例分割算法。在原始Mask R—CNN算法的基础上进行改进,采用MobileNetV3网络替代原始的ResNet101骨干网络来轻量化算法,且将原本MobileNetV3残差结构中的通道注意力机制替换成协同注意力机制模块,结合特征金字塔网络架构进行特征提取,实现草莓个体的精准快速定位分割。在标注数据集上进行对比实验,结果表明,改进的Mask R—CNN算法与原始Mask R—CNN算法相比,边框mAP和掩膜mAP分别提升1.75%和4.05%,检测速度提高20.09帧/s,减少模型对硬件存储空间和算力的依赖。 展开更多
关键词 草莓图像 实例分割 改进mask R—CNN CA注意力机制 轻量化网络
在线阅读 下载PDF
基于改进Mask RCNN的遥感影像滑坡识别方法研究
18
作者 王建霞 郭玉凤 +1 位作者 杨春金 张晓明 《河北工业科技》 2025年第4期323-332,共10页
为了提升复杂背景下遥感影像的滑坡识别精度,提出了一种基于改进掩码区域卷积神经网络(mask region-based convolutional neural network,Mask RCNN)的遥感影像滑坡识别方法。首先,在Mask RCNN模型中将主干网络替换为残差网络101(residu... 为了提升复杂背景下遥感影像的滑坡识别精度,提出了一种基于改进掩码区域卷积神经网络(mask region-based convolutional neural network,Mask RCNN)的遥感影像滑坡识别方法。首先,在Mask RCNN模型中将主干网络替换为残差网络101(residual network101,ResNet101),并引入卷积块注意力模块(convolutional block attention module,CBAM)、路径聚合特征金字塔网络(path aggregation feature pyramid network,PAFPN)和级联检测器,构建一个遥感影像滑坡识别模型;然后,基于遥感影像滑坡数据集完成模型训练;最后,将测试影像输入训练后的模型进行检测与分割实验。结果表明:与原Mask RCNN模型相比,改进后模型的Box平均精度从80.2%提升至83.7%,Mask平均精度从79.1%提升至81.1%,预测时间整体变化幅度较小。改进后的Mask RCNN模型具有较高的检测精度和实时处理能力,为滑坡灾害预警提供了重要技术支撑。 展开更多
关键词 计算机图像处理 滑坡识别 mask RCNN 遥感影像 卷积块注意力模块
在线阅读 下载PDF
基于改进Mask R-CNN的双目视觉卸货机器人引导方法
19
作者 徐志祥 赵炎 +1 位作者 邢立冬 高东 《计算机与数字工程》 2025年第11期3287-3292,共6页
针对卸货目标堆叠摆放、难以识别和定位的问题,根据现有的直角坐标系型卸货机器人提出目标引导方法,在深度学习目标检测模型Mask R-CNN基础上根据特征金字塔FPN提出融合CBAM注意力机制的改进,优化目标区域与通道权重,并基于融合特征完... 针对卸货目标堆叠摆放、难以识别和定位的问题,根据现有的直角坐标系型卸货机器人提出目标引导方法,在深度学习目标检测模型Mask R-CNN基础上根据特征金字塔FPN提出融合CBAM注意力机制的改进,优化目标区域与通道权重,并基于融合特征完成目标货物的识别;通过SGBM双目立体视觉算法计算输入图像的三维信息,提取目标三维坐标。实验结果表明:论文提出的方法对货物目标识别的平均准确率达到90.20%,深度方向定位精度最大误差不超过15 mm,方法可以满足卸货机器人对堆叠货物的引导需求。 展开更多
关键词 卸货机器人 深度学习 mask R-CNN CBAM注意力机制 SGBM
在线阅读 下载PDF
基于深度学习算法Mask R-CNN的甲状腺结节检测模型研究
20
作者 王杰 王至诚 +2 位作者 娄帅 董建成 曹新志 《医学信息学杂志》 2025年第3期84-89,共6页
目的/意义采用基于区域卷积神经网络的目标掩码分割算法(mask region-based convolutional neural network, Mask R-CNN)建立目标检测模型,智能识别甲状腺超声图像结节位置,为超声医生决策提供参考。方法/过程收集超声结节图像1 650张,... 目的/意义采用基于区域卷积神经网络的目标掩码分割算法(mask region-based convolutional neural network, Mask R-CNN)建立目标检测模型,智能识别甲状腺超声图像结节位置,为超声医生决策提供参考。方法/过程收集超声结节图像1 650张,使用labelme工具进行结节位置标注。对Mask R-CNN的主干网络分别采用MobileNetV3、ResNet50、ResNet101和ResNet152进行替换,并引入特征金字塔和感兴趣区域对齐,采用迁移学习训练策略训练模型,比较不同网络下目标检测效果。结果/结论主干网络采用ResNet101训练的模型平均精确度为86.8%,平均召回率为95.3%,平均F1分数为90.6%,优于其他主干网络,能更精确地检测甲状腺结节,具有一定临床应用价值。 展开更多
关键词 甲状腺结节 mask R-CNN 目标检测 神经网络
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部