期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
THE ASYMPTOTIC PROPERTIES OF WEIGHTED MARKOV OPERATORS
1
作者 丁义明 《Acta Mathematica Scientia》 SCIE CSCD 2002年第2期254-260,共7页
Let (X, ∑, μ) be a σ-finite measure space, P : LI → L1 be a Markov operator, and Qt = ∑n=0 ∞ qn(t)Pn, where {qn(t)} be a sequence satisfying:i) qn(t) ≥ 0 and ∑n=0 ∞ qn(t)=1 for all t >0;ii)lim (q0(t) + ∑n... Let (X, ∑, μ) be a σ-finite measure space, P : LI → L1 be a Markov operator, and Qt = ∑n=0 ∞ qn(t)Pn, where {qn(t)} be a sequence satisfying:i) qn(t) ≥ 0 and ∑n=0 ∞ qn(t)=1 for all t >0;ii)lim (q0(t) + ∑n=1 ∞ |qn(t) -qn-1(t)|) = 0.t→∞f ∈ L1, it is proved that Qt(f) convergent strongly to a fixed point of P as t → 0 if and only if {Qt(f)}t>0 is precompact. Qt(f) is convergent if and only if the ergodic mean operator An(f) is convergent, and they have the same limit. If P is a double stochastic operator then lim Qtf = E(f|∑0) for all f ∈ L1, where ∑0 is the invariant σ-algebra ofP. Some related results are also given. 展开更多
关键词 weighted markov operator weakly precompact double stochastic operator support INVARIANT
在线阅读 下载PDF
UNIQUENESS, ERGODICITY AND UNIDIMENSIONALITY OF INVARIANT MEASURES UNDER A MARKOV OPERATOR
2
作者 唐军民 张继宏 章雄鹰 《Acta Mathematica Scientia》 SCIE CSCD 2009年第5期1309-1322,共14页
Let X be a compact metric space and C(X) be the space of all continuous functions on X. In this article, the authors consider the Markov operator T : C(X)N C(X)N defined by for any f = (f1,f2,… ,fN), where ... Let X be a compact metric space and C(X) be the space of all continuous functions on X. In this article, the authors consider the Markov operator T : C(X)N C(X)N defined by for any f = (f1,f2,… ,fN), where (pij) is a N x N transition probability matrix and {wij } is an family of continuous transformations on X. The authors study the uniqueness, ergodicity and unidimensionality of T*-invariant measures where T* is the adjoint operator of T. 展开更多
关键词 markov operator invariant measure ERGODICITY UNIDIMENSIONALITY
在线阅读 下载PDF
New Universal Bounds for Eigenvalues of the Markov Diffusion Operator L2
3
作者 Yanli LI Feng DU 《Journal of Mathematical Research with Applications》 2025年第6期745-757,共13页
In this paper,we study the eigenvalue problem of the Markov diffusion operator L^(2),and give generalized inequalities for eigenvalues of the operator L^(2)on a Markov diffusion triple.By applying these inequalities,w... In this paper,we study the eigenvalue problem of the Markov diffusion operator L^(2),and give generalized inequalities for eigenvalues of the operator L^(2)on a Markov diffusion triple.By applying these inequalities,we then get some new universal bounds for eigenvalues of a special Markov diffusion operator L^(2)on bounded domains in an Euclidean space.Moreover,our results can reveal the relationship between the(k+1)-th eigenvalue and the first k eigenvalues in a relatively straightforward manner. 展开更多
关键词 markov diffusion operator EIGENVALUES universal bounds markov diffusion triple
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部