This paper considers the following Marcinkiewicz type integrals■which can be regarded as an extension of the classical Marcinkiewicz integral po introduced by Stein in[Trans Amer Math Soc,88(1958):159-172],where Ω i...This paper considers the following Marcinkiewicz type integrals■which can be regarded as an extension of the classical Marcinkiewicz integral po introduced by Stein in[Trans Amer Math Soc,88(1958):159-172],where Ω is a homogeneous function of degree zero on R^(n)with mean value zero in the unit sphere S^(n-1),Under the assumption that Ω∈L^(∞)(S^(n-1)),the authors establish the L^(q)-estimate and weak(1,1)type estimate as well as the corresponding weighted estimates for po.s with 1<q<∞ and 0<β(q-1)n/q.Moreover,the bounds do not depend on β and the strong(q,q)type and weak(1,1)type estimates for the classical Marcinkiewicz integral po can be recovered from the above estimates of μΩ,β whenβ→0.展开更多
In this paper, we prove the boundedness of the fractional maximal operator, Hardy-Littlewood maximal operator and marcinkiewicz integrals associated with Schrodinger operator on Morrey spaces with variable exponent.
This paper studies the mixed radial-angular integrability of parametric Marcinkiewicz integrals along"polynomial curves".Under the assumption that the kernels satisfy certain rather weak size conditions on t...This paper studies the mixed radial-angular integrability of parametric Marcinkiewicz integrals along"polynomial curves".Under the assumption that the kernels satisfy certain rather weak size conditions on the unit sphere with radial roughness,the authors prove that such operators are bounded on the mixed radial-angular spaces.Meanwhile,corresponding vector-valued versions are also obtained.展开更多
In this paper, the weighted Herz-Morrey spaces are introduced and the estimates for Marcinkiewicz Integrals on the weighted Herz-Morrey spaces are studied.
This paper is devoted to studying the behaviors of the fractional type Marcinkiewicz integralsμΩ,βand the commutatorsμΩ,βb generated byμΩ,βwith b b∈Lloc(Rn)on weighted Hardy spaces.Under the assumption of th...This paper is devoted to studying the behaviors of the fractional type Marcinkiewicz integralsμΩ,βand the commutatorsμΩ,βb generated byμΩ,βwith b b∈Lloc(Rn)on weighted Hardy spaces.Under the assumption of that the homogeneous kernelΩsatisfies certain regularities,the authors obtain the boundedness ofμΩ,βfrom the weighted Hardy spaces Hωpp(Rn)to the weighted Lebesgue spaces Lωqq(Rn)for n/(n+β)≤<p≤1 with 1/q=1/p-β/n,as well as the same(Hωpp,Lωqq)-boudedness ofμΩ,βb when b belongs to BMOωp,p(Rn),which is a non-trivial subspace of BMO(Rn).展开更多
In this paper, the multiple parametric Marcinkiewicz integral operators with mixed homogeneity along surfaces are studied. The Lp-mapping properties for such operators are obtained under the rather weakened size condi...In this paper, the multiple parametric Marcinkiewicz integral operators with mixed homogeneity along surfaces are studied. The Lp-mapping properties for such operators are obtained under the rather weakened size conditions on the integral kernels both on the unit sphere and in the radial direction. The main results essentially improve and extend certain previous results.展开更多
In this paper, the authors consider the behaviors of a class of parametricMarcinkiewicz integrals μ_Ω~ρ, μ_(Ω,)^(*,)~ρ_λ and μ_Ω~ρ,S on BMO(Rn) and Campanato spaces with com-plex parameter ρ and the ...In this paper, the authors consider the behaviors of a class of parametricMarcinkiewicz integrals μ_Ω~ρ, μ_(Ω,)^(*,)~ρ_λ and μ_Ω~ρ,S on BMO(Rn) and Campanato spaces with com-plex parameter ρ and the kernel Ω in Llog~+ L(S^(n-1)). Here μ_(Ω,)^(*,)~ρ_λand μ_Ω~ρ,S are parametricMarcinkiewicz functions corresponding to the Littlewood-Paley g_λ~*-function and the Lusin areafunction S, respectively. Under certain weak regularity condition on Ω, the authors prove thatif f belongs to BMO(Rn) or to a certain Campanato space, then [μ_(Ω,)^(*,)~ρ_λ(f)]~2, [μ_Ω~ρ,_S(f)]~2 and[μ_Ω~ρ(f)]~2 are either infinite everywhere or finite almost everywhere, and in the latter case, somekind of boundedness are also established.展开更多
Let b = (b1,…,bm) be a finite family of locally integrable functions. Then, we introduce generalized higher commutator of Marcinkiwicz integral as follows:( μΩ^b^→(f)(x)=(∫ 0^∞|FΩ^b^→,t(f)(x)|^2...Let b = (b1,…,bm) be a finite family of locally integrable functions. Then, we introduce generalized higher commutator of Marcinkiwicz integral as follows:( μΩ^b^→(f)(x)=(∫ 0^∞|FΩ^b^→,t(f)(x)|^2t/dt)^1/2,where(FΩ^b^→,t(f)(x)=1/t∫|x-y|≤t Ω(x-y)/|x-y|^n-1 Лj=1^m(bj(x)-bj(y))f(y)dy.)When(bj∈Aβj,1≤j≤m,0〈βj〈1∑j=1^mβj=β〈n)and Ω is homogeneous of degreezero and satisfies the cancelation condition, we prove that μΩ^b^→is bounded from L^p(R^n)to L^8(R^n),where1〈p〈βand 1/s=1/p-β/n,Moreover,if Ω also satisties some L^q -Dini condition,then μΩ^b^→ isbounded from L^p(R^n)to Fp^β,∞(R^n)and on certain Hardy spaces.The article extends some known results.展开更多
In the present paper, we consider the boundedness of Marcinkiewicz integral operator μΩ,h,Ф along a surface Г = {x = Ф(|y|)y/|y|)} on the Triebel-Lizorkin space Fq,q^α(R^n ) for Ω belonging to H1 (Sn-...In the present paper, we consider the boundedness of Marcinkiewicz integral operator μΩ,h,Ф along a surface Г = {x = Ф(|y|)y/|y|)} on the Triebel-Lizorkin space Fq,q^α(R^n ) for Ω belonging to H1 (Sn-1) and some class WFα(S^n-1), which relates to Grafakos-Stefanov class. Some previous results are extended and improved.展开更多
In this article, certain Marcinkiewicz integral operators associated to surfaces of revolution on product domains were studied. The Lp boundedness for these operators are established under some rather weak conditions ...In this article, certain Marcinkiewicz integral operators associated to surfaces of revolution on product domains were studied. The Lp boundedness for these operators are established under some rather weak conditions on kernels. The main results essentially improve and extend some known results.展开更多
In this paper, the authors study the boundedness of the operator [μΩ,b], the commutator generated by a function b ∈ Lipβ(Rn)(0 <β≤1) and the Marcinkiewicz integrals μΩ, on the classical Hardy spaces and the...In this paper, the authors study the boundedness of the operator [μΩ,b], the commutator generated by a function b ∈ Lipβ(Rn)(0 <β≤1) and the Marcinkiewicz integrals μΩ, on the classical Hardy spaces and the Herz-type Hardy spaces in the case Ω ∈ Lipα(Sn-1)(0 <α≤ 1).展开更多
Let μΩ,b^m be the higher order commutator generated by Marcinkiewicz integral μΩ and a BMO(R^n) function b(x). In this paper, we will study the continuity of μΩ and μΩ,b^m on homogeneous Morrey-Herz spaces.
Let α≥ 0 and 0 〈 ρ ≤ n/2, the boundedness of hypersingular parameterized Marcinkiewicz integrals μΩ,α^ρ with variable kernels on Sobolev spaces Lα^ρ and HardySobolev spaces Hα^ρ is established.
In this paper, under natural regularity assumptions on the exponent function, we prove some boundedness results for the functions of Littlewood-Paley, Lusin and Marcinkiewicz on a new class of generalized Herz-Morrey ...In this paper, under natural regularity assumptions on the exponent function, we prove some boundedness results for the functions of Littlewood-Paley, Lusin and Marcinkiewicz on a new class of generalized Herz-Morrey spaces with weight and variable exponent, which essentially extend some known results.展开更多
In this paper,the L2-boundedness of a class of parametric Marcinkiewicz integral μρ Ω,h with kernel function Ω in B 0,0 q(S n-1) for some q>1,and the radial function h(x)∈l∞(Ls)(R +) for 1<s≤∞ are...In this paper,the L2-boundedness of a class of parametric Marcinkiewicz integral μρ Ω,h with kernel function Ω in B 0,0 q(S n-1) for some q>1,and the radial function h(x)∈l∞(Ls)(R +) for 1<s≤∞ are given.The Lp(Rn)(2≤p<∞) boundedness of μ *,ρ Ω,h,λ and μ ρ Ω,h,S with Ω in B 0,0 q(S n-1) and h(|x|)∈l∞(Ls)(R +) in application are obtained.Here μ *,ρ Ω,h,λ and μ ρ Ω,h,S are parametric Marcinkiewicz integrals corresponding to the Littlewood-Paley g* λ function and the Lusin area function S,respectively.展开更多
The boundedness of the commutator μΩ,b generalized by Marcinkiewicz integral μΩ and a function b(x) ∈ CBMOq (Rn) on homogeneous Morrey-Herz spaces is established.
In this paper, the authors study the boundedness of the operator μ^bΩ, the commutator generated by a function b ∈Lipβ (R^n) (0 〈β 〈 1) and the Marcinkiewicz integral μΩ on weighted Herz-type Hardy spaces.
In this paper, several new results on the boundedness of parammetric Marcinkiewicz integrals on the weighted Hardy spaces and the weak weighted Hardy spaces are established.
In this paper,the parameterized Marcinkiewicz integrals with variable kernels defined by μΩ^ρ(f)(x)=(∫0^∞│∫│1-y│≤t Ω(x,x-y)/│x-y│^n-p f(y)dy│^2dt/t1+2p)^1/2 are investigated.It is proved that ...In this paper,the parameterized Marcinkiewicz integrals with variable kernels defined by μΩ^ρ(f)(x)=(∫0^∞│∫│1-y│≤t Ω(x,x-y)/│x-y│^n-p f(y)dy│^2dt/t1+2p)^1/2 are investigated.It is proved that if Ω∈ L∞(R^n) × L^r(S^n-1)(r〉(n-n1p'/n) is an odd function in the second variable y,then the operator μΩ^ρ is bounded from L^p(R^n) to L^p(R^n) for 1 〈 p ≤ max{(n+1)/2,2}.It is also proved that,if Ω satisfies the L^1-Dini condition,then μΩ^ρ is of type(p,p) for 1 〈 p ≤ 2,of the weak type(1,1) and bounded from H1 to L1.展开更多
文摘This paper considers the following Marcinkiewicz type integrals■which can be regarded as an extension of the classical Marcinkiewicz integral po introduced by Stein in[Trans Amer Math Soc,88(1958):159-172],where Ω is a homogeneous function of degree zero on R^(n)with mean value zero in the unit sphere S^(n-1),Under the assumption that Ω∈L^(∞)(S^(n-1)),the authors establish the L^(q)-estimate and weak(1,1)type estimate as well as the corresponding weighted estimates for po.s with 1<q<∞ and 0<β(q-1)n/q.Moreover,the bounds do not depend on β and the strong(q,q)type and weak(1,1)type estimates for the classical Marcinkiewicz integral po can be recovered from the above estimates of μΩ,β whenβ→0.
基金supported by NSFC (No. 11201003)University NSR Project of Anhui Province (No. KJ2014A087)
文摘In this paper, we prove the boundedness of the fractional maximal operator, Hardy-Littlewood maximal operator and marcinkiewicz integrals associated with Schrodinger operator on Morrey spaces with variable exponent.
基金supported by the NSFC(11771358,11701333,11871101)。
文摘This paper studies the mixed radial-angular integrability of parametric Marcinkiewicz integrals along"polynomial curves".Under the assumption that the kernels satisfy certain rather weak size conditions on the unit sphere with radial roughness,the authors prove that such operators are bounded on the mixed radial-angular spaces.Meanwhile,corresponding vector-valued versions are also obtained.
基金Supported by the NSF of China(10371087)Supported by the Education Committee of Anhui Province(2003kj034zd)
文摘In this paper, the weighted Herz-Morrey spaces are introduced and the estimates for Marcinkiewicz Integrals on the weighted Herz-Morrey spaces are studied.
文摘This paper is devoted to studying the behaviors of the fractional type Marcinkiewicz integralsμΩ,βand the commutatorsμΩ,βb generated byμΩ,βwith b b∈Lloc(Rn)on weighted Hardy spaces.Under the assumption of that the homogeneous kernelΩsatisfies certain regularities,the authors obtain the boundedness ofμΩ,βfrom the weighted Hardy spaces Hωpp(Rn)to the weighted Lebesgue spaces Lωqq(Rn)for n/(n+β)≤<p≤1 with 1/q=1/p-β/n,as well as the same(Hωpp,Lωqq)-boudedness ofμΩ,βb when b belongs to BMOωp,p(Rn),which is a non-trivial subspace of BMO(Rn).
基金Supported by the National Natural Science Foundation of China(12071437)the Natural Science Foundation of Zhejiang Province,China(LQ22A010018)。
文摘In this paper, the multiple parametric Marcinkiewicz integral operators with mixed homogeneity along surfaces are studied. The Lp-mapping properties for such operators are obtained under the rather weakened size conditions on the integral kernels both on the unit sphere and in the radial direction. The main results essentially improve and extend certain previous results.
基金Project 10671062 supported by NSF of ChinaProject 20094306110004 supported by RFDP of high education of China
文摘In this paper, the authors consider the behaviors of a class of parametricMarcinkiewicz integrals μ_Ω~ρ, μ_(Ω,)^(*,)~ρ_λ and μ_Ω~ρ,S on BMO(Rn) and Campanato spaces with com-plex parameter ρ and the kernel Ω in Llog~+ L(S^(n-1)). Here μ_(Ω,)^(*,)~ρ_λand μ_Ω~ρ,S are parametricMarcinkiewicz functions corresponding to the Littlewood-Paley g_λ~*-function and the Lusin areafunction S, respectively. Under certain weak regularity condition on Ω, the authors prove thatif f belongs to BMO(Rn) or to a certain Campanato space, then [μ_(Ω,)^(*,)~ρ_λ(f)]~2, [μ_Ω~ρ,_S(f)]~2 and[μ_Ω~ρ(f)]~2 are either infinite everywhere or finite almost everywhere, and in the latter case, somekind of boundedness are also established.
基金Supported by National 973 Project(G.19990751)the SEDF of China(20040027001)
文摘Let b = (b1,…,bm) be a finite family of locally integrable functions. Then, we introduce generalized higher commutator of Marcinkiwicz integral as follows:( μΩ^b^→(f)(x)=(∫ 0^∞|FΩ^b^→,t(f)(x)|^2t/dt)^1/2,where(FΩ^b^→,t(f)(x)=1/t∫|x-y|≤t Ω(x-y)/|x-y|^n-1 Лj=1^m(bj(x)-bj(y))f(y)dy.)When(bj∈Aβj,1≤j≤m,0〈βj〈1∑j=1^mβj=β〈n)and Ω is homogeneous of degreezero and satisfies the cancelation condition, we prove that μΩ^b^→is bounded from L^p(R^n)to L^8(R^n),where1〈p〈βand 1/s=1/p-β/n,Moreover,if Ω also satisties some L^q -Dini condition,then μΩ^b^→ isbounded from L^p(R^n)to Fp^β,∞(R^n)and on certain Hardy spaces.The article extends some known results.
基金partially supported by Grant-in-Aid for Scientific Research(C)(No.23540228),Japan Society for the Promotion of Science
文摘In the present paper, we consider the boundedness of Marcinkiewicz integral operator μΩ,h,Ф along a surface Г = {x = Ф(|y|)y/|y|)} on the Triebel-Lizorkin space Fq,q^α(R^n ) for Ω belonging to H1 (Sn-1) and some class WFα(S^n-1), which relates to Grafakos-Stefanov class. Some previous results are extended and improved.
基金Supported by the NSF of China (G10571122) the NFS of Fujian Province of China (Z0511004)
文摘In this article, certain Marcinkiewicz integral operators associated to surfaces of revolution on product domains were studied. The Lp boundedness for these operators are established under some rather weak conditions on kernels. The main results essentially improve and extend some known results.
基金Supported by the National 973 Project (G.19990751) the SEDF (20010027002).
文摘In this paper, the authors study the boundedness of the operator [μΩ,b], the commutator generated by a function b ∈ Lipβ(Rn)(0 <β≤1) and the Marcinkiewicz integrals μΩ, on the classical Hardy spaces and the Herz-type Hardy spaces in the case Ω ∈ Lipα(Sn-1)(0 <α≤ 1).
基金Supported by NSF of China (10371087)NSF of Anhui Province(07021019)Education Committee of Anhui Province(KJ2007A009)
文摘Let μΩ,b^m be the higher order commutator generated by Marcinkiewicz integral μΩ and a BMO(R^n) function b(x). In this paper, we will study the continuity of μΩ and μΩ,b^m on homogeneous Morrey-Herz spaces.
基金Supported by the National Natural Science Foundation of China(1057115610871173)
文摘Let α≥ 0 and 0 〈 ρ ≤ n/2, the boundedness of hypersingular parameterized Marcinkiewicz integrals μΩ,α^ρ with variable kernels on Sobolev spaces Lα^ρ and HardySobolev spaces Hα^ρ is established.
文摘In this paper, under natural regularity assumptions on the exponent function, we prove some boundedness results for the functions of Littlewood-Paley, Lusin and Marcinkiewicz on a new class of generalized Herz-Morrey spaces with weight and variable exponent, which essentially extend some known results.
文摘In this paper,the L2-boundedness of a class of parametric Marcinkiewicz integral μρ Ω,h with kernel function Ω in B 0,0 q(S n-1) for some q>1,and the radial function h(x)∈l∞(Ls)(R +) for 1<s≤∞ are given.The Lp(Rn)(2≤p<∞) boundedness of μ *,ρ Ω,h,λ and μ ρ Ω,h,S with Ω in B 0,0 q(S n-1) and h(|x|)∈l∞(Ls)(R +) in application are obtained.Here μ *,ρ Ω,h,λ and μ ρ Ω,h,S are parametric Marcinkiewicz integrals corresponding to the Littlewood-Paley g* λ function and the Lusin area function S,respectively.
基金NSFC(10571014)NSFC(10571156)+1 种基金the Growth Foundation of JXNU(1983)the Doctor Foun-dation of JXNU
文摘The boundedness of the commutator μΩ,b generalized by Marcinkiewicz integral μΩ and a function b(x) ∈ CBMOq (Rn) on homogeneous Morrey-Herz spaces is established.
基金Supported by the Natural Science Foundation of Xuzhou Normal University (09XLB02)
文摘In this paper, the authors study the boundedness of the operator μ^bΩ, the commutator generated by a function b ∈Lipβ (R^n) (0 〈β 〈 1) and the Marcinkiewicz integral μΩ on weighted Herz-type Hardy spaces.
基金Supported by the National Natural Science Foundation of China(11071065 and 11171306)
文摘In this paper, several new results on the boundedness of parammetric Marcinkiewicz integrals on the weighted Hardy spaces and the weak weighted Hardy spaces are established.
基金Supported by the National Natural Science Foundation of China (1057115610871173)
文摘In this paper,the parameterized Marcinkiewicz integrals with variable kernels defined by μΩ^ρ(f)(x)=(∫0^∞│∫│1-y│≤t Ω(x,x-y)/│x-y│^n-p f(y)dy│^2dt/t1+2p)^1/2 are investigated.It is proved that if Ω∈ L∞(R^n) × L^r(S^n-1)(r〉(n-n1p'/n) is an odd function in the second variable y,then the operator μΩ^ρ is bounded from L^p(R^n) to L^p(R^n) for 1 〈 p ≤ max{(n+1)/2,2}.It is also proved that,if Ω satisfies the L^1-Dini condition,then μΩ^ρ is of type(p,p) for 1 〈 p ≤ 2,of the weak type(1,1) and bounded from H1 to L1.