Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and di...Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and differences of various surface features.Currently,topographic maps are mainly stored in raster and vector formats.Extraction of the spatio-temporal knowledge in the maps—such as spatial distribution patterns,feature relationships,and dynamic evolution—still primarily relies on manual interpretation.However,manual interpretation is time-consuming and laborious,especially for large-scale,long-term map knowledge extraction and application.With the development of artificial intelligence technology,it is possible to improve the automation level of map knowledge interpretation.Therefore,the present study proposes an automatic interpretation method for raster topographic map knowledge based on deep learning.To address the limitations of current data-driven intelligent technology in learning map spatial relations and cognitive logic,we establish a formal description of map knowledge by mapping the relationship between map knowledge and features,thereby ensuring interpretation accuracy.Subsequently,deep learning techniques are employed to extract map features automatically,and the spatio-temporal knowledge is constructed by combining formal descriptions of geographic feature knowledge.Validation experiments demonstrate that the proposed method effectively achieves automatic interpretation of spatio-temporal knowledge of geographic features in maps,with an accuracy exceeding 80%.The findings of the present study contribute to machine understanding of spatio-temporal differences in map knowledge and advances the intelligent interpretation and utilization of cartographic information.展开更多
In this paper,the growth theorem for convex maps on the Banach space is given, this is: ‖f(x)‖≤‖x‖/(1-‖x‖),x∈B the estimate is best possible for Hilbert space.
Background Zonal application maps are designed to represent field variability using key variables that can be translated into tailored management practices.For cotton,zonal maps for crop growth regulator(CGR)applicati...Background Zonal application maps are designed to represent field variability using key variables that can be translated into tailored management practices.For cotton,zonal maps for crop growth regulator(CGR)applications under variable-rate(VR)strategies are commonly based exclusively on vegetation indices(VIs)variability.However,VIs often saturate in dense crop vegetation areas,limiting their effectiveness in distinguishing variability in crop growth.This study aimed to compare unsupervised framework(UF)and supervised framework(SUF)approaches for generat-ing zonal application maps for CGR under VR conditions.During 2022-2023 agricultural seasons,an UF was employed to generate zonal maps based on locally collected field data on plant height of cotton,satellite imagery,soil texture,and phenology data.Subsequently,a SUF(based on historical data between 2020-2021 to 2022-2023 agricultural seasons)was developed to predict plant height using remote sensing and phenology data,aiming to replicate same zonal maps but without relying on direct field measurements of plant height.Both approaches were tested in three fields and on two different dates per field.Results The predictive model for plant height of SUF performed well,as indicated by the model metrics.However,when comparing zonal application maps for specific field-date combinations,the predicted plant height exhibited lower variability compared with field measurements.This led to variable compatibility between SUF maps,which utilized the model predictions,and the UF maps,which were based on the real field data.Fields characterized by much pronounced soil texture variability yielded the highest compatibility between the zonal application maps produced by both SUF and UF approaches.This was predominantly due to the greater consistency in estimating plant development patterns within these heterogeneous field environments.While VR application approach can facilitate product savings during the application operation,other key factors must be considered.These include the availability of specialized machinery required for this type of applications,as well as the inherent operational costs associated with applying a single CGR product which differs from the typical uniform rate applications that often integrate multi-ple inputs.Conclusion Predictive modeling shows promise for assisting in the creation of zonal application maps for VR of CGR applications.However,the degree of agreement with the actual variability in crop growth found in the field should be evaluated on a field-by-field basis.The SUF approach,which is based on plant heigh prediction,demonstrated potential for supporting the development of zonal application maps for VR of CGR applications.However,the degree to which this approach aligns itself with the actual variability in crop growth observed in the field may vary,necessi-tating field-by-field evaluation.展开更多
The title of the online version of the original article was revised.The title of the original article has been revised to:Hydrochemical characterization of surface waters in Northern Tehran:Integrating cluster-based t...The title of the online version of the original article was revised.The title of the original article has been revised to:Hydrochemical characterization of surface waters in Northern Tehran:Integrating cluster-based techniques with Self-Organizing Maps.展开更多
Geographic Information System(GIS)layers contain both spatial precision and domain knowledge,making them valuable for mineral prospectivity analysis.This study proposes a task-oriented methodology to struct con-a mine...Geographic Information System(GIS)layers contain both spatial precision and domain knowledge,making them valuable for mineral prospectivity analysis.This study proposes a task-oriented methodology to struct con-a mineral prospecting knowledge graph directly from GIS maps.The framework integrates ontology construction,spatiotemporal semantic embedding,and triple confidence evaluation.Ontologies are built from GIS layers through terminology extraction and alignment with existing standards,while spatial and temporal semantics are encoded using GeoSPARQL and the Geological Time Ontology.Graph Convolutional Networks(GCN)combined with the TransE embedding model are then applied to assess triple plausibility.A case study in the Eastern Tianshan region of Xinjiang verifies the effectiveness of the proposed method through semantic evaluation and graph-theoretic analysis.Guided by GIS,ontology construction significantly enhances the semantic fidelity and structural robustness of the prospecting knowledge graph,providing relatively reliable support for subsequent reasoning and predictive studies.展开更多
Image-maps,a hybrid design with satellite images as background and map symbols uploaded,aim to combine the advantages of maps’high interpretation efficiency and satellite images’realism.The usability of image-maps i...Image-maps,a hybrid design with satellite images as background and map symbols uploaded,aim to combine the advantages of maps’high interpretation efficiency and satellite images’realism.The usability of image-maps is influenced by the representations of background images and map symbols.Many researchers explored the optimizations for background images and symbolization techniques for symbols to reduce the complexity of image-maps and improve the usability.However,little literature was found for the optimum amount of symbol loading.This study focuses on the effects of background image complexity and map symbol load on the usability(i.e.,effectiveness and efficiency)of image-maps.Experiments were conducted by user studies via eye-tracking equipment and an online questionnaire survey.Experimental data sets included image-maps with ten levels of map symbol load in ten areas.Forty volunteers took part in the target searching experiments.It has been found that the usability,i.e.,average time viewed(efficiency)and average revisits(effectiveness)of targets recorded,is influenced by the complexity of background images,a peak exists for optimum symbol load for an image-map.The optimum levels for symbol load for different image-maps also have a peak when the complexity of the background image/image map increases.The complexity of background images serves as a guideline for optimum map symbol load in image-map design.This study enhanced user experience by optimizing visual clarity and managing cognitive load.Understanding how these factors interact can help create adaptive maps that maintain clarity and usability,guiding AI algorithms to adjust symbol density based on user context.This research establishes the practices for map design,making cartographic tools more innovative and more user-centric.展开更多
Hot compression tests for GH4706 alloy were performed at a true strain of 1.2 within the temperature range of 950-1150℃ and the strain rate range of 0.001-1 s^(-1).The optimal hot deformation temperature and strain r...Hot compression tests for GH4706 alloy were performed at a true strain of 1.2 within the temperature range of 950-1150℃ and the strain rate range of 0.001-1 s^(-1).The optimal hot deformation temperature and strain rate range were determined using nephogram maps of dynamic recrystallization fraction,average grain size,and grain distribution standard deviation.Processing maps at true strains from 0.4 to 0.9 were generated based on flow stress curves to identify the strain corresponding to optimal microstructure homogenization efficiency at various temperatures and strain rates.Results show that within the optimal parameter range,under the conditions of 1150℃ and 0.01 s^(-1),the true strain of about 0.6 results in the optimal microstructure homogenization efficiency.The grain orientation spread maps obtained from the experiment also confirms this conclusion.This study provides an effective method for microstructure homogenization control of GH4706 alloy and an effective reference for the minimum strain threshold of the local part of the forging in engineering.展开更多
基金Deep-time Digital Earth(DDE)Big Science Program(No.GJ-C03-SGF-2025-004)National Natural Science Foundation of China(No.42394063)Sichuan Science and Technology Program(No.2025ZNSFSC0325).
文摘Topographic maps,as essential tools and sources of information for geographic research,contain precise spatial locations and rich map features,and they illustrate spatio-temporal information on the distribution and differences of various surface features.Currently,topographic maps are mainly stored in raster and vector formats.Extraction of the spatio-temporal knowledge in the maps—such as spatial distribution patterns,feature relationships,and dynamic evolution—still primarily relies on manual interpretation.However,manual interpretation is time-consuming and laborious,especially for large-scale,long-term map knowledge extraction and application.With the development of artificial intelligence technology,it is possible to improve the automation level of map knowledge interpretation.Therefore,the present study proposes an automatic interpretation method for raster topographic map knowledge based on deep learning.To address the limitations of current data-driven intelligent technology in learning map spatial relations and cognitive logic,we establish a formal description of map knowledge by mapping the relationship between map knowledge and features,thereby ensuring interpretation accuracy.Subsequently,deep learning techniques are employed to extract map features automatically,and the spatio-temporal knowledge is constructed by combining formal descriptions of geographic feature knowledge.Validation experiments demonstrate that the proposed method effectively achieves automatic interpretation of spatio-temporal knowledge of geographic features in maps,with an accuracy exceeding 80%.The findings of the present study contribute to machine understanding of spatio-temporal differences in map knowledge and advances the intelligent interpretation and utilization of cartographic information.
文摘In this paper,the growth theorem for convex maps on the Banach space is given, this is: ‖f(x)‖≤‖x‖/(1-‖x‖),x∈B the estimate is best possible for Hilbert space.
文摘Background Zonal application maps are designed to represent field variability using key variables that can be translated into tailored management practices.For cotton,zonal maps for crop growth regulator(CGR)applications under variable-rate(VR)strategies are commonly based exclusively on vegetation indices(VIs)variability.However,VIs often saturate in dense crop vegetation areas,limiting their effectiveness in distinguishing variability in crop growth.This study aimed to compare unsupervised framework(UF)and supervised framework(SUF)approaches for generat-ing zonal application maps for CGR under VR conditions.During 2022-2023 agricultural seasons,an UF was employed to generate zonal maps based on locally collected field data on plant height of cotton,satellite imagery,soil texture,and phenology data.Subsequently,a SUF(based on historical data between 2020-2021 to 2022-2023 agricultural seasons)was developed to predict plant height using remote sensing and phenology data,aiming to replicate same zonal maps but without relying on direct field measurements of plant height.Both approaches were tested in three fields and on two different dates per field.Results The predictive model for plant height of SUF performed well,as indicated by the model metrics.However,when comparing zonal application maps for specific field-date combinations,the predicted plant height exhibited lower variability compared with field measurements.This led to variable compatibility between SUF maps,which utilized the model predictions,and the UF maps,which were based on the real field data.Fields characterized by much pronounced soil texture variability yielded the highest compatibility between the zonal application maps produced by both SUF and UF approaches.This was predominantly due to the greater consistency in estimating plant development patterns within these heterogeneous field environments.While VR application approach can facilitate product savings during the application operation,other key factors must be considered.These include the availability of specialized machinery required for this type of applications,as well as the inherent operational costs associated with applying a single CGR product which differs from the typical uniform rate applications that often integrate multi-ple inputs.Conclusion Predictive modeling shows promise for assisting in the creation of zonal application maps for VR of CGR applications.However,the degree of agreement with the actual variability in crop growth found in the field should be evaluated on a field-by-field basis.The SUF approach,which is based on plant heigh prediction,demonstrated potential for supporting the development of zonal application maps for VR of CGR applications.However,the degree to which this approach aligns itself with the actual variability in crop growth observed in the field may vary,necessi-tating field-by-field evaluation.
文摘The title of the online version of the original article was revised.The title of the original article has been revised to:Hydrochemical characterization of surface waters in Northern Tehran:Integrating cluster-based techniques with Self-Organizing Maps.
基金supported by the Natural Science Foundation of Jilin Province(20220101114JC).
文摘Geographic Information System(GIS)layers contain both spatial precision and domain knowledge,making them valuable for mineral prospectivity analysis.This study proposes a task-oriented methodology to struct con-a mineral prospecting knowledge graph directly from GIS maps.The framework integrates ontology construction,spatiotemporal semantic embedding,and triple confidence evaluation.Ontologies are built from GIS layers through terminology extraction and alignment with existing standards,while spatial and temporal semantics are encoded using GeoSPARQL and the Geological Time Ontology.Graph Convolutional Networks(GCN)combined with the TransE embedding model are then applied to assess triple plausibility.A case study in the Eastern Tianshan region of Xinjiang verifies the effectiveness of the proposed method through semantic evaluation and graph-theoretic analysis.Guided by GIS,ontology construction significantly enhances the semantic fidelity and structural robustness of the prospecting knowledge graph,providing relatively reliable support for subsequent reasoning and predictive studies.
基金National Natural Science Foundation of China(No.42301518)Hubei Key Laboratory of Regional Development and Environmental Response(No.2023(A)002)Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources(Ministry of Education)(No.TDSYS202304).
文摘Image-maps,a hybrid design with satellite images as background and map symbols uploaded,aim to combine the advantages of maps’high interpretation efficiency and satellite images’realism.The usability of image-maps is influenced by the representations of background images and map symbols.Many researchers explored the optimizations for background images and symbolization techniques for symbols to reduce the complexity of image-maps and improve the usability.However,little literature was found for the optimum amount of symbol loading.This study focuses on the effects of background image complexity and map symbol load on the usability(i.e.,effectiveness and efficiency)of image-maps.Experiments were conducted by user studies via eye-tracking equipment and an online questionnaire survey.Experimental data sets included image-maps with ten levels of map symbol load in ten areas.Forty volunteers took part in the target searching experiments.It has been found that the usability,i.e.,average time viewed(efficiency)and average revisits(effectiveness)of targets recorded,is influenced by the complexity of background images,a peak exists for optimum symbol load for an image-map.The optimum levels for symbol load for different image-maps also have a peak when the complexity of the background image/image map increases.The complexity of background images serves as a guideline for optimum map symbol load in image-map design.This study enhanced user experience by optimizing visual clarity and managing cognitive load.Understanding how these factors interact can help create adaptive maps that maintain clarity and usability,guiding AI algorithms to adjust symbol density based on user context.This research establishes the practices for map design,making cartographic tools more innovative and more user-centric.
基金National Key R&D Program Project(2022YFB3705103)。
文摘Hot compression tests for GH4706 alloy were performed at a true strain of 1.2 within the temperature range of 950-1150℃ and the strain rate range of 0.001-1 s^(-1).The optimal hot deformation temperature and strain rate range were determined using nephogram maps of dynamic recrystallization fraction,average grain size,and grain distribution standard deviation.Processing maps at true strains from 0.4 to 0.9 were generated based on flow stress curves to identify the strain corresponding to optimal microstructure homogenization efficiency at various temperatures and strain rates.Results show that within the optimal parameter range,under the conditions of 1150℃ and 0.01 s^(-1),the true strain of about 0.6 results in the optimal microstructure homogenization efficiency.The grain orientation spread maps obtained from the experiment also confirms this conclusion.This study provides an effective method for microstructure homogenization control of GH4706 alloy and an effective reference for the minimum strain threshold of the local part of the forging in engineering.