In order to overcome the embrittlement of metastable titanium alloys caused by the precipitation ofωiso phase during aging,regulation of isothermalωprecipitation was investigated in Ti−15Mo alloy.The results show th...In order to overcome the embrittlement of metastable titanium alloys caused by the precipitation ofωiso phase during aging,regulation of isothermalωprecipitation was investigated in Ti−15Mo alloy.The results show that the sample is brittle when direct aging(A)is applied at 350℃for 1 h after solution treatment(ST).If pre-deformation(D)is performed on the ST sample to induce{332}twins and secondaryα″phase,subsequent aging at 350℃(STDA350)improves the strength to 931 MPa with a good ductility of about 20%maintained.However,when aging is performed at 400℃or 450℃(STDA400/450),the strength can be further improved,but the ductility is dramatically reduced.Atomic-scale characterizations show that the partial collapse ofωphase in the STDA350 sample effectively eliminates aging-induced embrittlement,but complete collapse leads to poor ductility in the STDA400/450 sample.展开更多
The influence of Hf on the precipitation behavior of γ'phase and the subsequent tensile properties of a Ni-Cr-Mo alloy after long-term thermal exposure was investigated.The results reveal that the addition of Hf ...The influence of Hf on the precipitation behavior of γ'phase and the subsequent tensile properties of a Ni-Cr-Mo alloy after long-term thermal exposure was investigated.The results reveal that the addition of Hf increases the average diameter ofγ'phases after thermal exposure at 700℃ for 5000 h,which enhances the critical resolved shear stress required for dislocations to shear the γ'phases in the Ni-Cr-Mo alloy.Simultaneously,element Hf incorporated into the γ'phases increases the lattice mismatch between the γ'and γ phase,thereby strengthening the coherency strengthening effect.These two factors collectively contribute to the enhanced strength of the alloy.Thus,Hf alloying effectively improves the yield strength of the Ni-Cr-Mo alloy after thermal exposure at 700℃.展开更多
基金the financial support from the National Natural Science Foundation of China (No. 52374380)the China Postdoctoral Science Foundation (Nos. 2023M730234, 2024T171126)。
文摘In order to overcome the embrittlement of metastable titanium alloys caused by the precipitation ofωiso phase during aging,regulation of isothermalωprecipitation was investigated in Ti−15Mo alloy.The results show that the sample is brittle when direct aging(A)is applied at 350℃for 1 h after solution treatment(ST).If pre-deformation(D)is performed on the ST sample to induce{332}twins and secondaryα″phase,subsequent aging at 350℃(STDA350)improves the strength to 931 MPa with a good ductility of about 20%maintained.However,when aging is performed at 400℃or 450℃(STDA400/450),the strength can be further improved,but the ductility is dramatically reduced.Atomic-scale characterizations show that the partial collapse ofωphase in the STDA350 sample effectively eliminates aging-induced embrittlement,but complete collapse leads to poor ductility in the STDA400/450 sample.
基金National Key Research and Development Program of China(2021YFB3704103)National Natural Science Foundation of China(51571191)。
文摘The influence of Hf on the precipitation behavior of γ'phase and the subsequent tensile properties of a Ni-Cr-Mo alloy after long-term thermal exposure was investigated.The results reveal that the addition of Hf increases the average diameter ofγ'phases after thermal exposure at 700℃ for 5000 h,which enhances the critical resolved shear stress required for dislocations to shear the γ'phases in the Ni-Cr-Mo alloy.Simultaneously,element Hf incorporated into the γ'phases increases the lattice mismatch between the γ'and γ phase,thereby strengthening the coherency strengthening effect.These two factors collectively contribute to the enhanced strength of the alloy.Thus,Hf alloying effectively improves the yield strength of the Ni-Cr-Mo alloy after thermal exposure at 700℃.