The three-dimensional (3D) processing maps considering strain based on the two-dimensional (2D) processing maps proposed by PRASAD can describe the distribution of the efficiency of power dissipation and flow inst...The three-dimensional (3D) processing maps considering strain based on the two-dimensional (2D) processing maps proposed by PRASAD can describe the distribution of the efficiency of power dissipation and flow instability regions at various temperatures, strain rates and strains, which exhibit intrinsic workability related to material itself. Finite element (FE) simulation can obtain the distribution of strain, strain rate, temperature and die filling status, which indicates state-of-stress (SOS) workability decided by die shape and different processing conditions. On the basis of this, a new material driven analysis method for hot deformation was put forward by the combination of FE simulation with 3D processing maps, which can demonstrate material workability of the entire hot deformation process including SOS workability and intrinsic workability. The hot forging process for hard-to-work metal magnesium alloy was studied, and the 3D thermomechanical FE simulation including 3D processing maps of complex hot forging spur bevel gear was first conducted. The hot forging experiments were carried out. The results show that the new method is reasonable and suitable to determine the aoorooriate nrocess narameters.展开更多
In this study,a machine vision-based pattern matching technique was applied to estimate the location of an autonomous driving robot and perform 3D tunnel mapping in an underground mine environment.The autonomous drivi...In this study,a machine vision-based pattern matching technique was applied to estimate the location of an autonomous driving robot and perform 3D tunnel mapping in an underground mine environment.The autonomous driving robot continuously detects the wall of the tunnel in the horizontal direction using the light detection and ranging(Li DAR)sensor and performs pattern matching by recognizing the shape of the tunnel wall.The proposed method was designed to measure the heading of the robot by fusion with the inertial measurement units sensor according to the pattern matching accuracy;it is combined with the encoder sensor to estimate the location of the robot.In addition,when the robot is driving,the vertical direction of the underground mine is scanned through the vertical Li DAR sensor and stacked to create a 3D map of the underground mine.The performance of the proposed method was superior to that of previous studies;the mean absolute error achieved was 0.08 m for the X-Y axes.A root mean square error of 0.05 m^(2)was achieved by comparing the tunnel section maps that were created by the autonomous driving robot to those of manual surveying.展开更多
Complete and efficient detection of unknown targets is the most popular application of UAV swarms. Under most situations, targets have directional characteristics so that they can only be successfully detected within ...Complete and efficient detection of unknown targets is the most popular application of UAV swarms. Under most situations, targets have directional characteristics so that they can only be successfully detected within specific angles. In such cases, how to coordinate UAVs and allocate optimal paths for them to efficiently detect all the targets is the primary issue to be solved. In this paper, an intelligent target detection method is proposed for UAV swarms to achieve real-time detection requirements. First, a target-feature-information-based disintegration method is built up to divide the search space into a set of cubes. Theoretically, when the cubes are traversed, all the targets can be detected. Then, a Kuhn-Munkres(KM)-algorithm-based path planning method is proposed for UAVs to traverse the cubes. Finally, to further improve search efficiency, a 3 D realtime probability map is established over the search space which estimates the possibility of detecting new targets at each point. This map is adopted to modify the weights in KM algorithm, thereby optimizing the UAVs’ paths during the search process. Simulation results show that with the proposed method, all targets, with detection angle limitations, can be found by UAVs. Moreover, by implementing the 3 D probability map, the search efficiency is improved by 23.4%–78.1%.展开更多
The substitution box(S-box)is a fundamentally important component of symmetric key cryptosystem.An S-box is a primary source of non-linearity in modern block ciphers,and it resists the linear attack.Various approaches...The substitution box(S-box)is a fundamentally important component of symmetric key cryptosystem.An S-box is a primary source of non-linearity in modern block ciphers,and it resists the linear attack.Various approaches have been adopted to construct S-boxes.S-boxes are commonly constructed over commutative and associative algebraic structures including Galois fields,unitary commutative rings and cyclic and non-cyclic finite groups.In this paper,first a non-associative ring of order 512 is obtained by using computational techniques,and then by this ring a triplet of 8×8 S-boxes is designed.The motivation behind the designing of these S-boxes is to upsurge the robustness and broaden the key space due to non-associative and noncommutative behavior of the algebraic structure under consideration.A novel color image encryption application is anticipated in which initially these 3 S-boxes are being used to produce confusion in three layers of a standard RGB image.However,for the sake of diffusion 3D Arnold chaotic map is used in the proposed encryption scheme.A comparison with some of existing chaos and S-box dependent color image encryption schemes specs the performance results of the anticipated RGB image encryption and observed as approaching the standard prime level.展开更多
Digital soil mapping (DSM) aims to produce detailed maps of soil properties or soil classes to improve agricultural management and soil quality assessment. Optimized sampling design can reduce the substantial costs an...Digital soil mapping (DSM) aims to produce detailed maps of soil properties or soil classes to improve agricultural management and soil quality assessment. Optimized sampling design can reduce the substantial costs and efforts associated with sampling, profile description, and laboratory analysis. The purpose of this study was to compare common sampling designs for DSM, including grid sampling (GS), grid random sampling (GRS), stratified random sampling (StRS), and conditioned Latin hypercube sampling (cLHS). In an agricultural field (11 ha) in Quebec, Canada, a total of unique 118 locations were selected using each of the four sampling designs (45 locations each), and additional 30 sample locations were selected as an independent testing dataset (evaluation dataset). Soil visible near-infrared (Vis-NIR) spectra were collected in situ at the 148 locations (1 m depth), and soil cores were collected from a subset of 32 locations and subdivided at 10-cm depth intervals, totaling 251 samples. The Cubist model was used to elucidate the relationship between Vis-NIR spectra and soil properties (soil organic matter (SOM) and clay), which was then used to predict the soil properties at all 148 sample locations. Digital maps of soil properties at multiple depths for the entire field (148 sample locations) were prepared using a quantile random forest model to obtain complete model maps (CM-maps). Soil properties were also mapped using the samples from each of the 45 locations for each sampling design to obtain sampling design maps (SD-maps). The SD-maps were evaluated using the independent testing dataset (30 sample locations), and the spatial distribution and model uncertainty of each SD-map were compared with those of the corresponding CM-map. The spatial and feature space coverage were compared across the four sampling designs. The results showed that GS resulted in the most even spatial coverage, cLHS resulted in the best coverage of the feature space, and GS and cLHS resulted in similar prediction accuracies and spatial distributions of soil properties. The SOM content was underestimated using GRS, with large errors at 0–50 cm depth, due to some values not being captured by this sampling design, whereas larger errors for the deeper soil layers were produced using StRS. Predictions of SOM and clay contents had higher accuracy for topsoil (0–30 cm) than for deep subsoil (60–100 cm). It was concluded that the soil sampling designs with either good spatial coverage or feature space coverage can provide good accuracy in 3D DSM, but their performances may be different for different soil properties.展开更多
Sampling design(SD) plays a crucial role in providing reliable input for digital soil mapping(DSM) and increasing its efficiency.Sampling design, with a predetermined sample size and consideration of budget and spatia...Sampling design(SD) plays a crucial role in providing reliable input for digital soil mapping(DSM) and increasing its efficiency.Sampling design, with a predetermined sample size and consideration of budget and spatial variability, is a selection procedure for identifying a set of sample locations spread over a geographical space or with a good feature space coverage. A good feature space coverage ensures accurate estimation of regression parameters, while spatial coverage contributes to effective spatial interpolation.First, we review several statistical and geometric SDs that mainly optimize the sampling pattern in a geographical space and illustrate the strengths and weaknesses of these SDs by considering spatial coverage, simplicity, accuracy, and efficiency. Furthermore, Latin hypercube sampling, which obtains a full representation of multivariate distribution in geographical space, is described in detail for its development, improvement, and application. In addition, we discuss the fuzzy k-means sampling, response surface sampling, and Kennard-Stone sampling, which optimize sampling patterns in a feature space. We then discuss some practical applications that are mainly addressed by the conditioned Latin hypercube sampling with the flexibility and feasibility of adding multiple optimization criteria. We also discuss different methods of validation, an important stage of DSM, and conclude that an independent dataset selected from the probability sampling is superior for its free model assumptions. For future work, we recommend: 1) exploring SDs with both good spatial coverage and feature space coverage; 2) uncovering the real impacts of an SD on the integral DSM procedure;and 3) testing the feasibility and contribution of SDs in three-dimensional(3 D) DSM with variability for multiple layers.展开更多
基金Project(2011ZX04014-051)supported by the Key Scientific and Technical Project of ChinaProjects(51375306,50905110)supported by the National Natural Science Foundation of China
文摘The three-dimensional (3D) processing maps considering strain based on the two-dimensional (2D) processing maps proposed by PRASAD can describe the distribution of the efficiency of power dissipation and flow instability regions at various temperatures, strain rates and strains, which exhibit intrinsic workability related to material itself. Finite element (FE) simulation can obtain the distribution of strain, strain rate, temperature and die filling status, which indicates state-of-stress (SOS) workability decided by die shape and different processing conditions. On the basis of this, a new material driven analysis method for hot deformation was put forward by the combination of FE simulation with 3D processing maps, which can demonstrate material workability of the entire hot deformation process including SOS workability and intrinsic workability. The hot forging process for hard-to-work metal magnesium alloy was studied, and the 3D thermomechanical FE simulation including 3D processing maps of complex hot forging spur bevel gear was first conducted. The hot forging experiments were carried out. The results show that the new method is reasonable and suitable to determine the aoorooriate nrocess narameters.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A2C1011216)。
文摘In this study,a machine vision-based pattern matching technique was applied to estimate the location of an autonomous driving robot and perform 3D tunnel mapping in an underground mine environment.The autonomous driving robot continuously detects the wall of the tunnel in the horizontal direction using the light detection and ranging(Li DAR)sensor and performs pattern matching by recognizing the shape of the tunnel wall.The proposed method was designed to measure the heading of the robot by fusion with the inertial measurement units sensor according to the pattern matching accuracy;it is combined with the encoder sensor to estimate the location of the robot.In addition,when the robot is driving,the vertical direction of the underground mine is scanned through the vertical Li DAR sensor and stacked to create a 3D map of the underground mine.The performance of the proposed method was superior to that of previous studies;the mean absolute error achieved was 0.08 m for the X-Y axes.A root mean square error of 0.05 m^(2)was achieved by comparing the tunnel section maps that were created by the autonomous driving robot to those of manual surveying.
文摘Complete and efficient detection of unknown targets is the most popular application of UAV swarms. Under most situations, targets have directional characteristics so that they can only be successfully detected within specific angles. In such cases, how to coordinate UAVs and allocate optimal paths for them to efficiently detect all the targets is the primary issue to be solved. In this paper, an intelligent target detection method is proposed for UAV swarms to achieve real-time detection requirements. First, a target-feature-information-based disintegration method is built up to divide the search space into a set of cubes. Theoretically, when the cubes are traversed, all the targets can be detected. Then, a Kuhn-Munkres(KM)-algorithm-based path planning method is proposed for UAVs to traverse the cubes. Finally, to further improve search efficiency, a 3 D realtime probability map is established over the search space which estimates the possibility of detecting new targets at each point. This map is adopted to modify the weights in KM algorithm, thereby optimizing the UAVs’ paths during the search process. Simulation results show that with the proposed method, all targets, with detection angle limitations, can be found by UAVs. Moreover, by implementing the 3 D probability map, the search efficiency is improved by 23.4%–78.1%.
文摘The substitution box(S-box)is a fundamentally important component of symmetric key cryptosystem.An S-box is a primary source of non-linearity in modern block ciphers,and it resists the linear attack.Various approaches have been adopted to construct S-boxes.S-boxes are commonly constructed over commutative and associative algebraic structures including Galois fields,unitary commutative rings and cyclic and non-cyclic finite groups.In this paper,first a non-associative ring of order 512 is obtained by using computational techniques,and then by this ring a triplet of 8×8 S-boxes is designed.The motivation behind the designing of these S-boxes is to upsurge the robustness and broaden the key space due to non-associative and noncommutative behavior of the algebraic structure under consideration.A novel color image encryption application is anticipated in which initially these 3 S-boxes are being used to produce confusion in three layers of a standard RGB image.However,for the sake of diffusion 3D Arnold chaotic map is used in the proposed encryption scheme.A comparison with some of existing chaos and S-box dependent color image encryption schemes specs the performance results of the anticipated RGB image encryption and observed as approaching the standard prime level.
基金the National Science and Engineering Research Council of Canada(No.RGPIN-2014-04100)for funding this project.
文摘Digital soil mapping (DSM) aims to produce detailed maps of soil properties or soil classes to improve agricultural management and soil quality assessment. Optimized sampling design can reduce the substantial costs and efforts associated with sampling, profile description, and laboratory analysis. The purpose of this study was to compare common sampling designs for DSM, including grid sampling (GS), grid random sampling (GRS), stratified random sampling (StRS), and conditioned Latin hypercube sampling (cLHS). In an agricultural field (11 ha) in Quebec, Canada, a total of unique 118 locations were selected using each of the four sampling designs (45 locations each), and additional 30 sample locations were selected as an independent testing dataset (evaluation dataset). Soil visible near-infrared (Vis-NIR) spectra were collected in situ at the 148 locations (1 m depth), and soil cores were collected from a subset of 32 locations and subdivided at 10-cm depth intervals, totaling 251 samples. The Cubist model was used to elucidate the relationship between Vis-NIR spectra and soil properties (soil organic matter (SOM) and clay), which was then used to predict the soil properties at all 148 sample locations. Digital maps of soil properties at multiple depths for the entire field (148 sample locations) were prepared using a quantile random forest model to obtain complete model maps (CM-maps). Soil properties were also mapped using the samples from each of the 45 locations for each sampling design to obtain sampling design maps (SD-maps). The SD-maps were evaluated using the independent testing dataset (30 sample locations), and the spatial distribution and model uncertainty of each SD-map were compared with those of the corresponding CM-map. The spatial and feature space coverage were compared across the four sampling designs. The results showed that GS resulted in the most even spatial coverage, cLHS resulted in the best coverage of the feature space, and GS and cLHS resulted in similar prediction accuracies and spatial distributions of soil properties. The SOM content was underestimated using GRS, with large errors at 0–50 cm depth, due to some values not being captured by this sampling design, whereas larger errors for the deeper soil layers were produced using StRS. Predictions of SOM and clay contents had higher accuracy for topsoil (0–30 cm) than for deep subsoil (60–100 cm). It was concluded that the soil sampling designs with either good spatial coverage or feature space coverage can provide good accuracy in 3D DSM, but their performances may be different for different soil properties.
基金funded by the Natural Science and Engineering Research Council (NSERC) of Canada (No. RGPIN-2014-04100)
文摘Sampling design(SD) plays a crucial role in providing reliable input for digital soil mapping(DSM) and increasing its efficiency.Sampling design, with a predetermined sample size and consideration of budget and spatial variability, is a selection procedure for identifying a set of sample locations spread over a geographical space or with a good feature space coverage. A good feature space coverage ensures accurate estimation of regression parameters, while spatial coverage contributes to effective spatial interpolation.First, we review several statistical and geometric SDs that mainly optimize the sampling pattern in a geographical space and illustrate the strengths and weaknesses of these SDs by considering spatial coverage, simplicity, accuracy, and efficiency. Furthermore, Latin hypercube sampling, which obtains a full representation of multivariate distribution in geographical space, is described in detail for its development, improvement, and application. In addition, we discuss the fuzzy k-means sampling, response surface sampling, and Kennard-Stone sampling, which optimize sampling patterns in a feature space. We then discuss some practical applications that are mainly addressed by the conditioned Latin hypercube sampling with the flexibility and feasibility of adding multiple optimization criteria. We also discuss different methods of validation, an important stage of DSM, and conclude that an independent dataset selected from the probability sampling is superior for its free model assumptions. For future work, we recommend: 1) exploring SDs with both good spatial coverage and feature space coverage; 2) uncovering the real impacts of an SD on the integral DSM procedure;and 3) testing the feasibility and contribution of SDs in three-dimensional(3 D) DSM with variability for multiple layers.