期刊文献+
共找到2,849篇文章
< 1 2 143 >
每页显示 20 50 100
Knowledge Graph Construction and Rule Matching Approach for Aerospace Product Manufacturability Assessment
1
作者 Ziyan Liu Zujie Zheng +1 位作者 Lebao Wu Zuhua Jiang 《Journal of Harbin Institute of Technology(New Series)》 2025年第1期1-14,共14页
After the design of aerospace products is completed,a manufacturability assessment needs to be conducted based on 3D model's features in terms of modeling quality and process design,otherwise the cost of design ch... After the design of aerospace products is completed,a manufacturability assessment needs to be conducted based on 3D model's features in terms of modeling quality and process design,otherwise the cost of design changes will increase.Due to the poor structure and low reusability of product manufacturing feature information and assessment knowledge in the current aerospace product manufacturability assessment process,it is difficult to realize automated manufacturability assessment.To address these issues,a domain ontology model is established for aerospace product manufacturability assessment in this paper.On this basis,a structured representation method of manufacturability assessment knowledge and a knowledge graph data layer construction method are proposed.Based on the semantic information and association information expressed by the knowledge graph,a rule matching method based on subgraph matching is proposed to improve the precision and recall.Finally,applications and experiments based on the software platform verify the effectiveness of the proposed knowledge graph construction and rule matching method. 展开更多
关键词 knowledge graph aerospace product manufacturability assessment rule matching
在线阅读 下载PDF
Fast and Accurate Additive Manufacturability Analysis 被引量:3
2
作者 Yvan Blanchard 《纤维复合材料》 CAS 2019年第2期8-9,7,共3页
This paper focuses on the design optimization of complex 3D composites structures made by additive manufacturing processes. There are commercial CAD-CAM software solutions for detailed offline path programming, but th... This paper focuses on the design optimization of complex 3D composites structures made by additive manufacturing processes. There are commercial CAD-CAM software solutions for detailed offline path programming, but there is a growing need for innovative tools and methodologies for doing trade oil studies very early at design stage. A new innovative solution has been developed on top of the CATFIBER■ software,allowing both designers and stress engineers to quickly analyze complex double-curved geometries. It also includes a variable stiffness approach with tow-steering, and structural analysis of the manufacturing defects using Digimat■ software. 展开更多
关键词 ADDITIVE manufacturability ANALYSIS
在线阅读 下载PDF
Study on the Manufacturability Evaluation Based on Double-layer Model of Manufacturing Resources
3
作者 石旭东 FU +4 位作者 Yili Dai Yong Ma Yulin 《High Technology Letters》 EI CAS 2001年第2期61-65,共5页
Virtual organization is a new production patter and a principal part in advanced manufacturing systems such as agile manufacturing. Manufacturability evaluation is the necessary condition to form the virtual organizat... Virtual organization is a new production patter and a principal part in advanced manufacturing systems such as agile manufacturing. Manufacturability evaluation is the necessary condition to form the virtual organization. A new manufacturability evaluation approach is described in this paper, which is carried out based on every process feature under the double-layer model of manufacturing resources proposed by authors. The manufacturing resources that build up the virtual organization are selected according to the results of manufacturability evaluation. 展开更多
关键词 manufacturability evaluation Double-layer model of manufacturing resources Virtual organization
在线阅读 下载PDF
Generative Learning in VLSI Design for Manufacturability: Current Status and Future Directions
4
作者 Mohamed Baker Alawieh Yibo Lin +1 位作者 Wei Ye David Z.Pan 《Journal of Microelectronic Manufacturing》 2019年第4期1-12,共12页
With the continuous scaling of integrated circuit technologies,design for manufacturability(DFM)is becoming more critical,yet more challenging.Alongside,recent advances in machine learning have provided a new computin... With the continuous scaling of integrated circuit technologies,design for manufacturability(DFM)is becoming more critical,yet more challenging.Alongside,recent advances in machine learning have provided a new computing paradigm with promising applications in VLSI manufacturability.In particular,generative learning-regarded among the most interesting ideas in present-day machine learning-has demonstrated impressive capabilities in a wide range of applications.This paper surveys recent results of using generative learning in VLSI manufacturing modeling and optimization.Specifically,we examine the unique features of generative learning that have been leveraged to improve DFM efficiency in an unprecedented way;hence,paving the way to a new data-driven DFM approach.The state-of-the-art methods are presented,and challenges/opportunities are discussed. 展开更多
关键词 Design for manufacturability Generative Learning Machine Learning LITHOGRAPHY
在线阅读 下载PDF
Filters for manufacturability in design optimization of variable stiffness composites 被引量:3
5
作者 Ye TIAN Yuhang HUO +1 位作者 Tielin SHI Qi XIA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期153-159,共7页
In the design optimization of variable stiffness composites,manufacturing constraints imposed by the automated fiber placement technology must be considered.In the present paper,two filters are proposed to address thi... In the design optimization of variable stiffness composites,manufacturing constraints imposed by the automated fiber placement technology must be considered.In the present paper,two filters are proposed to address this issue,and they are incorporated into the Shepard interpolation-based design optimization framework developed in our previous studies.The fiber angle arrangement of a composite is represented by a continuous function that interpolates fiber angles at scattered design points.Two filters are appointed for each design point to deal with two typical manufacturing constraints,i.e.,fiber curvature and gap/overlap.At each design point,the sensitivity is first filtered in a rectangular region around this point,and by this means the fiber curvature is controlled;then in another rectangular region around this design point,the filtered sensitivities are averaged,and the result is used to update the corresponding design variable.Several numerical examples are investigated,and the results show that the proposed method is effective. 展开更多
关键词 Composite laminates Design optimization Fiber angle FILTER Manufacturing constraints
原文传递
A novel wire arc additive and subtractive hybrid manufacturing process optimization method
6
作者 GUO Yiming ZHANG Wanyuan +2 位作者 XIAO Mingkun SONG Shida ZHANG Xiaoyong 《Journal of Southeast University(English Edition)》 2025年第1期109-117,共9页
A reasonable process plan is an important basis for implementing wire arc additive and subtractive hybrid manufacturing(ASHM),and a new optimization method is proposed.Firstly,the target parts and machining tools are ... A reasonable process plan is an important basis for implementing wire arc additive and subtractive hybrid manufacturing(ASHM),and a new optimization method is proposed.Firstly,the target parts and machining tools are modeled by level set functions.Secondly,the mathematical model of the additive direction optimization problem is established,and an improved particle swarm optimization algorithm is designed to decide the best additive direction.Then,the two-step strategy is used to plan the hybrid manufacturing alternating sequence.The target parts are directly divided into various processing regions;each processing region is optimized based on manufacturability and manufacturing efficiency,and the optimal hybrid manufacturing alternating sequence is obtained by merging some processing regions.Finally,the method is used to outline the process plan of the designed example model and applied to the actual hybrid manufacturing process of the model.The manufacturing result shows that the method can meet the main considerations in hybrid manufacturing.In addition,the degree of automation of process planning is high,and the dependence on manual intervention is low. 展开更多
关键词 wire arc additive manufacturing hybrid manufacturing process optimization manufacturability
在线阅读 下载PDF
An identification method for enclosed voids restriction in manufacturability design for additive manufacturing structures 被引量:22
7
作者 Shutian LIU Quhao LI +2 位作者 Wenjiong CHEN Liyong TONG Gengdong CHENG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2015年第2期126-137,共12页
Additive manufacturing (AM) technologies, such as selective laser sintering (SLS) and fused deposition modeling (FDM), have become the powerful tools for direct manufacturing of complex parts. This breakthrough ... Additive manufacturing (AM) technologies, such as selective laser sintering (SLS) and fused deposition modeling (FDM), have become the powerful tools for direct manufacturing of complex parts. This breakthrough in manufacturing technology makes the fabrication of new geometrical features and multiple materials possible. Past researches on designs and design methods often focused on how to obtain desired functional performance of the structures or parts, specific manufacturing capabilities as well as manufacturing constraints of AM were neglected. However, the inherent constraints in AM processes should be taken into account in design process. In this paper, the enclosed voids, one type of manufacturing constraints of AM, are investigated. In mathematics, enclosed voids restriction expressed as the solid structure is simply- connected. We propose an equivalent description of simply-connected constraint for avoiding enclosed voids in structures, named as virtual temperature method (VTM). In this method, suppose that the voids in structure are filled with a virtual heating material with high heat conductivity and solid areas are filled with another virtual material with low heat conductivity. Once the enclosed voids exist in structure, the maximum temperature value of structure will be very high. Based upon this method, the simplyconnected constraint is equivalent to maximum temperature constraint. And this method can be easily used to formulate the simply-connected constraint in topology optimization. The effectiveness of this description method is illustrated by several examples. Based upon topology optimization, an example of 3D cantilever beam is used to illustrate the trade-off between manufacturability and functionality. Moreover, the three optimized structures are fabricated by FDM technology to indicate further the necessity of considering the simply-connected constraint in design phase for AM. 展开更多
关键词 additive manufacturing topology optimiza-tion manufacturability constraints design for additivemanufacturing simply-connected constraint
原文传递
Multi-layer multi-pass friction rolling additive manufacturing of Al alloy:Toward complex large-scale high-performance components 被引量:1
8
作者 Haibin Liu Run Hou +2 位作者 Chenghao Wu Ruishan Xie Shujun Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期425-438,共14页
At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-laye... At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components. 展开更多
关键词 aluminum alloy additive manufacturing SOLID-STATE friction stir welding multi-layer multi-pass
在线阅读 下载PDF
Robust isogeometric topology optimization for piezoelectric actuators with uniform manufacturability 被引量:2
9
作者 Jie GAO Mi XIAO +2 位作者 Zhi YAN Liang GAO Hao LI 《Frontiers of Mechanical Engineering》 SCIE CSCD 2022年第2期205-224,共20页
Piezoelectric actuators have received substantial attention among the industry and academia due to quick responses, such as high output force, high stiffness, high accuracy, and precision. However, the design of piezo... Piezoelectric actuators have received substantial attention among the industry and academia due to quick responses, such as high output force, high stiffness, high accuracy, and precision. However, the design of piezoelectric actuators always suffers from the emergence of several localized hinges with only one-node connection, which have difficulty satisfying manufacturing and machining requirements (from the over- or under-etching devices). The main purpose of the current paper is to propose a robust isogeometric topology optimization (RITO) method for the design of piezoelectric actuators, which can effectively remove the critical issue induced by one-node connected hinges and simultaneously maintain uniform manufacturability in the optimized topologies. In RITO, the isogeometric analysis replacing the conventional finite element method is applied to compute the unknown electro elastic fields in piezoelectric materials, which can improve numerical accuracy and then enhance iterative stability. The erode–dilate operator is introduced in topology representation to construct the eroded, intermediate, and dilated density distribution functions by non-uniform rational B-splines. Finally, the RITO formulation for the design of piezoelectric materials is developed, and several numerical examples are performed to test the effectiveness and efficiency of the proposed RITO method. 展开更多
关键词 piezoelectric actuator isogeometric topology optimization uniform manufacturability robust formulation density distribution function
原文传递
Artificial Intelligence-Enhanced Digital Twin Systems Engineering Towards the Industrial Metaverse in the Era of Industry 5.0 被引量:3
10
作者 He Zhang Yilin Li +2 位作者 Shuai Zhang Lukai Song Fei Tao 《Chinese Journal of Mechanical Engineering》 2025年第2期98-119,共22页
With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenu... With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenues for digital transformation and intelligent upgrading.Industry 5.0,a further extension and development of Industry 4.0,has become an important development trend in industry with more emphasis on human-centered sustainability and flexibility.Accordingly,both the industrial metaverse and digital twins have attracted much attention in this new era.However,the relationship between them is not clear enough.In this paper,a comparison between digital twins and the metaverse in industry is made firstly.Then,we propose the concept and framework of Digital Twin Systems Engineering(DTSE)to demonstrate how digital twins support the industrial metaverse in the era of Industry 5.0 by integrating systems engineering principles.Furthermore,we discuss the key technologies and challenges of DTSE,in particular how artificial intelligence enhances the application of DTSE.Finally,a specific application scenario in the aviation field is presented to illustrate the application prospects of DTSE. 展开更多
关键词 Digital twins Systems engineering Industrial metaverse Artificial intelligence Industry 5.0 Smart manufacturing
在线阅读 下载PDF
When Embodied AI Meets Industry 5.0:Human-Centered Smart Manufacturing 被引量:3
11
作者 Jing Xu Qiyu Sun +1 位作者 Qing-Long Han Yang Tang 《IEEE/CAA Journal of Automatica Sinica》 2025年第3期485-501,共17页
As embodied intelligence(EI),large language models(LLMs),and cloud computing continue to advance,Industry5.0 facilitates the development of industrial artificial intelligence(Ind AI)through cyber-physical-social syste... As embodied intelligence(EI),large language models(LLMs),and cloud computing continue to advance,Industry5.0 facilitates the development of industrial artificial intelligence(Ind AI)through cyber-physical-social systems(CPSSs)with a human-centric focus.These technologies are organized by the system-wide approach of Industry 5.0,in order to empower the manufacturing industry to achieve broader societal goals of job creation,economic growth,and green production.This survey first provides a general framework of smart manufacturing in the context of Industry 5.0.Wherein,the embodied agents,like robots,sensors,and actuators,are the carriers for Ind AI,facilitating the development of the self-learning intelligence in individual entities,the collaborative intelligence in production lines and factories(smart systems),and the swarm intelligence within industrial clusters(systems of smart systems).Through the framework of CPSSs,the key technologies and their possible applications for supporting the single-agent,multi-agent and swarm-agent embodied Ind AI have been reviewed,such as the embodied perception,interaction,scheduling,multi-mode large language models,and collaborative training.Finally,to stimulate future research in this area,the open challenges and opportunities of applying Industry 5.0 to smart manufacturing are identified and discussed.The perspective of Industry 5.0-driven manufacturing industry aims to enhance operational productivity and efficiency by seamlessly integrating the virtual and physical worlds in a human-centered manner,thereby fostering an intelligent,sustainable,and resilient industrial landscape. 展开更多
关键词 Embodied AI human-centered manufacturing Industry 5.0 internet of things large multi-mode language models
在线阅读 下载PDF
Full-IC manufacturability check based on dense silicon imaging 被引量:2
12
作者 YANXiaolang SHIZheng CHENYe MAYue GAOGensheng 《Science in China(Series F)》 2005年第4期533-544,共12页
With the increased design complexities brought in by applying different Reticle Enhancement Technologies (RETs) in nanometer-scale IC manufacturing process, post-RET sign-off verification is quickly becoming necessary... With the increased design complexities brought in by applying different Reticle Enhancement Technologies (RETs) in nanometer-scale IC manufacturing process, post-RET sign-off verification is quickly becoming necessary. By introducing innovative algorithms for lithographic modeling, silicon imaging and yield problem locating, this paper describes a new methodology of IC manufacturability verification based on Dense Silicon Imaging (DSI). Necessity of imaging based verification is analyzed. Existing post-RET verification methods are reviewed and compared to the new methodology. Due to the greatly improved computational efficiency produced by algorithms such as the ~16*log2N/log2M times faster Specialized FFT, DSI based manufacturability checks on full IC scale, which were impractical for applications before, are now realized. Real verification example has been demonstrated and studied as well. 展开更多
关键词 RET OPC PSM design for manufacturability photolithography simulation.
原文传递
Effect of fabrication temperature on the manufacturability of lateral ZnO nanowire array UV sensor 被引量:1
13
作者 ZHAO LiHuan GAO ZhiYuan +2 位作者 ZHANG Jie LU LiWei LI HongDa 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第4期668-674,共7页
Fabrication temperature is an important factor affecting the manufacturability of electronic devices,especially for the bottom-up self-assembled nano-device.In this study,we used a lateral-bridged zinc oxide(ZnO)nanow... Fabrication temperature is an important factor affecting the manufacturability of electronic devices,especially for the bottom-up self-assembled nano-device.In this study,we used a lateral-bridged zinc oxide(ZnO)nanowire array UV sensor as a model to investigate the influence of temperature on device performance over the entire manufacturing process,from sensor fabrication to packaging.We found that annealing of the SiO2 substrate would make ZnO seed layer on top of it more compact and uniform,and hence improve the lateral orientation and uniformity of ZnO nanowires grown from the seed layer.With the annealed substrate,the light-to-dark current ratio increased by two orders of magnitude.On the contrary,annealing the ZnO seed layer would deteriorate the light-to-dark current ratio of the sensor,because annealing caused most of the grains in the seed layer to become vertically aligned,which in turn affected the lateral growth of ZnO nanowire arrays.During the packaging process,the surface structure of ZnO nanowires would change if the chip welded at a temperature of 230℃for 2 min,resulting in a decrease of light-to-dark current ratio by three orders of magnitude. 展开更多
关键词 fabrication temperature manufacturability ZnO NANOWIRE UV SENSOR
原文传递
Recent progress on in-situ characterization of laser additive manufacturing process by synchrotron radiation 被引量:2
14
作者 Wenquan Lu Liang Zhao +2 位作者 Zhun Su Jianguo Li Qiaodan Hu 《Journal of Materials Science & Technology》 2025年第14期29-46,共18页
Laser additive manufacturing(LAM)has been widely used in high-end manufacturing fields such as aerospace,nuclear power,and shipbuilding.However,it is a grand challenge for direct and continuous observation of complex ... Laser additive manufacturing(LAM)has been widely used in high-end manufacturing fields such as aerospace,nuclear power,and shipbuilding.However,it is a grand challenge for direct and continuous observation of complex laser-matter interaction,melt flow,and defect formation during LAM due to extremely large temperature gradient,fast cooling rate,and small time(millisecond)and space(micron)scales.The emergence of synchrotron radiation provides a feasible approach for in situ observation of the LAM process.This paper outlines the current development in real-time characterization of LAM by synchrotron radiation,including laser-matter interaction,molten pool evolution,solidification structure evolution,and defects formation and elimination.Furthermore,the future development direction and application-oriented research are also discussed. 展开更多
关键词 Laser additive manufacturing Synchrotron radiation Melt pool DEFECT
原文传递
Optimizing product manufacturability in 3D printing 被引量:1
15
作者 Yu HAN Guozhu JIA 《Frontiers of Computer Science》 SCIE EI CSCD 2017年第2期347-357,共11页
3D printing has become a promising technique for industry production. This paper presents a research on the manufacturability optimization of discrete products un- der the influence of 3D printing technology. For this... 3D printing has become a promising technique for industry production. This paper presents a research on the manufacturability optimization of discrete products un- der the influence of 3D printing technology. For this, we first model the problem using a tree structure, and then formulate it as a linear integer programming, where the total production time is to be minimized with the production cost constraint. To solve the problem, a differential evolution (DE) algorithm is developed, which automatically determines whether tra- ditionai manufacturing methods or 3D printing technology should be used for each part of the production. The algorithm is further quantitatively evaluated on a synthetic dataset, com- pared with the exhaustive search and alternating optimization solutions. Simulation results show that the proposed algo- rithm can well combine the traditional manufacturing meth- ods and 3D printing technology in production, which is help- ful to attain optimized product design and process planning concerning manufacture time. Therefore, it is beneficial to provide reference of the widely application and further in- dustrialization of the 3D printing technology. 展开更多
关键词 3D printing manufacturability optimization discrete products differential evolution algorithm
原文传递
Foundation Models for the Process Industry:Challenges and Opportunities 被引量:1
16
作者 Lei Ren Haiteng Wang +3 位作者 Yuqing Wang Keke Huang Lihui Wang Bohu Li 《Engineering》 2025年第9期53-59,共7页
With the emergence of general foundational models,such as Chat Generative Pre-trained Transformer(ChatGPT),researchers have shown considerable interest in the potential applications of foundation models in the process... With the emergence of general foundational models,such as Chat Generative Pre-trained Transformer(ChatGPT),researchers have shown considerable interest in the potential applications of foundation models in the process industry.This paper provides a comprehensive overview of the challenges and opportunities presented by the use of foundation models in the process industry,including the frameworks,core applications,and future prospects.First,this paper proposes a framework for foundation models for the process industry.Second,it summarizes the key capabilities of industrial foundation models and their practical applications.Finally,it highlights future research directions and identifies unresolved open issues related to the use of foundation models in the process industry. 展开更多
关键词 Industrial foundation model Process manufacturing Artificial intelligence-generated content Embodied intelligence Intelligent manufacturing
在线阅读 下载PDF
Microstructural analysis and defect characterization of additively manufactured AA6061 aluminum alloy via laser powder bed fusion 被引量:1
17
作者 Sivaji Karna Lang Yuan +5 位作者 Tianyu Zhang Rimah Al-Aridi Andrew J.Gross Daniel Morrall Timothy Krentz Dale Hitchcock 《Journal of Materials Science & Technology》 2025年第16期288-306,共19页
AA6061 is a widely used aluminum alloy with significant applications in the aerospace and automotive industries.Despite its popularity,the utilization of additively manufactured AA6061 through the laser powder bed fus... AA6061 is a widely used aluminum alloy with significant applications in the aerospace and automotive industries.Despite its popularity,the utilization of additively manufactured AA6061 through the laser powder bed fusion(LPBF)process has been hindered by the pronounced formation of pores and cracks during rapid solidification.This study quantitatively investigated defects,including pores and cracks,and microstructures,including texture,grain size,subgrain structure,and precipitates,of LPBF-manufactured AA6061 across a broad spectrum of laser power and speed combinations.A high relative density of more than 99%was achieved with a low-power and low-speed condition,specifically 200 W and 100 mm s−1,with minimal cracks.Large pores,akin to or exceeding melt pool dimensions,emerged under either low or high energy densities,driven by the lack of fusion and vaporization/denudation mechanisms,re-spectively.Solidification cracks,confirmed by the fractography,were propagated along grain boundaries and are highly dependent on laser scanning speed.Elevated power and speed exhibited finer grain size with refined subgrain cellular structures and increased precipitates at interdendritic regions.The cooling rate and thermal gradient estimated from thermal analytical solutions explain the microstructures’char-acteristics.Nano-sized Si-Fe-Mg enriched precipitates are confirmed in both as-built and heat-treated conditions,whereas T6 heat treatment promotes a uniform distribution with coarsening of those precipi-tates.The low-power and low-speed conditions demonstrated the highest yield strength,consistent with defect levels.A minimum of 102.3%increase in yield strength with reduced ductility was observed after heat treatment for all examined conditions.This work sheds light on printing parameters to mitigate the formation of pores and cracks in additively manufactured AA6061,proposing a process window for op-timized fabrication and highlighting the potential for enhanced material properties and reduced defects through process control. 展开更多
关键词 Additive manufacturing MICROSTRUCTURE Solidification cracking POROSITY PRECIPITATES Tensile properties
原文传递
Additive Manufacturing of Silicon Carbide Microwave-Absorbing Metamaterials 被引量:1
18
作者 Hanqing Zhao Qingwei Liao +3 位作者 Yinghao Li Xiangcheng Chu Songmei Yuan Lei Qin 《Additive Manufacturing Frontiers》 2025年第1期3-17,共15页
SiC is a wave-absorbing material with good dielectric properties,high-temperature resistance,and corrosion resistance,which has great potential for development in the field of high-temperature wave-absorbing.However,S... SiC is a wave-absorbing material with good dielectric properties,high-temperature resistance,and corrosion resistance,which has great potential for development in the field of high-temperature wave-absorbing.However,SiC is limited by its low impedance-matching performance and single wave-absorbing mechanism.Therefore,compatible metamaterial technologies are required to enhance its wave-absorbing performance further.The electromagnetic wave(EMW)absorbing metamaterials can realize perfect absorption of EMWs in specific frequency bands and precise regulation of EMW phase,propagation mode,and absorption frequency bands through structural changes.However,the traditional molding methods for manufacturing complex geometric shapes require expensive molds,involve process complexity,and have poor molding accuracy and other limitations.Therefore,additive manufacturing(AM)technology,through material layered stacking to achieve the processing of materials,is a comprehensive multidisciplinary advanced manufacturing technology and has become the core technology for manufacturing metamaterials.This review introduces the principles and applications of different AM technologies for SiC and related materials,discusses the current status and development trends of various AM technologies for fabricating silicon-carbon-based wave-absorbing metamaterials,summarizes the limitations and technological shortcomings of existing AM technologies for fabricating silicon-carbon-based wave-absorbing metamaterials,and provides an outlook for the future development of related AM technologies. 展开更多
关键词 SIC Electromagnetic absorption METAMATERIALS Additive manufacturing
在线阅读 下载PDF
Fabrication and development of mechanical metamaterials via additive manufacturing for biomedical applications:a review 被引量:1
19
作者 Junsheng Chen Jibing Chen +4 位作者 Hongze Wang Liang He Boyang Huang Sasan Dadbakhsh Paulo Bartolo 《International Journal of Extreme Manufacturing》 2025年第1期1-44,共44页
In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are i... In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are inspired by nature itself.It describes how new AM technologies(e.g.continuous liquid interface production and multiphoton polymerization,etc)and recent developments in more mature AM technologies(e.g.powder bed fusion,stereolithography,and extrusion-based bioprinting(EBB),etc)lead to more precise,efficient,and personalized biomedical components.EBB is a revolutionary topic creating intricate models with remarkable mechanical compatibility of metamaterials,for instance,stress elimination for tissue engineering and regenerative medicine,negative or zero Poisson’s ratio.By exploiting the designs of porous structures(e.g.truss,triply periodic minimal surface,plant/animal-inspired,and functionally graded lattices,etc),AM-made bioactive bone implants,artificial tissues,and organs are made for tissue replacement.The material palette of the AM metamaterials has high diversity nowadays,ranging from alloys and metals(e.g.cobalt-chromium alloys and titanium,etc)to polymers(e.g.biodegradable polycaprolactone and polymethyl methacrylate,etc),which could be even integrated within bioactive ceramics.These advancements are driving the progress of the biomedical field,improving human health and quality of life. 展开更多
关键词 biomedical application additive manufacturing mechanical metamaterials biomimetic materials
暂未订购
Mixing Intensification for Advanced Materials Manufacturing 被引量:1
20
作者 Chao Yang Guang-Wen Chu +5 位作者 Xin Feng Yan-Bin Li Jie Chen Dan Wang Xiaoxia Duan Jian-Feng Chen 《Engineering》 2025年第1期135-144,共10页
The mixing process plays a pivotal role in the design,optimization,and scale-up of chemical reactors.For most chemical reactions,achieving uniform and rapid contact between reactants at the molecular level is crucial.... The mixing process plays a pivotal role in the design,optimization,and scale-up of chemical reactors.For most chemical reactions,achieving uniform and rapid contact between reactants at the molecular level is crucial.Mixing intensification encompasses innovative methods and tools that address the limitations of inadequate mixing within reactors,enabling efficient reaction scaling and boosting the productivity of industrial processes.This review provides a concise introduction to the fundamentals of multiphase mixing,followed by case studies highlighting the application of mixing intensification in the production of energy-storage materials,advanced optical materials,and nanopesticides.These examples illustrate the significance of theoretical analysis in informing and advancing engineering practices within the chemical industry.We also explore the challenges and opportunities in this field,offering insights based on our current understanding. 展开更多
关键词 Mixing intensification Chemical reaction Advanced materials High-end manufacturing
在线阅读 下载PDF
上一页 1 2 143 下一页 到第
使用帮助 返回顶部