Although often used in molecular dynamics,in this work the Manning-Rosen potential is parameterized to compute the scattering phase shifts for the nucleon-nucleon and the alphanucleon systems by exploiting the standar...Although often used in molecular dynamics,in this work the Manning-Rosen potential is parameterized to compute the scattering phase shifts for the nucleon-nucleon and the alphanucleon systems by exploiting the standard phase function method.We obtain excellent agreement in phase shifts with the more sophisticated calculations up to partial waves l=2.展开更多
We obtain the quantized momentum eigenvalues, <i><i><span style="font-family:Verdana;">P</span></i><span style="font-family:Verdana;"></span></i><...We obtain the quantized momentum eigenvalues, <i><i><span style="font-family:Verdana;">P</span></i><span style="font-family:Verdana;"></span></i><i><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;"></span></i>, and the momentum eigenstates for the space-like Schr<span style="white-space:nowrap;">ö</span>dinger equation, the Feinberg-Horodecki equation, with the general potential which is constructed by the temporal counterpart of the spatial form of these potentials. The present work is illustrated with two special cases of the general form: time-dependent Wei-Hua Oscillator and time-dependent Manning-Rosen potential. We also plot the variations of the general molecular potential with its two special cases and their momentum states for few quantized states against the screening parameter.展开更多
We present solutions of the Schrodinger equation with superposition of Manning-Rosen plus inversely Mobius square plus quadratic Yukawa potentials using parametric Nikiforov Uvarov method along with an approximation t...We present solutions of the Schrodinger equation with superposition of Manning-Rosen plus inversely Mobius square plus quadratic Yukawa potentials using parametric Nikiforov Uvarov method along with an approximation to the centrifugal term. The bound state energy eigenvalues for any angular momentum quantum number <em>l</em> and the corresponding un-normalized wave functions are calculated. The mixed potential which in some particular cases gives the solutions for different potentials: the Manning-Rosen, the Mobius square, the inversely quadratic Yukawa and the Hulthén potentials along with their bound state energies are obtained.展开更多
文摘Although often used in molecular dynamics,in this work the Manning-Rosen potential is parameterized to compute the scattering phase shifts for the nucleon-nucleon and the alphanucleon systems by exploiting the standard phase function method.We obtain excellent agreement in phase shifts with the more sophisticated calculations up to partial waves l=2.
文摘We obtain the quantized momentum eigenvalues, <i><i><span style="font-family:Verdana;">P</span></i><span style="font-family:Verdana;"></span></i><i><i><sub><span style="font-family:Verdana;">n</span></sub></i><span style="font-family:Verdana;"></span></i>, and the momentum eigenstates for the space-like Schr<span style="white-space:nowrap;">ö</span>dinger equation, the Feinberg-Horodecki equation, with the general potential which is constructed by the temporal counterpart of the spatial form of these potentials. The present work is illustrated with two special cases of the general form: time-dependent Wei-Hua Oscillator and time-dependent Manning-Rosen potential. We also plot the variations of the general molecular potential with its two special cases and their momentum states for few quantized states against the screening parameter.
文摘We present solutions of the Schrodinger equation with superposition of Manning-Rosen plus inversely Mobius square plus quadratic Yukawa potentials using parametric Nikiforov Uvarov method along with an approximation to the centrifugal term. The bound state energy eigenvalues for any angular momentum quantum number <em>l</em> and the corresponding un-normalized wave functions are calculated. The mixed potential which in some particular cases gives the solutions for different potentials: the Manning-Rosen, the Mobius square, the inversely quadratic Yukawa and the Hulthén potentials along with their bound state energies are obtained.