Serial-parallel manipulators are of great interest to academic community in recent years,especially those composed of classical parallel mechanisms.There have been many studies around 2(3RPS)and 2(3SPR)S-PMs,but unfor...Serial-parallel manipulators are of great interest to academic community in recent years,especially those composed of classical parallel mechanisms.There have been many studies around 2(3RPS)and 2(3SPR)S-PMs,but unfortunately their inverse kinematics have not yet been resolved.This paper discovers that the unknown kinematic parameters of middle platform are responsible for the unresolvable of inverse kinematics,meanwhile the unknown kinematic parameters of middle platform also have huge coupling relationships.Therefore,to break through this challenges,the huge coupling relationships are decoupled layer by layer,the kinematic parameters of middle platform are solved by combining Sylvester's elimination method,and the inverse displacements of 2(3RPS)and 2(3SPR)S-PMs are obtained subsequently.This paper not only solves the inverse kinematics of classical 2(3RPS)and 2(3SPR)S-PMs,but also reveals the essence of the inverse kinematics of general(3-DOF)+(3-DOF)6-DOF S-PMs and proposes a corresponding solution.展开更多
This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of vi...This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of visual servoing for OMMs with mismatched disturbances is explicitly presented to solve the whole-body inverse kinematic problem.Second,a sliding mode observer augmented with an integral terminal sliding mode controller is proposed to handle these uncertainties and ensure that the system converges to a small region around the equilibrium point.The boundary layer technique is employed to mitigate the chattering phenomenon.Furthermore,a strict finite-time Lyapunov stability analysis is conducted.An experimental comparison between the proposed algorithm and a traditional position-based visual servo controller is carried out,and the results demonstrate the superiority of the proposed control algorithm.展开更多
In this paper,a novel cooperative collision avoidance control strategy with relative velocity information for redundant robotic manipulators is derived to guarantee the behavioral safety of robots in the cooperative o...In this paper,a novel cooperative collision avoidance control strategy with relative velocity information for redundant robotic manipulators is derived to guarantee the behavioral safety of robots in the cooperative operational task.This strategy can generate the collision-free trajectory of the robotic links in real-time,which is to realize that the robot can avoid moving obstacles less conservatively and ensure tracking accuracy of terminal end-effector tasks in performing cooperative tasks.For the case where there is interference between the moving obstacle and the desired path of the robotic end-effector,the method inherits the null-space-based self-motion characteristics of the redundant manipulator,integrates the relative motion information,and uses the improved artificial potential field method to design the control items,which are used to generate the collision avoidance motion and carry out moving obstacles smoothly and less conservatively.At the same time,the strategy maintains the kinematic constraint relationship of dual-arm cooperatives,to meet the real-time collision avoidance task under collaborative tasks.Finally,the algorithm simulation indicates that the method can better ensure the tracking accuracy of the end-effector task and carry out moving obstacles smoothly.The experimental results show that the method can generate the real-time collision-free trajectory of the robot in the cooperative handling task,and the joint movement is continuous and stable.展开更多
Dear Editor,H_(∞)This letter develops a new framework for the robust stability and performance conditions as well as the relevant controller synthesis with respect to uncertain robot manipulators.There often exist mo...Dear Editor,H_(∞)This letter develops a new framework for the robust stability and performance conditions as well as the relevant controller synthesis with respect to uncertain robot manipulators.There often exist model uncertainties between the nominal model and the real robot manipulator and disturbances. Hence, dealing with their effects plays a crucial role in leading to high tracking performances, as discussed in [1]–[5].展开更多
This paper studies motor joint control of a 4-degree-of-freedom(DoF)robotic manipulator using learning-based Adaptive Dynamic Programming(ADP)approach.The manipulator’s dynamics are modelled as an open-loop 4-link se...This paper studies motor joint control of a 4-degree-of-freedom(DoF)robotic manipulator using learning-based Adaptive Dynamic Programming(ADP)approach.The manipulator’s dynamics are modelled as an open-loop 4-link serial kinematic chain with 4 Degrees of Freedom(DoF).Decentralised optimal controllers are designed for each link using ADP approach based on a set of cost matrices and data collected from exploration trajectories.The proposed control strategy employs an off-line,off-policy iterative approach to derive four optimal control policies,one for each joint,under exploration strategies.The objective of the controller is to control the position of each joint.Simulation and experimental results show that four independent optimal controllers are found,each under similar exploration strategies,and the proposed ADP approach successfully yields optimal linear control policies despite the presence of these complexities.The experimental results conducted on the Quanser Qarm robotic platform demonstrate the effectiveness of the proposed ADP controllers in handling significant dynamic nonlinearities,such as actuation limitations,output saturation,and filter delays.展开更多
Feedforward control is one of the most effective control techniques to increase the robot’s tracking accuracy.However,most of the dynamic models used in the feedforward controllers are linearly simplified such that t...Feedforward control is one of the most effective control techniques to increase the robot’s tracking accuracy.However,most of the dynamic models used in the feedforward controllers are linearly simplified such that the nonlinear and time-varying characteristics of dynamics in the workspace are ignored.In this paper,an iterative tuning method for feedforward control of parallel manipulators by taking nonlinear dynamics into account is proposed.Based on the robot rigid-body dynamic model,a feedforward controller considering the dynamic nonlinearity is presented.An iterative tuning method is given to iteratively update the feedforward controller by minimizing the root mean square(RMS)of the joint errors at each cycle.The effectiveness and extrapolation capability of the proposed method are validated through the experiments on a 2-DOF parallel manipulator.This research proposes an iterative tuning method for feedforward control of parallel manipulators considering nonlinear dynamics,which has better extrapolation capability in the whole workspace of manipulators.展开更多
This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with th...This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.展开更多
The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This s...The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This study addresses this issue by proposing a systematic elastostatic stiffness model based on matrix structural analysis(MSA)and independent displacement coordinates(IDCs)extraction techniques.To begin,the closed-loop PM is transformed into an open-loop PM by eliminating constraints.A subassembly element is then introduced,which considers the flexibility of both rods and joints.This approach helps circumvent the numerical instability typically encountered with traditional constraint equations.The IDCs and analytical constraint equations of nodes constrained by various joints are summarized in the appendix,utilizing multipoint constraint theory and singularity analysis,all unified within a single coordinate frame.Subsequently,the open-loop mechanism is efficiently closed by referencing the constraint equations presented in the appendix,alongside its elastostatic model.The proposed method proves to be both modeling and computationally efficient due to the comprehensive summary of the constraint equations in the Appendix,eliminating the need for additional equations.An example utilizing an over constrained subclosed loops demonstrate the application of the proposed method.In conclusion,the model proposed in this study enriches the theory of elastostatic stiffness modeling of PMs and provides an effective solution for stiffness modeling challenges they present.展开更多
A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraint...A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraints.First,an NN is used to fit the motion data of robot manipulators for data-driven dynamic modeling,converting it into a linear prediction model through gradients.Then,by statistically analyzing the stochastic characteristics of the NN modeling errors,a distributionally robust model predictive controller is designed based on the chance constraints,and the optimization problem is transformed into a tractable quadratic programming(QP)problem under the distributionally robust optimization(DRO)framework.The recursive feasibility and convergence of the proposed algorithm are proven.Finally,the effectiveness of the proposed algorithm is verified through numerical simulation.展开更多
This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing singl...This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.展开更多
Dual redundant manipulators are extremely useful for tasks in dangerous or space environments, but efficient and real time coordinated control is hard to achieve. Collision avoidance between two cooperative manipulat...Dual redundant manipulators are extremely useful for tasks in dangerous or space environments, but efficient and real time coordinated control is hard to achieve. Collision avoidance between two cooperative manipulators is vital to the successful applications of dual redundant manipulators. Although methods based on the distance function have been demonstrated simple and efficient, different collision avoidance points can usually produce completely different results and even failure. The paper discussed the choices of collision avoidance points and proposed a novel method for the choosing of those points. The method is testified by simulation results of two redundant planar manipulators.展开更多
The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized...The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized. The method of computing pseudoinverse which needs too many complicated calculation can be avoided. Then the calculation and control of robots are simplified. At the same time system robustness/fault tolerance is achieved.展开更多
In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on obje...In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme.展开更多
A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to ge...A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to generate the virtual reference trajectory for the target impedance model that is driven by the force error to produce command position. By following the command position trajectory the robotic manipulator can follow the unknown constraint surface while keeping an acceptable force error in a manner depicted by the target impedance model. Computer simulation on a 3 linked planar manipulator and experimental studies on an Adept 3, an SCARA type robotic manipulator, are conducted to verify the force tracking capability of the proposed control strategy.展开更多
This paper investigates the motion planning of redundant free-floating manipulators with seven prismatic joints. On the earth, prismatic-jointed manipulators could only position their end-effectors in a desired way. H...This paper investigates the motion planning of redundant free-floating manipulators with seven prismatic joints. On the earth, prismatic-jointed manipulators could only position their end-effectors in a desired way. However, in space, the end-effectors of free-floating manipulators can achieve both the desired orientation and desired position due to the dynamical coupling between manipulator and satellite movement, which is formally expressed by linear and angular momentum conservation laws. In this study, a tractable algorithm particle swarm optimization combined with differential evolution (PSODE) is provided to deal with the motion planning of redundant free-floating prismatic-jointed manipulators, which could avoid the pseudo inverse of the Jacobian matrix. The polynomial functions, as argument in sine functions are used to specify the joint paths. The co- efficients of the polynomials are optimized to achieve the desired end-effector orientation and position, and simulta- neously minimize the unit-mass-kinetic energy using the redundancy. Relevant simulations prove that this method pro- vides satisfactory smooth paths for redundant free-floating prismatic-jointed manipulators. This study could help to recognize the advantages of redundant prismatic-jointed space manipulators.展开更多
Heavy-payload forging manipulators are mainly characterized by large load output and large capacitive-load input.The relationship between outputs and inputs,which will greatly influence the control and the reliability...Heavy-payload forging manipulators are mainly characterized by large load output and large capacitive-load input.The relationship between outputs and inputs,which will greatly influence the control and the reliability,is the key issue in type design for heavy-payload forging manipulators.In this paper,a type design method by considering the incidence relationship between output characteristics and actuator inputs is presented and used to design the mechanism for forging manipulators.The concept of modeling method based on the outputs tasks is defined and investigated.The principle of type design from the viewpoints of the relationship between output characteristics and actuator inputs is discussed.An idea of establishing the incidence relationship between output characteristics and actuator inputs is proposed.The incidence relationship matrix between outputs and inputs is also given.The design flow is obtained,and the incidence relationship between outputs and inputs for heavy-payload forging manipulators is divided into three parts after detailed understanding of the functional properties.Four types of mechanisms for heavy-payload forging manipulators are given,and the corresponding spatial mechanical sketches are also drawn,some new designed mechanisms have been adopted by company or used as prototype.These novel forging manipulators which satisfy certain functional requirements provide an effective help for the design of forging manipulators and patent application.展开更多
We outline problems and potential solutions for feasible human-machine interfaces using cable-based parallel manipulators for physiotherapy applications.From an engineering perspective,we discuss the design constraint...We outline problems and potential solutions for feasible human-machine interfaces using cable-based parallel manipulators for physiotherapy applications.From an engineering perspective,we discuss the design constraints related to acceptance by patients and physiotherapist users.To date,most designs have focused on mobile platforms that are designed to be operated as an end-effector connected to human limbs for direct patient interaction.Some specific examples are illustrated from the authors' experience with prototypes available at Laboratory of Robotics and Mechatronics (LARM),Italy.展开更多
The multi-modes feature, the measure of the manipulating flexibility, andself-reconfiguration control method of the underactuated redundant manipulators are investigatedbased on the optimizing technology. The relation...The multi-modes feature, the measure of the manipulating flexibility, andself-reconfiguration control method of the underactuated redundant manipulators are investigatedbased on the optimizing technology. The relationship between the configuration of the joint spaceand the manipulating flexibility of the underactuated redundant manipulator is analyzed, a newmeasure of manipulating flexibility ellipsoid for the underactuated redundant manipulator withpassive joints in locked mode is proposed, which can be used to get the optimal configuration forthe realization of the self-reconfiguration control. Furthermore, a time-varying nonlinear controlmethod based on harmonic inputs is suggested for fulfilling the self-reconfiguration. A simulationexample of a three-DOFs underactuated manipulator with one passive joint features some aspects ofthe investigations.展开更多
The current motion planning approaches for redundant manipulators mainly includes two categories: improved gradient-projection method and some other efficiency numerical methods. The former is excessively sensitive t...The current motion planning approaches for redundant manipulators mainly includes two categories: improved gradient-projection method and some other efficiency numerical methods. The former is excessively sensitive to parameters, which makes adjustment difficult; and the latter treats the motion planning as general task by ignoring the particularity, which has good universal property but reduces the solving speed for on-line real-time planning. In this paper, a novel stepwise solution based on self-motion manifold is proposed for motion planning of redundant manipulators, namely, the chief tasks and secondary tasks are implemented step by step. Firstly, the posture tracking of end-effector is achieved accurately by employing the non-redundant joint. Secondly, the end-effector is set to keep stationary. Finally, self-motion of manipulator is realized via additional work on the gradient of redundant joint displacement. To verify this solution, experiments of round obstacle avoiding are carried out via the planar 3 degree-of-~eedom manipulator. And the experimental results indicate that this motion planning algorithm can effectively achieve obstacle avoiding and posture tracking of the end-effector. Compared with traditional gradient projection method, this approach can accelerate the problem-solving process, and is more applicable to obstacle avoiding and other additional work in displacement level.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.52275033)National Natural Science Youth Foundation of China(Grant No.52205033)Hebei Provincial Natural Science Foundation of China(Grant No.E2021203019)。
文摘Serial-parallel manipulators are of great interest to academic community in recent years,especially those composed of classical parallel mechanisms.There have been many studies around 2(3RPS)and 2(3SPR)S-PMs,but unfortunately their inverse kinematics have not yet been resolved.This paper discovers that the unknown kinematic parameters of middle platform are responsible for the unresolvable of inverse kinematics,meanwhile the unknown kinematic parameters of middle platform also have huge coupling relationships.Therefore,to break through this challenges,the huge coupling relationships are decoupled layer by layer,the kinematic parameters of middle platform are solved by combining Sylvester's elimination method,and the inverse displacements of 2(3RPS)and 2(3SPR)S-PMs are obtained subsequently.This paper not only solves the inverse kinematics of classical 2(3RPS)and 2(3SPR)S-PMs,but also reveals the essence of the inverse kinematics of general(3-DOF)+(3-DOF)6-DOF S-PMs and proposes a corresponding solution.
基金supported by the Artificial Intelligence Innovation and Development Special Fund of Shanghai(No.2019RGZN01041)the National Natural Science Foundation of China(No.92048205).
文摘This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of visual servoing for OMMs with mismatched disturbances is explicitly presented to solve the whole-body inverse kinematic problem.Second,a sliding mode observer augmented with an integral terminal sliding mode controller is proposed to handle these uncertainties and ensure that the system converges to a small region around the equilibrium point.The boundary layer technique is employed to mitigate the chattering phenomenon.Furthermore,a strict finite-time Lyapunov stability analysis is conducted.An experimental comparison between the proposed algorithm and a traditional position-based visual servo controller is carried out,and the results demonstrate the superiority of the proposed control algorithm.
基金supported in part by the Advanced Equipment Manufacturing Technology Innovation Project of Hebei Province under Grant No.22311801D,23311807D,and 236Z1816Gin part by the National Natural Science Foundation of China under Grant No.U20A20283.
文摘In this paper,a novel cooperative collision avoidance control strategy with relative velocity information for redundant robotic manipulators is derived to guarantee the behavioral safety of robots in the cooperative operational task.This strategy can generate the collision-free trajectory of the robotic links in real-time,which is to realize that the robot can avoid moving obstacles less conservatively and ensure tracking accuracy of terminal end-effector tasks in performing cooperative tasks.For the case where there is interference between the moving obstacle and the desired path of the robotic end-effector,the method inherits the null-space-based self-motion characteristics of the redundant manipulator,integrates the relative motion information,and uses the improved artificial potential field method to design the control items,which are used to generate the collision avoidance motion and carry out moving obstacles smoothly and less conservatively.At the same time,the strategy maintains the kinematic constraint relationship of dual-arm cooperatives,to meet the real-time collision avoidance task under collaborative tasks.Finally,the algorithm simulation indicates that the method can better ensure the tracking accuracy of the end-effector task and carry out moving obstacles smoothly.The experimental results show that the method can generate the real-time collision-free trajectory of the robot in the cooperative handling task,and the joint movement is continuous and stable.
基金support by “R&D Program for Forest Science Technology(RS-2024-0040 3460)” provided by Korea Forest Service(Korea Forestry Promotion Institute)
文摘Dear Editor,H_(∞)This letter develops a new framework for the robust stability and performance conditions as well as the relevant controller synthesis with respect to uncertain robot manipulators.There often exist model uncertainties between the nominal model and the real robot manipulator and disturbances. Hence, dealing with their effects plays a crucial role in leading to high tracking performances, as discussed in [1]–[5].
基金supported by the DEEPCOBOT project under Grant 306640/O70 funded by the Research Council of Norway.
文摘This paper studies motor joint control of a 4-degree-of-freedom(DoF)robotic manipulator using learning-based Adaptive Dynamic Programming(ADP)approach.The manipulator’s dynamics are modelled as an open-loop 4-link serial kinematic chain with 4 Degrees of Freedom(DoF).Decentralised optimal controllers are designed for each link using ADP approach based on a set of cost matrices and data collected from exploration trajectories.The proposed control strategy employs an off-line,off-policy iterative approach to derive four optimal control policies,one for each joint,under exploration strategies.The objective of the controller is to control the position of each joint.Simulation and experimental results show that four independent optimal controllers are found,each under similar exploration strategies,and the proposed ADP approach successfully yields optimal linear control policies despite the presence of these complexities.The experimental results conducted on the Quanser Qarm robotic platform demonstrate the effectiveness of the proposed ADP controllers in handling significant dynamic nonlinearities,such as actuation limitations,output saturation,and filter delays.
基金Supported by National Natural Science Foundation of China(Grant No.52375502)EU H2020 MSCA R&I Programme(Grant No.101022696).
文摘Feedforward control is one of the most effective control techniques to increase the robot’s tracking accuracy.However,most of the dynamic models used in the feedforward controllers are linearly simplified such that the nonlinear and time-varying characteristics of dynamics in the workspace are ignored.In this paper,an iterative tuning method for feedforward control of parallel manipulators by taking nonlinear dynamics into account is proposed.Based on the robot rigid-body dynamic model,a feedforward controller considering the dynamic nonlinearity is presented.An iterative tuning method is given to iteratively update the feedforward controller by minimizing the root mean square(RMS)of the joint errors at each cycle.The effectiveness and extrapolation capability of the proposed method are validated through the experiments on a 2-DOF parallel manipulator.This research proposes an iterative tuning method for feedforward control of parallel manipulators considering nonlinear dynamics,which has better extrapolation capability in the whole workspace of manipulators.
基金partially supported by the National Natural Science Foundation of China (62322315,61873237)Zhejiang Provincial Natural Science Foundation of China for Distinguished Young Scholars(LR22F030003)+2 种基金the National Key Rearch and Development Funding(2018YFB1403702)the Key Rearch and Development Programs of Zhejiang Province (2023C01224)Major Project of Science and Technology Innovation in Ningbo City (2019B1003)。
文摘This paper proposes a new global fixed-time sliding mode control strategy for the trajectory tracking control of uncertain robotic manipulators.First,a fixed-time disturbance observer(FTDO) is designed to deal with the adverse effects of model uncertainties and external disturbances in the manipulator systems.Then an adaptive scheme is used and the adaptive FTDO(AFTDO) is developed,so that the priori knowledge of the lumped disturbance is not required.Further,a new non-singular fast terminal sliding mode(NFTSM) surface is designed by using an arctan function,which helps to overcome the singularity problem and enhance the robustness of the system.Based on the estimation of the lumped disturbance by the AFTDO,a fixed-time non-singular fast terminal sliding mode controller(FTNFTSMC)is developed to guarantee the trajectory tracking errors converge to zero within a fixed time.The settling time is independent of the initial state of the system.In addition,the stability of the AFTDO and FTNFTSMC is strictly proved by using Lyapunov method.Finally,the fixed-time NFESM(FTNFTSM) algorithm is validated on a 2-link manipulator and comparisons with other existing sliding mode controllers(SMCs) are performed.The comparative results confirm that the FTNFTSMC has superior control performance.
基金Supported by National Natural Science Foundation of China (Grant No.52275036)Key Research and Development Project of the Jiaxing Science and Technology Bureau (Grant No.2022BZ10004)。
文摘The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This study addresses this issue by proposing a systematic elastostatic stiffness model based on matrix structural analysis(MSA)and independent displacement coordinates(IDCs)extraction techniques.To begin,the closed-loop PM is transformed into an open-loop PM by eliminating constraints.A subassembly element is then introduced,which considers the flexibility of both rods and joints.This approach helps circumvent the numerical instability typically encountered with traditional constraint equations.The IDCs and analytical constraint equations of nodes constrained by various joints are summarized in the appendix,utilizing multipoint constraint theory and singularity analysis,all unified within a single coordinate frame.Subsequently,the open-loop mechanism is efficiently closed by referencing the constraint equations presented in the appendix,alongside its elastostatic model.The proposed method proves to be both modeling and computationally efficient due to the comprehensive summary of the constraint equations in the Appendix,eliminating the need for additional equations.An example utilizing an over constrained subclosed loops demonstrate the application of the proposed method.In conclusion,the model proposed in this study enriches the theory of elastostatic stiffness modeling of PMs and provides an effective solution for stiffness modeling challenges they present.
基金Project supported by the National Natural Science Foundation of China(Nos.62273245 and 62173033)the Sichuan Science and Technology Program of China(No.2024NSFSC1486)the Opening Project of Robotic Satellite Key Laboratory of Sichuan Province of China。
文摘A distributionally robust model predictive control(DRMPC)scheme is proposed based on neural network(NN)modeling to achieve the trajectory tracking control of robot manipulators with state and control torque constraints.First,an NN is used to fit the motion data of robot manipulators for data-driven dynamic modeling,converting it into a linear prediction model through gradients.Then,by statistically analyzing the stochastic characteristics of the NN modeling errors,a distributionally robust model predictive controller is designed based on the chance constraints,and the optimization problem is transformed into a tractable quadratic programming(QP)problem under the distributionally robust optimization(DRO)framework.The recursive feasibility and convergence of the proposed algorithm are proven.Finally,the effectiveness of the proposed algorithm is verified through numerical simulation.
基金supported in part by the National Natural Science Foundation of China (62373065,61873304,62173048,62106023)the Innovation and Entrepreneurship Talent funding Project of Jilin Province(2022QN04)+1 种基金the Changchun Science and Technology Project (21ZY41)the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (2024D09)。
文摘This paper presents a distributed scheme with limited communications, aiming to achieve cooperative motion control for multiple omnidirectional mobile manipulators(MOMMs).The proposed scheme extends the existing single-agent motion control to cater to scenarios involving the cooperative operation of MOMMs. Specifically, squeeze-free cooperative load transportation is achieved for the end-effectors of MOMMs by incorporating cooperative repetitive motion planning(CRMP), while guiding each individual to desired poses. Then, the distributed scheme is formulated as a time-varying quadratic programming(QP) and solved online utilizing a noise-tolerant zeroing neural network(NTZNN). Theoretical analysis shows that the NTZNN model converges globally to the optimal solution of QP in the presence of noise. Finally, the effectiveness of the control design is demonstrated by numerical simulations and physical platform experiments.
文摘Dual redundant manipulators are extremely useful for tasks in dangerous or space environments, but efficient and real time coordinated control is hard to achieve. Collision avoidance between two cooperative manipulators is vital to the successful applications of dual redundant manipulators. Although methods based on the distance function have been demonstrated simple and efficient, different collision avoidance points can usually produce completely different results and even failure. The paper discussed the choices of collision avoidance points and proposed a novel method for the choosing of those points. The method is testified by simulation results of two redundant planar manipulators.
文摘The control method of highly redundant robot manipulators is introduced. A decentralized autonomous control scheme is used to guide the movement of robot manipulators so that the work done by manipulators is minimized. The method of computing pseudoinverse which needs too many complicated calculation can be avoided. Then the calculation and control of robots are simplified. At the same time system robustness/fault tolerance is achieved.
文摘In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme.
文摘A force control strategy for position controlled robotic manipulators is presented. On line force feedback data are employed to estimate the local shape of the unknown constraint. The estimated vectors are used to generate the virtual reference trajectory for the target impedance model that is driven by the force error to produce command position. By following the command position trajectory the robotic manipulator can follow the unknown constraint surface while keeping an acceptable force error in a manner depicted by the target impedance model. Computer simulation on a 3 linked planar manipulator and experimental studies on an Adept 3, an SCARA type robotic manipulator, are conducted to verify the force tracking capability of the proposed control strategy.
基金supported by the National Natural Science Foundation of China (11072122)
文摘This paper investigates the motion planning of redundant free-floating manipulators with seven prismatic joints. On the earth, prismatic-jointed manipulators could only position their end-effectors in a desired way. However, in space, the end-effectors of free-floating manipulators can achieve both the desired orientation and desired position due to the dynamical coupling between manipulator and satellite movement, which is formally expressed by linear and angular momentum conservation laws. In this study, a tractable algorithm particle swarm optimization combined with differential evolution (PSODE) is provided to deal with the motion planning of redundant free-floating prismatic-jointed manipulators, which could avoid the pseudo inverse of the Jacobian matrix. The polynomial functions, as argument in sine functions are used to specify the joint paths. The co- efficients of the polynomials are optimized to achieve the desired end-effector orientation and position, and simulta- neously minimize the unit-mass-kinetic energy using the redundancy. Relevant simulations prove that this method pro- vides satisfactory smooth paths for redundant free-floating prismatic-jointed manipulators. This study could help to recognize the advantages of redundant prismatic-jointed space manipulators.
基金supported by National Key Basic Research Program of China (973 Program,Grant No. 2006CB705402)Important National Science & Technology Specific Projects (Grant No. 2009ZX04002-061)National Hi-tech Research and Development Program of China (863Program,Grant No. 2008AA04XK1478950)
文摘Heavy-payload forging manipulators are mainly characterized by large load output and large capacitive-load input.The relationship between outputs and inputs,which will greatly influence the control and the reliability,is the key issue in type design for heavy-payload forging manipulators.In this paper,a type design method by considering the incidence relationship between output characteristics and actuator inputs is presented and used to design the mechanism for forging manipulators.The concept of modeling method based on the outputs tasks is defined and investigated.The principle of type design from the viewpoints of the relationship between output characteristics and actuator inputs is discussed.An idea of establishing the incidence relationship between output characteristics and actuator inputs is proposed.The incidence relationship matrix between outputs and inputs is also given.The design flow is obtained,and the incidence relationship between outputs and inputs for heavy-payload forging manipulators is divided into three parts after detailed understanding of the functional properties.Four types of mechanisms for heavy-payload forging manipulators are given,and the corresponding spatial mechanical sketches are also drawn,some new designed mechanisms have been adopted by company or used as prototype.These novel forging manipulators which satisfy certain functional requirements provide an effective help for the design of forging manipulators and patent application.
基金supported by the research project RORAS 2 of the Mediterranean Program funded by INRIA,France
文摘We outline problems and potential solutions for feasible human-machine interfaces using cable-based parallel manipulators for physiotherapy applications.From an engineering perspective,we discuss the design constraints related to acceptance by patients and physiotherapist users.To date,most designs have focused on mobile platforms that are designed to be operated as an end-effector connected to human limbs for direct patient interaction.Some specific examples are illustrated from the authors' experience with prototypes available at Laboratory of Robotics and Mechatronics (LARM),Italy.
基金This project is supported by National Natural Science Foundation of China (No.50375007,No.50475177).
文摘The multi-modes feature, the measure of the manipulating flexibility, andself-reconfiguration control method of the underactuated redundant manipulators are investigatedbased on the optimizing technology. The relationship between the configuration of the joint spaceand the manipulating flexibility of the underactuated redundant manipulator is analyzed, a newmeasure of manipulating flexibility ellipsoid for the underactuated redundant manipulator withpassive joints in locked mode is proposed, which can be used to get the optimal configuration forthe realization of the self-reconfiguration control. Furthermore, a time-varying nonlinear controlmethod based on harmonic inputs is suggested for fulfilling the self-reconfiguration. A simulationexample of a three-DOFs underactuated manipulator with one passive joint features some aspects ofthe investigations.
基金supported by National Hi-tech Research and Develop- ment Program of China (863 Program, Grant No. 2005AA404291)
文摘The current motion planning approaches for redundant manipulators mainly includes two categories: improved gradient-projection method and some other efficiency numerical methods. The former is excessively sensitive to parameters, which makes adjustment difficult; and the latter treats the motion planning as general task by ignoring the particularity, which has good universal property but reduces the solving speed for on-line real-time planning. In this paper, a novel stepwise solution based on self-motion manifold is proposed for motion planning of redundant manipulators, namely, the chief tasks and secondary tasks are implemented step by step. Firstly, the posture tracking of end-effector is achieved accurately by employing the non-redundant joint. Secondly, the end-effector is set to keep stationary. Finally, self-motion of manipulator is realized via additional work on the gradient of redundant joint displacement. To verify this solution, experiments of round obstacle avoiding are carried out via the planar 3 degree-of-~eedom manipulator. And the experimental results indicate that this motion planning algorithm can effectively achieve obstacle avoiding and posture tracking of the end-effector. Compared with traditional gradient projection method, this approach can accelerate the problem-solving process, and is more applicable to obstacle avoiding and other additional work in displacement level.