期刊文献+
共找到1,328篇文章
< 1 2 67 >
每页显示 20 50 100
Research on Fault-Tolerant Control System for Space Modular Manipulator System
1
作者 叶平 孙汉旭 +1 位作者 贾庆轩 王新升 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第3期260-265,共6页
This paper studies a fault-tolerant control system for a space modular manipulator system mounted on space station or other spacecrafts such as satellites, located in low earth orbit. Design technologies for tradition... This paper studies a fault-tolerant control system for a space modular manipulator system mounted on space station or other spacecrafts such as satellites, located in low earth orbit. Design technologies for traditional industrial manipulator systems cannot be directly used to the space ones due to the special space environment and compactness. Considering the extremely tight constraints on mass, power consumption, volume, cost and "design-to-orbit" schedules, the fault-tolerant control system is developed mainly based on commercial-off-the-shaft components. The features of the hardware and software of the fault-tolerant control system are presented. The performance specifications are also discussed. Because many space proven design technologies and experiences are adopted, the fault-tolerant control system is characterized by high reliability and practicability. 展开更多
关键词 fault-tolerant control system space modular manipulator system commercial-off-the-shaft(COTS)
在线阅读 下载PDF
Pre-impact trajectory planning for minimizing base attitude disturbance in space manipulator systems for a capture task 被引量:11
2
作者 Zhang Long Jia Qingxuan +1 位作者 Chen Gang Sun Hanxu 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第4期1199-1208,共10页
Aimed at capture task for a free-floating space manipulator, a scheme of pre-impact trajectory planning for minimizing base attitude disturbance caused by impact is proposed in this paper.Firstly, base attitude distur... Aimed at capture task for a free-floating space manipulator, a scheme of pre-impact trajectory planning for minimizing base attitude disturbance caused by impact is proposed in this paper.Firstly, base attitude disturbance is established as a function of joint angles, collision direction and relative velocity between robotic hand and the target.Secondly, on the premise of keeping correct capture pose, a novel optimization factor in null space is designed to minimize base attitude disturbance and ensure that the joint angles do not exceed their limits simultaneously.After reaching the balance state, a desired configuration is achieved at the contact point.Thereafter, particle swarm optimization(PSO) algorithm is employed to solve the pre-impact trajectory planning from its initial configuration to the desired configuration to achieve the minimized base attitude disturbance caused by impact and the correct capture pose simultaneously.Finally, the proposed method is applied to a 7-dof free-floating space manipulator and the simulation results verify the effectiveness. 展开更多
关键词 Capture task Minimum disturbance Null space Space manipulator Trajectory planning
原文传递
Implementation and Kinematic Control of a Hyper-redundant Mobile Manipulator System 被引量:2
3
作者 贾庆轩 战强 +1 位作者 孙汉旭 洪磊 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第1期83-88,共6页
Redundant or hyper-redundant mobile manipulator can give lots of assistance to astronauts in space station. The design and implementation of a hyper-redundant mobile manipulator system are described, which is composed... Redundant or hyper-redundant mobile manipulator can give lots of assistance to astronauts in space station. The design and implementation of a hyper-redundant mobile manipulator system are described, which is composed of an 8 DOF module robot and a 1 DOF motorized rail. Inverse kinematic resolution of the system is discussed and one simplified control method based on joint limit avoidance and configuration optimization is proposed. Simulation and experimental results are presented. 展开更多
关键词 mobile manipulator hyper-redundant manipulator inverse kinematics
在线阅读 下载PDF
A large workspace flexure hinge-based parallel manipulator system
4
作者 董为 Du Zhijiang Sun Lining 《High Technology Letters》 EI CAS 2005年第4期377-381,共5页
Parallel manipulator systems as promising precision devices are used widely in current researches. A novel large workspace flexure parallel manipulator system utilizing wide-range flexure hinges as passive joints is p... Parallel manipulator systems as promising precision devices are used widely in current researches. A novel large workspace flexure parallel manipulator system utilizing wide-range flexure hinges as passive joints is proposed in this paper, which can attain sub-micron-seale precision over the cubic centimeter motion range. This paper introduces the mechanical system architecture based on the wide-range flexure hinges, analyzes the kinematics via stiffness matrices, presents the control system configuration and control strategy, and finally gives the system performance test results. 展开更多
关键词 precision manipulation parallel manipulator flexure hinge kinematics analysis stiffness matrix
在线阅读 下载PDF
TDNN:A novel transfer discriminant neural network for gear fault diagnosis of ammunition loading system manipulator
5
作者 Ming Li Longmiao Chen +3 位作者 Manyi Wang Liuxuan Wei Yilin Jiang Tianming Chen 《Defence Technology(防务技术)》 2025年第3期84-98,共15页
The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fau... The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fault characteristics under different loads is markedly inconsistent,and data is hard to label,which makes it difficult for the traditional diagnosis method based on single-condition training to generalize to different conditions.To address these issues,the paper proposes a novel transfer discriminant neural network(TDNN)for gear fault diagnosis.Specifically,an optimized joint distribution adaptive mechanism(OJDA)is designed to solve the distribution alignment problem between two domains.To improve the classification effect within the domain and the feature recognition capability for a few labeled data,metric learning is introduced to distinguish features from different fault categories.In addition,TDNN adopts a new pseudo-label training strategy to achieve label replacement by comparing the maximum probability of the pseudo-label with the test result.The proposed TDNN is verified in the experimental data set of the artillery manipulator device,and the diagnosis can achieve 99.5%,significantly outperforming other traditional adaptation methods. 展开更多
关键词 manipulator gear fault diagnosis Reciprocating machine Domain adaptation Pseudo-label training strategy Transfer discriminant neural network
在线阅读 下载PDF
Systematic Elastostatic Stiffness Model of Over-Constrained Parallel Manipulators Without Additional Constraint Equations
6
作者 Chao Yang Wenyong Yu +2 位作者 Wei Ye Qiaohong Chen Fengli Huang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第4期258-276,共19页
The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This s... The establishment of an elastostatic stiffness model for over constrained parallel manipulators(PMs),particularly those with over constrained subclosed loops,poses a challenge while ensuring numerical stability.This study addresses this issue by proposing a systematic elastostatic stiffness model based on matrix structural analysis(MSA)and independent displacement coordinates(IDCs)extraction techniques.To begin,the closed-loop PM is transformed into an open-loop PM by eliminating constraints.A subassembly element is then introduced,which considers the flexibility of both rods and joints.This approach helps circumvent the numerical instability typically encountered with traditional constraint equations.The IDCs and analytical constraint equations of nodes constrained by various joints are summarized in the appendix,utilizing multipoint constraint theory and singularity analysis,all unified within a single coordinate frame.Subsequently,the open-loop mechanism is efficiently closed by referencing the constraint equations presented in the appendix,alongside its elastostatic model.The proposed method proves to be both modeling and computationally efficient due to the comprehensive summary of the constraint equations in the Appendix,eliminating the need for additional equations.An example utilizing an over constrained subclosed loops demonstrate the application of the proposed method.In conclusion,the model proposed in this study enriches the theory of elastostatic stiffness modeling of PMs and provides an effective solution for stiffness modeling challenges they present. 展开更多
关键词 Parallel manipulator Elastostatic stiffness model Matrix structural analysis Subassembly element Independent displacement coordinates
在线阅读 下载PDF
Deployment dynamics and experiments of a tendon-actuated flexible manipulator
7
作者 Benteng ZHANG Jialiang SUN Haiyan HU 《Chinese Journal of Aeronautics》 2025年第2期459-477,共19页
The quantity of space debris on Earth orbit has escalated tremendously in recent years, presenting a significant hazard to human space operations. It is urgent to develop effective measures to capture and remove vario... The quantity of space debris on Earth orbit has escalated tremendously in recent years, presenting a significant hazard to human space operations. It is urgent to develop effective measures to capture and remove various space debris. For this purpose, this paper presents a tendon-actuated flexible deployable manipulator. The flexible manipulator consists of several deployable units connected by Cardan joints and actuated by tendons. Compared with the present technologies for capturing space debris such as rigid robotic arm or flying net, this flexible manipulator is deployable, reusable, lightweight and applicable to the capture of large space debris. In order to investigate its deployment dynamics, an accurate dynamic model of the flexible manipulator is established based on the natural coordinate formulation (NCF) and the absolute nodal coordinate formulation (ANCF). Subsequently, numerical simulations are carried out to study the effects of system parameters and the base satellite on its deployment dynamics. Finally, ground experiments for both deployment and bending of the flexible manipulator are conducted to verify its effectiveness and feasibility. 展开更多
关键词 Flexible manipulator Tendon-actuated Dynamic modeling Deployment dynamics Ground experiments
原文传递
Inspired by the Adhesive Ability of Drosera and the Stress Envelope Effect Rescue Manipulator
8
作者 Yanzhi Zhao Haibo Yu +2 位作者 Changlei Pei Maoshi Lu Shijun Huang 《Chinese Journal of Mechanical Engineering》 2025年第3期349-364,共16页
The existing research on rescue robots has focused mainly on reconnaissance,detection,and firefighting,and a small number of robots that can achieve human rescue have problems such as poor safety and stability and ins... The existing research on rescue robots has focused mainly on reconnaissance,detection,and firefighting,and a small number of robots that can achieve human rescue have problems such as poor safety and stability and insufficient carrying capacity.This article addresses the above issues and cleverly combines the advantages of soft robotic arms,underactuated robotic arms,and suction cups based on the principles of bionics.A new design for a robotic arm was proposed,and its working principle was explained.Then,the human rescue process was divided into two stages,and the grasping force of the robotic arm in each stage was analyzed separately.Finally,a prototype of the principle was developed,and the feasibility of the design principle of the robotic arm was verified through grasping experiments on a cross-sectional contour model of the human chest.At the same time,grasping experiments were conducted on different objects to demonstrate the potential application of the robotic arm in grasping ground objects.This research proposes a stress envelope adsorption rescue robot arm inspired by the adhesion ability of the Drosera plant and the stress envelope effect,which can apply force to the entire surface of the human body,reduce local force on the human body,ensure load-bearing capacity and adaptability,and improve the safety and stability of rescue grasping. 展开更多
关键词 Rescue manipulator Underdrive Imitation Drosera Adsorption
在线阅读 下载PDF
Experimental Study on Vortex-Induced Vibration of Underwater Manipulator Under Shear Flow
9
作者 Senliang Dai Derong Duan +3 位作者 Xin Liu Huifang Jin Hui Zhang Xuefeng Yang 《哈尔滨工程大学学报(英文版)》 2025年第5期959-969,共11页
The position deviation of the underwater manipulator generated by vortex-induced vibration(VIV)in the shear flow increases relative to that in the uniform flow.Thus,this study established an experimental platform to i... The position deviation of the underwater manipulator generated by vortex-induced vibration(VIV)in the shear flow increases relative to that in the uniform flow.Thus,this study established an experimental platform to investigate the vibration characteristics of the underwater manipulator under shear flow.The vibration response along the manipulator was obtained and compared with that in the uniform flow.Results indicated that the velocity,test height,and flow field were the main factors affecting the VIV of the underwater manipulator.With the increase in the reduced velocity(U_(r)),the dimensionless amplitudes increased rapidly in the in-line(IL)direction with a maximum of 0.13D.The vibration responses in the cross-flow(CF)and IL directions were concentrated at positions 2,3 and positions 1,2,with peak values of 0.46 and 0.54 mm under U_(r)=1.54,respectively.In addition,the vibration frequency increased with the reduction of velocity.The dimensionless dominant frequency in the CF and IL directions varied from 0.39-0.80 and 0.35-0.64,respectively.Moreover,the ratio of the CF and IL directions was close to 1 at a lower U_(r).The standard deviation of displacement initially increased and then decreased as the height of the test location increased.The single peak value of the standard deviation showed that VIV presented a single mode.Compared with the uniform flow,the maximum and average values of VIV displacement increased by 104%and 110%under the shear flow,respectively. 展开更多
关键词 Underwater manipulator Shear flow Vortex-induced vibration Spectral analysis Vibration response
在线阅读 下载PDF
Decentralised adaptive learning-based control of robot manipulators with unknown parameters
10
作者 Emil Mühlbradt Sveen Jing Zhou +1 位作者 Morten Kjeld Ebbesen Mohammad Poursina 《Journal of Automation and Intelligence》 2025年第2期136-144,共9页
This paper studies motor joint control of a 4-degree-of-freedom(DoF)robotic manipulator using learning-based Adaptive Dynamic Programming(ADP)approach.The manipulator’s dynamics are modelled as an open-loop 4-link se... This paper studies motor joint control of a 4-degree-of-freedom(DoF)robotic manipulator using learning-based Adaptive Dynamic Programming(ADP)approach.The manipulator’s dynamics are modelled as an open-loop 4-link serial kinematic chain with 4 Degrees of Freedom(DoF).Decentralised optimal controllers are designed for each link using ADP approach based on a set of cost matrices and data collected from exploration trajectories.The proposed control strategy employs an off-line,off-policy iterative approach to derive four optimal control policies,one for each joint,under exploration strategies.The objective of the controller is to control the position of each joint.Simulation and experimental results show that four independent optimal controllers are found,each under similar exploration strategies,and the proposed ADP approach successfully yields optimal linear control policies despite the presence of these complexities.The experimental results conducted on the Quanser Qarm robotic platform demonstrate the effectiveness of the proposed ADP controllers in handling significant dynamic nonlinearities,such as actuation limitations,output saturation,and filter delays. 展开更多
关键词 Adaptive dynamic programming Optimal control Robot manipulator 4-DoF Unknown dynamics
在线阅读 下载PDF
Inverse Kinematics of 2(3RPS)and 2(3SPR)Serial-Parallel Manipulators
11
作者 Bo Hu Ziwei Xu +2 位作者 Ren Wang Miaomiao Feng Nijia Ye 《Chinese Journal of Mechanical Engineering》 2025年第2期315-325,共11页
Serial-parallel manipulators are of great interest to academic community in recent years,especially those composed of classical parallel mechanisms.There have been many studies around 2(3RPS)and 2(3SPR)S-PMs,but unfor... Serial-parallel manipulators are of great interest to academic community in recent years,especially those composed of classical parallel mechanisms.There have been many studies around 2(3RPS)and 2(3SPR)S-PMs,but unfortunately their inverse kinematics have not yet been resolved.This paper discovers that the unknown kinematic parameters of middle platform are responsible for the unresolvable of inverse kinematics,meanwhile the unknown kinematic parameters of middle platform also have huge coupling relationships.Therefore,to break through this challenges,the huge coupling relationships are decoupled layer by layer,the kinematic parameters of middle platform are solved by combining Sylvester's elimination method,and the inverse displacements of 2(3RPS)and 2(3SPR)S-PMs are obtained subsequently.This paper not only solves the inverse kinematics of classical 2(3RPS)and 2(3SPR)S-PMs,but also reveals the essence of the inverse kinematics of general(3-DOF)+(3-DOF)6-DOF S-PMs and proposes a corresponding solution. 展开更多
关键词 Serial-parallel manipulator Inverse kinematics Sylvester’s elimination method 2(3RPS)serial-parallel manipulators 2(3SPR)serial-parallel manipulators
在线阅读 下载PDF
Hydrodynamic Characteristics of an Underwater Manipulator in Pulsating Flow
12
作者 Xia Liu Derong Duan +2 位作者 Xiaoya Zhang Yujun Cheng Hui Zhang 《哈尔滨工程大学学报(英文版)》 2025年第3期503-517,共15页
Pulsating flow is a common condition for under water manipulators in Bohai Bay.This study aimed to investigate the effects of pulsation frequency and amplitude on the hydrodynamic characteristics of an underwater mani... Pulsating flow is a common condition for under water manipulators in Bohai Bay.This study aimed to investigate the effects of pulsation frequency and amplitude on the hydrodynamic characteristics of an underwater manipulator with different postures using the user-defined function (UDF) method. The lift coefficient (C_(L)), drag coefficient (C_(D)), and vortex shedding of the underwater manipulator in single-and dualarm forms were obtained. Results indicated that the maximum increase in the lift and drag coefficients subjected to the pulsation parameters was 24.45%and 28%, respectively, when the fluid flowed past a single arm. Compared with the single arm, the lift and drag coefficients of the arms were higher than those of the single arm when arm 2 was located upstream. Additionally, the pulsation frequency had no obvious effect on the manipulator, but the C_(L) and C_(D) of arm 2 showed an obvious increasing trend with an increase in pulsation amplitude. Meanwhile, when arm 2 was located downstream, the C_(L) and C_(D) of arm 2 were reduced by 16.38%and 1.15%, respectively, with an increase in the pulse frequency,and the maximum increase in the lift and dragcoefficients was 33.33%and 16.78%,respectively,with increasing pulsation amplitude.Moreover, the downstream wake morphology changed significantly, and a combined vortex phenomenon appeared. Finally, a theoretical basis for examining the hydrodynamic characteristics of marine engineering equipment was established to aid future marine resource exploitation. 展开更多
关键词 Underwater manipulator Pulsating flow Hydrodynamic performance Vortex shedding Flow interference
在线阅读 下载PDF
The H_(∞) Robust Stability and Performance Conditions for Uncertain Robot Manipulators
13
作者 Geun Il Song Hae Yeon Park Jung Hoon Kim 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期270-272,共3页
Dear Editor,H_(∞)This letter develops a new framework for the robust stability and performance conditions as well as the relevant controller synthesis with respect to uncertain robot manipulators.There often exist mo... Dear Editor,H_(∞)This letter develops a new framework for the robust stability and performance conditions as well as the relevant controller synthesis with respect to uncertain robot manipulators.There often exist model uncertainties between the nominal model and the real robot manipulator and disturbances. Hence, dealing with their effects plays a crucial role in leading to high tracking performances, as discussed in [1]–[5]. 展开更多
关键词 robot manipulator robust stability performance conditions H performance conditions nominal model robot manipulatorsthere dealing their effects robust stability
在线阅读 下载PDF
An Iterative Tuning Method for Feedforward Control of Parallel Manipulators Considering Nonlinear Dynamics
14
作者 Xiaojian Wang Jun Wu 《Chinese Journal of Mechanical Engineering》 2025年第1期295-305,共11页
Feedforward control is one of the most effective control techniques to increase the robot’s tracking accuracy.However,most of the dynamic models used in the feedforward controllers are linearly simplified such that t... Feedforward control is one of the most effective control techniques to increase the robot’s tracking accuracy.However,most of the dynamic models used in the feedforward controllers are linearly simplified such that the nonlinear and time-varying characteristics of dynamics in the workspace are ignored.In this paper,an iterative tuning method for feedforward control of parallel manipulators by taking nonlinear dynamics into account is proposed.Based on the robot rigid-body dynamic model,a feedforward controller considering the dynamic nonlinearity is presented.An iterative tuning method is given to iteratively update the feedforward controller by minimizing the root mean square(RMS)of the joint errors at each cycle.The effectiveness and extrapolation capability of the proposed method are validated through the experiments on a 2-DOF parallel manipulator.This research proposes an iterative tuning method for feedforward control of parallel manipulators considering nonlinear dynamics,which has better extrapolation capability in the whole workspace of manipulators. 展开更多
关键词 Parallel manipulator Dynamic model Feedforward control Iterative learning control Parameter design
在线阅读 下载PDF
Adaptive Control of a Flexible Manipulator With Unknown Hysteresis and Intermittent Actuator Faults
15
作者 Shouyan Chen Weitian He +3 位作者 Zhijia Zhao Yun Feng Zhijie Liu Keum-Shik Hong 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期148-158,共11页
In this study,we consider a single-link flexible manipulator in the presence of an unknown Bouc-Wen type of hysteresis and intermittent actuator faults.First,an inverse hysteresis dynamics model is introduced,and then... In this study,we consider a single-link flexible manipulator in the presence of an unknown Bouc-Wen type of hysteresis and intermittent actuator faults.First,an inverse hysteresis dynamics model is introduced,and then the control input is divided into an expected input and an error compensator.Second,a novel adaptive neural network-based control scheme is proposed to cancel the unknown input hysteresis.Subsequently,by modifying the adaptive laws and local control laws,a fault-tolerant control strategy is applied to address uncertain intermittent actuator faults in a flexible manipulator system.Through the direct Lyapunov theory,the proposed scheme allows the state errors to asymptotically converge to a specified interval.Finally,the effectiveness of the proposed scheme is verified through numerical simulations and experiments. 展开更多
关键词 Adaptive control flexible manipulator intermittent actuator faults inverse hysteresis dynamics vibration control
在线阅读 下载PDF
A Low-Collision and Efficient Grasping Method for Manipulator Based on Safe Reinforcement Learning
16
作者 Qinglei Zhang Bai Hu +2 位作者 Jiyun Qin Jianguo Duan Ying Zhou 《Computers, Materials & Continua》 2025年第4期1257-1273,共17页
Grasping is one of the most fundamental operations in modern robotics applications.While deep rein-forcement learning(DRL)has demonstrated strong potential in robotics,there is too much emphasis on maximizing the cumu... Grasping is one of the most fundamental operations in modern robotics applications.While deep rein-forcement learning(DRL)has demonstrated strong potential in robotics,there is too much emphasis on maximizing the cumulative reward in executing tasks,and the potential safety risks are often ignored.In this paper,an optimization method based on safe reinforcement learning(Safe RL)is proposed to address the robotic grasping problem under safety constraints.Specifically,considering the obstacle avoidance constraints of the system,the grasping problem of the manipulator is modeled as a Constrained Markov Decision Process(CMDP).The Lagrange multiplier and a dynamic weighted mechanism are introduced into the Proximal Policy Optimization(PPO)framework,leading to the development of the dynamic weighted Lagrange PPO(DWL-PPO)algorithm.The behavior of violating safety constraints is punished while the policy is optimized in this proposed method.In addition,the orientation control of the end-effector is included in the reward function,and a compound reward function adapted to changes in pose is designed.Ultimately,the efficacy and advantages of the suggested method are proved by extensive training and testing in the Pybullet simulator.The results of grasping experiments reveal that the recommended approach provides superior safety and efficiency compared with other advanced RL methods and achieves a good trade-off between model learning and risk aversion. 展开更多
关键词 Safe reinforcement learning(Safe RL) manipulator grasping obstacle avoidance constraints lagrange multiplier dynamic weighted
在线阅读 下载PDF
Neural Network Adaptive Hierarchical Sliding Mode Control for the Trajectory Tracking of a Tendon-Driven Manipulator
17
作者 Yudong Zhang Leiying He +2 位作者 Jianneng Chen Bo Yan Chuanyu Wu 《Chinese Journal of Mechanical Engineering》 2025年第2期295-314,共20页
Tracking control of tendon-driven manipulators has become a prevalent research area.However,the existence of flexible elastic tendons generates substantial residual vibrations,resulting in difficulties for trajectory ... Tracking control of tendon-driven manipulators has become a prevalent research area.However,the existence of flexible elastic tendons generates substantial residual vibrations,resulting in difficulties for trajectory tracking control of the manipulator.This paper proposes the radial basis function neural network adaptive hierarchical sliding mode control(RBFNNA-HSMC)method,which combines the dynamic model of the elastic tendon-driven manipulator(ETDM)with radial basis neural network adaptive control and hierarchical sliding mode control technology.The aim is to achieve trajectory tracking control of ETDM even under conditions of model inaccuracy and disturbance.The Lyapunov stability theory demonstrates the stability of the proposed RBFNNA-HSM controller.In order to assess the effectiveness and adaptability of the proposed control method,simulations and experiments were performed on a two-DOF ETDM.The RBFNNA-HSM method shows superior tracking accuracy compared to traditional modelbased HSM control.The experiment shows that the maximum tracking error for ETDM double-joint trajectory tracking is below 2.593×10-3rad and 1.624×10-3rad,respectively. 展开更多
关键词 Elastic tendon-driven manipulator Flexible joint Hierarchical sliding mode control Neural network adaptive control Tracking control
在线阅读 下载PDF
Cooperative Collision Avoidance Control with Relative Velocity Information for Redundant Dual-arm Robotic Manipulators
18
作者 Jinyue Liu Chao Xu +2 位作者 Xiaohui Jia Yi Wu Tiejun Li 《Journal of Bionic Engineering》 2025年第3期1111-1125,共15页
In this paper,a novel cooperative collision avoidance control strategy with relative velocity information for redundant robotic manipulators is derived to guarantee the behavioral safety of robots in the cooperative o... In this paper,a novel cooperative collision avoidance control strategy with relative velocity information for redundant robotic manipulators is derived to guarantee the behavioral safety of robots in the cooperative operational task.This strategy can generate the collision-free trajectory of the robotic links in real-time,which is to realize that the robot can avoid moving obstacles less conservatively and ensure tracking accuracy of terminal end-effector tasks in performing cooperative tasks.For the case where there is interference between the moving obstacle and the desired path of the robotic end-effector,the method inherits the null-space-based self-motion characteristics of the redundant manipulator,integrates the relative motion information,and uses the improved artificial potential field method to design the control items,which are used to generate the collision avoidance motion and carry out moving obstacles smoothly and less conservatively.At the same time,the strategy maintains the kinematic constraint relationship of dual-arm cooperatives,to meet the real-time collision avoidance task under collaborative tasks.Finally,the algorithm simulation indicates that the method can better ensure the tracking accuracy of the end-effector task and carry out moving obstacles smoothly.The experimental results show that the method can generate the real-time collision-free trajectory of the robot in the cooperative handling task,and the joint movement is continuous and stable. 展开更多
关键词 Redundant dual-arm robotic manipulators Cooperative operational tasks Collision avoidance Relative velocity information
在线阅读 下载PDF
Integral terminal sliding mode augmented finite-time visual servo control of omni-directional mobile manipulators
19
作者 Yuanji Liu Tianyu Zhu +1 位作者 Qingdu Li Jianwei Zhang 《Control Theory and Technology》 2025年第2期193-206,共14页
This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of vi... This paper presents a robust finite-time visual servo control strategy for the tracking problem of omni-directional mobile manipulators(OMMs)subject to mismatched disturbances.First,the nonlinear kinematic model of visual servoing for OMMs with mismatched disturbances is explicitly presented to solve the whole-body inverse kinematic problem.Second,a sliding mode observer augmented with an integral terminal sliding mode controller is proposed to handle these uncertainties and ensure that the system converges to a small region around the equilibrium point.The boundary layer technique is employed to mitigate the chattering phenomenon.Furthermore,a strict finite-time Lyapunov stability analysis is conducted.An experimental comparison between the proposed algorithm and a traditional position-based visual servo controller is carried out,and the results demonstrate the superiority of the proposed control algorithm. 展开更多
关键词 Omni-directional mobile manipulators Nonlinear kinematic model Mismatched disturbances Integral terminal sliding mode control Finite-time control
原文传递
An inertial parameter identification method of eliminating system damping effect for a six-degree-of-freedom parallel manipulator 被引量:5
20
作者 Tian Tixian Jiang Hongzhou +2 位作者 Tong Zhizhong He Jingfeng Huang Qitao 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第2期582-592,共11页
A new simple and effective inertial parameter identification method based on sinusoidal vibrations of a six-degree-of-freedom parallel manipulator is proposed. Compared with previously known identification algorithms,... A new simple and effective inertial parameter identification method based on sinusoidal vibrations of a six-degree-of-freedom parallel manipulator is proposed. Compared with previously known identification algorithms, the advantages of the new approach are there is no need to design the excitation trajectory to consider the condition number of the observation matrix and the inertial matrix can be accurately defined regardless of the effect of viscous friction. In addition, the use of a sinusoidal exciting trajectory allows calculation of the velocities and accelerations from the measured position response. Simulations show that the new approach has acceptable tolerance of dry friction when using a simple coupling parameter modified formula. The experimental application to the hydraulically driven Stewart platform demonstrates the capability and efficiency of the proposed identification method. 展开更多
关键词 Hydraulically IDENTIFICATION Inertial parameter Parallel manipulator Sinusoidal vibration
原文传递
上一页 1 2 67 下一页 到第
使用帮助 返回顶部