期刊文献+
共找到1,205篇文章
< 1 2 61 >
每页显示 20 50 100
An asymmetrically variable wingtip anhedral angles morphing aircraft based on incremental sliding mode control:Improving lateral maneuver capability 被引量:1
1
作者 Xiaodong LIU Yong XU Jianqiao LUO 《Chinese Journal of Aeronautics》 2025年第1期455-470,共16页
This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic mo... This paper presents the design of an asymmetrically variable wingtip anhedral angles morphing aircraft,inspired by biomimetic mechanisms,to enhance lateral maneuver capability.Firstly,we establish a lateral dynamic model considering additional forces and moments resulting during the morphing process,and convert it into a Multiple Input Multiple Output(MIMO)virtual control system by importing virtual inputs.Secondly,a classical dynamics inversion controller is designed for the outer-loop system.A new Global Fast Terminal Incremental Sliding Mode Controller(NDO-GFTISMC)is proposed for the inner-loop system,in which an adaptive law is implemented to weaken control surface chattering,and a Nonlinear Disturbance Observer(NDO)is integrated to compensate for unknown disturbances.The whole control system is proven semiglobally uniformly ultimately bounded based on the multi-Lyapunov function method.Furthermore,we consider tracking errors and self-characteristics of actuators,a quadratic programmingbased dynamic control allocation law is designed,which allocates virtual control inputs to the asymmetrically deformed wingtip and rudder.Actuator dynamic models are incorporated to ensure physical realizability of designed allocation law.Finally,comparative experimental results validate the effectiveness of the designed control system and control allocation law.The NDO-GFTISMC features faster convergence,stronger robustness,and 81.25%and 75.0%reduction in maximum state tracking error under uncertainty compared to the Incremental Nonlinear Dynamic Inversion Controller based on NDO(NDO-INDI)and Incremental Sliding Mode Controller based on NDO(NDO-ISMC),respectively.The design of the morphing aircraft significantly enhances lateral maneuver capability,maintaining a substantial control margin during lateral maneuvering,reducing the burden of the rudder surface,and effectively solving the actuator saturation problem of traditional aircraft during lateral maneuvering. 展开更多
关键词 Morphing aircraft Lateral maneuver capability Incremental sliding mode control Multi-Lyapunov function method Control theory Control allocation law
原文传递
A Mechatronic Device for a Standardized Execution of the Muscle Shortening Maneuver
2
作者 Saad Jamshed Abbasi Simone Rossi +4 位作者 Paolo Lippi Piero Maria Orsini Riccardo Bracci Manuel G.Catalano Matteo Bianchi 《Journal of Bionic Engineering》 2025年第3期1085-1095,共11页
Muscle Shortening Maneuver(MSM)is a rehabilitation technique successfully applied to several pathological conditions.The concept is to passively elongate and shorten the target muscle group of the affected limb.As a r... Muscle Shortening Maneuver(MSM)is a rehabilitation technique successfully applied to several pathological conditions.The concept is to passively elongate and shorten the target muscle group of the affected limb.As a result,the functionality(muscle strength and range of motion)of that limb is improved.The existing system induces these oscillations manually or without any feedback control,which can compromise the effectiveness and standardization of MSM.In this paper,we present a mechatronic system that can precisely deliver motion oscillations to the upper limb for a controllable execution of MSM.First,we collected the parameters(frequency and amplitude of the oscillations)from a system where a motor was heuristically used by a well-experienced therapist to induce the oscillations(without any feedback control).Based on these specifications,we chose the motor and rebuilt the experimental setup,implementing a sliding mode control with a sliding perturbation observer.With our system,the operator can choose a given frequency and amplitude of the oscillations within the range we experimentally observed.We tested our system with ten participants of different anthropometry.We found that our system can accurately reproduce oscillations in the frequency range 0.8 to 1.2 Hz and amplitude range 2 to 6 cm,with a maximum percentage normalized root mean square error around 7%. 展开更多
关键词 REHABILITATION Muscle shortening maneuver Upper limb Mechatronic device CONTROL Trajectory tracking
在线阅读 下载PDF
Collision-inducing method for UAV evasive maneuvers based on receding horizon optimization
3
作者 Haonan Tang Zhigong Tang +1 位作者 Gong Chen Jifeng Guo 《Defence Technology(防务技术)》 2025年第8期141-154,共14页
Aiming at the missile avoidance problem of the unmanned aerial vehicle(UAV)in complex obstacle environments,this work proposes a collision-avoidance method based on receding horizon optimization.The proposed method ge... Aiming at the missile avoidance problem of the unmanned aerial vehicle(UAV)in complex obstacle environments,this work proposes a collision-avoidance method based on receding horizon optimization.The proposed method generated a specific trajectory for the UAV to effectively induce the proportional navigation missile to successfully intercept the obstacle,thereby accomplishing the evasive maneuver.The evasive maneuver was divided into two distinct stages,namely the collision-inducing phase and the fast departure phase.The obstacle potential field-based target selection algorithm was employed to identify the most appropriate target obstacle,while the induced trajectory was determined through a combination of receding horizon optimization and the hp-adaptive pseudo-spectral method.Simulation experiments were carried out under three different types of obstacle environments and one multiobstacle environment,and the simulation results show that the method proposed in this paper greatly improves the success rate of UAV evasive maneuvers,proving the effectiveness of this method. 展开更多
关键词 UAV MISSILE Proportional navigation Evasive maneuver Receding horizon optimization Hp-adaptive pseudo-spectral method
在线阅读 下载PDF
Distributed predefined-time estimator-based affine formation target-enclosing maneuver control for cooperative underactuated quadrotor UAVs with fault-tolerant capabilities
4
作者 Yang XU Yuanfang QU +2 位作者 Delin LUO Haibin DUAN Zhengyu GUO 《Chinese Journal of Aeronautics》 2025年第1期471-490,共20页
The paper presents a two-layer,disturbance-resistant,and fault-tolerant affine formation maneuver control scheme that accomplishes the surrounding of a dynamic target with multiple underactuated Quadrotor Unmanned Aer... The paper presents a two-layer,disturbance-resistant,and fault-tolerant affine formation maneuver control scheme that accomplishes the surrounding of a dynamic target with multiple underactuated Quadrotor Unmanned Aerial Vehicles(QUAVs).This scheme mainly consists of predefinedtime estimators and fixed-time tracking controllers,with a hybrid Laplacian matrix describing the communication among these QUAVs.At the first layer,we devise predefined time estimators for leading and following QUAVs,enabling accurate estimation of desired information.In the second layer,we initially devise a fixed-time hybrid observer to estimate unknown disturbances and actuator faults.Fixedtime translational tracking controllers are then proposed,and the intermediary control input from these controllers is used to extract the desired attitude and angular velocities for the fixed-time rotational tracking controllers.We employ an exact tracking differentiator to handle variables that are challenging to differentiate directly.The paper includes a demonstration of the control system stability through mathematical proof,as well as the presentation of simulation results and comparative simulations. 展开更多
关键词 Affine formation maneuver control Target tracking Fixed-time control Quadrotor unmanned aerial vehicle Target enclosing Predefined-time estimation
原文传递
Simultaneous Depth and Heading Control for Autonomous Underwater Vehicle Docking Maneuvers Using Deep Reinforcement Learning within a Digital Twin System
5
作者 Yu-Hsien Lin Po-Cheng Chuang Joyce Yi-Tzu Huang 《Computers, Materials & Continua》 2025年第9期4907-4948,共42页
This study proposes an automatic control system for Autonomous Underwater Vehicle(AUV)docking,utilizing a digital twin(DT)environment based on the HoloOcean platform,which integrates six-degree-of-freedom(6-DOF)motion... This study proposes an automatic control system for Autonomous Underwater Vehicle(AUV)docking,utilizing a digital twin(DT)environment based on the HoloOcean platform,which integrates six-degree-of-freedom(6-DOF)motion equations and hydrodynamic coefficients to create a realistic simulation.Although conventional model-based and visual servoing approaches often struggle in dynamic underwater environments due to limited adaptability and extensive parameter tuning requirements,deep reinforcement learning(DRL)offers a promising alternative.In the positioning stage,the Twin Delayed Deep Deterministic Policy Gradient(TD3)algorithm is employed for synchronized depth and heading control,which offers stable training,reduced overestimation bias,and superior handling of continuous control compared to other DRL methods.During the searching stage,zig-zag heading motion combined with a state-of-the-art object detection algorithm facilitates docking station localization.For the docking stage,this study proposes an innovative Image-based DDPG(I-DDPG),enhanced and trained in a Unity-MATLAB simulation environment,to achieve visual target tracking.Furthermore,integrating a DT environment enables efficient and safe policy training,reduces dependence on costly real-world tests,and improves sim-to-real transfer performance.Both simulation and real-world experiments were conducted,demonstrating the effectiveness of the system in improving AUV control strategies and supporting the transition from simulation to real-world operations in underwater environments.The results highlight the scalability and robustness of the proposed system,as evidenced by the TD3 controller achieving 25%less oscillation than the adaptive fuzzy controller when reaching the target depth,thereby demonstrating superior stability,accuracy,and potential for broader and more complex autonomous underwater tasks. 展开更多
关键词 Autonomous underwater vehicle docking maneuver digital twin deep reinforcement learning twin delayed deep deterministic policy gradient
在线阅读 下载PDF
A high maneuvering motion strategy and stable control method for tandem twin-rotor aerial-aquatic vehicles near the water surface
6
作者 Sifan Wu Maosen Shao +4 位作者 Sihuan Wu Zhilin He Hui Wang Jinxiu Zhang Yuan Liu 《Defence Technology(防务技术)》 2025年第2期206-220,共15页
The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this... The maneuverability and stealth of aerial-aquatic vehicles(AAVs)is of significant importance for future integrated air-sea combat missions.To improve the maneuverability and stealth of AAVs near the water surface,this paper proposed a high-maneuverability skipping motion strategy for the tandem twin-rotor AAV,inspired by the motion behavior of the flying fish to avoid aquatic and aerial predators near the water surface.The novel tandem twin-rotor AAV was employed as the research subject and a strategybased ADRC control method for validation,comparing it with a strategy-based PID control method.The results indicate that both control methods enable the designed AAV to achieve high stealth and maneuverability near the water surface with robust control stability.The strategy-based ADRC control method exhibits a certain advantage in controlling height,pitch angle,and reducing impact force.This motion strategy will offer an inspiring approach for the practical application of AAVs to some extent. 展开更多
关键词 Tandem twin-rotor Aerial-aquatic vehicle High maneuvering motion strategy Active disturbance rejection controller Skipping on water surface
在线阅读 下载PDF
Multiple model PHD filter for tracking sharply maneuvering targets using recursive RANSAC based adaptive birth estimation 被引量:2
7
作者 DING Changwen ZHOU Di +2 位作者 ZOU Xinguang DU Runle LIU Jiaqi 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期780-792,共13页
An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron... An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation. 展开更多
关键词 multitarget tracking probability hypothesis density(PHD)filter sharply maneuvering targets multiple model adaptive birth intensity estimation
在线阅读 下载PDF
Cooperative guidance law with maneuverability awareness:A decentralized solution 被引量:1
8
作者 Shuyang XU Xun SONG Chaoyong LI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第7期450-457,共8页
In this paper,we propose a cooperative guidance law aimed to achieve coordinated impact angles with limited observation on target information.The primary challenge lies in establishing an appropriate communication gra... In this paper,we propose a cooperative guidance law aimed to achieve coordinated impact angles with limited observation on target information.The primary challenge lies in establishing an appropriate communication graph among all missiles and devising an algorithm to estimate target acceleration information during engagements.To address this,we propose a specific communication topology and employ a numerical integration-based estimation method.Additionally,a distributed algorithm is introduced to facilitate consensus on target acceleration estimation.Building upon these foundations,we design an optimal-control-based distributed guidance law for each missile.Performance of the proposed guidance law is validated through numerical simulations. 展开更多
关键词 Cooperative guidance Target maneuver estimation Distributed estimation CONSENSUS Optimal control
原文传递
Multi-UAV cooperative maneuver decision-making for pursuitevasion using improved MADRL 被引量:1
9
作者 Delin Luo Zihao Fan +1 位作者 Ziyi Yang Yang Xu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期187-197,共11页
Aiming at the problem of multi-UAV pursuit-evasion confrontation, a UAV cooperative maneuver method based on an improved multi-agent deep reinforcement learning(MADRL) is proposed. In this method, an improved Comm Net... Aiming at the problem of multi-UAV pursuit-evasion confrontation, a UAV cooperative maneuver method based on an improved multi-agent deep reinforcement learning(MADRL) is proposed. In this method, an improved Comm Net network based on a communication mechanism is introduced into a deep reinforcement learning algorithm to solve the multi-agent problem. A layer of gated recurrent unit(GRU) is added to the actor-network structure to remember historical environmental states. Subsequently,another GRU is designed as a communication channel in the Comm Net core network layer to refine communication information between UAVs. Finally, the simulation results of the algorithm in two sets of scenarios are given, and the results show that the method has good effectiveness and applicability. 展开更多
关键词 Reinforcement learning UAV maneuver decision GRU Cooperative control
在线阅读 下载PDF
Research on Maneuver Decision-Making of Multi-Agent Adversarial Game in a Random Interference Environment 被引量:1
10
作者 Shiguang Hu Le Ru +4 位作者 Bo Lu Zhenhua Wang Xiaolin Zhao Wenfei Wang Hailong Xi 《Computers, Materials & Continua》 SCIE EI 2024年第10期1879-1903,共25页
The strategy evolution process of game players is highly uncertain due to random emergent situations and other external disturbances.This paper investigates the issue of strategy interaction and behavioral decision-ma... The strategy evolution process of game players is highly uncertain due to random emergent situations and other external disturbances.This paper investigates the issue of strategy interaction and behavioral decision-making among game players in simulated confrontation scenarios within a random interference environment.It considers the possible risks that random disturbances may pose to the autonomous decision-making of game players,as well as the impact of participants’manipulative behaviors on the state changes of the players.A nonlinear mathematical model is established to describe the strategy decision-making process of the participants in this scenario.Subsequently,the strategy selection interaction relationship,strategy evolution stability,and dynamic decision-making process of the game players are investigated and verified by simulation experiments.The results show that maneuver-related parameters and random environmental interference factors have different effects on the selection and evolutionary speed of the agent’s strategies.Especially in a highly uncertain environment,even small information asymmetry or miscalculation may have a significant impact on decision-making.This also confirms the feasibility and effectiveness of the method proposed in the paper,which can better explain the behavioral decision-making process of the agent in the interaction process.This study provides feasibility analysis ideas and theoretical references for improving multi-agent interactive decision-making and the interpretability of the game system model. 展开更多
关键词 Behavior decision-making stochastic evolutionary game nonlinear mathematical modeling MULTI-AGENT maneuver
在线阅读 下载PDF
UAV maneuvering decision-making algorithm based on deep reinforcement learning under the guidance of expert experience 被引量:1
11
作者 ZHAN Guang ZHANG Kun +1 位作者 LI Ke PIAO Haiyin 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期644-665,共22页
Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devo... Autonomous umanned aerial vehicle(UAV) manipulation is necessary for the defense department to execute tactical missions given by commanders in the future unmanned battlefield. A large amount of research has been devoted to improving the autonomous decision-making ability of UAV in an interactive environment, where finding the optimal maneuvering decisionmaking policy became one of the key issues for enabling the intelligence of UAV. In this paper, we propose a maneuvering decision-making algorithm for autonomous air-delivery based on deep reinforcement learning under the guidance of expert experience. Specifically, we refine the guidance towards area and guidance towards specific point tasks for the air-delivery process based on the traditional air-to-surface fire control methods.Moreover, we construct the UAV maneuvering decision-making model based on Markov decision processes(MDPs). Specifically, we present a reward shaping method for the guidance towards area and guidance towards specific point tasks using potential-based function and expert-guided advice. The proposed algorithm could accelerate the convergence of the maneuvering decision-making policy and increase the stability of the policy in terms of the output during the later stage of training process. The effectiveness of the proposed maneuvering decision-making policy is illustrated by the curves of training parameters and extensive experimental results for testing the trained policy. 展开更多
关键词 unmanned aerial vehicle(UAV) maneuvering decision-making autonomous air-delivery deep reinforcement learning reward shaping expert experience
在线阅读 下载PDF
Tube-based robust reinforcement learning for autonomous maneuver decision for UCAVs
12
作者 Lixin WANG Sizhuang ZHENG +3 位作者 Haiyin PIAO Changqian LU Ting YUE Hailiang LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第7期391-405,共15页
Reinforcement Learning(RL)algorithms enhance intelligence of air combat AutonomousManeuver Decision(AMD)policy,but they may underperform in target combat environmentswith disturbances.To enhance the robustness of the ... Reinforcement Learning(RL)algorithms enhance intelligence of air combat AutonomousManeuver Decision(AMD)policy,but they may underperform in target combat environmentswith disturbances.To enhance the robustness of the AMD strategy learned by RL,thisstudy proposes a Tube-based Robust RL(TRRL)method.First,this study introduces a tube todescribe reachable trajectories under disturbances,formulates a method for calculating tubes basedon sum-of-squares programming,and proposes the TRRL algorithm that enhances robustness byutilizing tube size as a quantitative indicator.Second,this study introduces offline techniques forregressing the tube size function and establishing a tube library before policy learning,aiming toeliminate complex online tube solving and reduce the computational burden during training.Furthermore,an analysis of the tube library demonstrates that the mitigated AMD strategy achievesgreater robustness,as smaller tube sizes correspond to more cautious actions.This finding highlightsthat TRRL enhances robustness by promoting a conservative policy.To effectively balanceaggressiveness and robustness,the proposed TRRL algorithm introduces a“laziness factor”as aweight of robustness.Finally,combat simulations in an environment with disturbances confirm thatthe AMD policy learned by the TRRL algorithm exhibits superior air combat performance comparedto selected robust RL baselines. 展开更多
关键词 Air combat Autonomous maneuver decision Robust reinforcement learning Tube-based algorithm Combat simulation
原文传递
An air combat maneuver pattern extraction based on time series segmentation and clustering analysis
13
作者 Zhifei Xi Yingxin Kou +2 位作者 Zhanwu Li Yue Lv You Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期149-162,共14页
Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition me... Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition method on empirical criteria and sample data,and automatically and adaptively complete the task of extracting the target maneuver pattern,in this paper,an air combat maneuver pattern extraction based on time series segmentation and clustering analysis is proposed by combining autoencoder,G-G clustering algorithm and the selective ensemble clustering analysis algorithm.Firstly,the autoencoder is used to extract key features of maneuvering trajectory to remove the impacts of redundant variables and reduce the data dimension;Then,taking the time information into account,the segmentation of Maneuver characteristic time series is realized with the improved FSTS-AEGG algorithm,and a large number of maneuver primitives are extracted;Finally,the maneuver primitives are grouped into some categories by using the selective ensemble multiple time series clustering algorithm,which can prove that each class represents a maneuver action.The maneuver pattern extraction method is applied to small scale air combat trajectory and can recognize and correctly partition at least 71.3%of maneuver actions,indicating that the method is effective and satisfies the requirements for engineering accuracy.In addition,this method can provide data support for various target maneuvering recognition methods proposed in the literature,greatly reduce the workload and improve the recognition accuracy. 展开更多
关键词 maneuver pattern extraction Data mining Fuzzy segmentation Selective ensemble clustering
在线阅读 下载PDF
Cooperative guidance law based on super-twisting observer for target maneuvering
14
作者 GAO Mengjing YAN Tian +3 位作者 HAN Bingjie CHENG Haoyu FU Wenxing HAN Bo 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1304-1314,共11页
To solve the problem that multiple missiles should simultaneously attack unmeasurable maneuvering targets,a guidance law with temporal consistency constraint based on the super-twisting observer is proposed.Firstly,th... To solve the problem that multiple missiles should simultaneously attack unmeasurable maneuvering targets,a guidance law with temporal consistency constraint based on the super-twisting observer is proposed.Firstly,the relative motion equations between multiple missiles and targets are established,and the topological model among multiple agents is considered.Secondly,based on the temporal consistency constraint,a cooperative guidance law for simultaneous arrival with finite-time convergence is derived.Finally,the unknown target maneuver-ing is regarded as bounded interference.Based on the second-order sliding mode theory,a super-twisting sliding mode observer is devised to observe and track the bounded interfer-ence,and the stability of the observer is proved.Compared with the existing research,this approach only needs to obtain the sliding mode variable which simplifies the design process.The simulation results show that the designed cooperative guidance law for maneuvering targets achieves the expected effect.It ensures successful cooperative attacks,even when confronted with strong maneuvering targets. 展开更多
关键词 cooperative guidance super-twisting target maneuver finite time convergence.
在线阅读 下载PDF
Transient state analysis of a rub-impact rotor system during maneuvering flight
15
作者 Jun WANG Yunfei LIU +2 位作者 Zhaoye QIN Liang MA Fulei CHU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第7期236-251,共16页
Maneuvering flight substantially affects the dynamic behavior of rotors;particularly,such flight may cause rubbing between a rotor and stator,which is one of the most serious damages in aircraft engines.In this paper,... Maneuvering flight substantially affects the dynamic behavior of rotors;particularly,such flight may cause rubbing between a rotor and stator,which is one of the most serious damages in aircraft engines.In this paper,a nonlinear dynamic model for describing the dynamic characteristics of a rub-impact rotor system during maneuvering flight is established based on the Lagrange equations.Subsequently,numerical simulations employing the Newmark method are performed,delving into the detailed discussion of the influence of parameters such as rotational speed and maneuvering flight on the transient and steady-state responses of the rotor system.The effect mechanism of maneuver load and its coupling with rub impact is revealed.The results show that the impact response induced by maneuvering flight is more obvious in the subcritical state than in the supercritical state.The additional stiffness and damping are also induced;in particular,the additional damping has a coupling effect.Moreover,the rub impact imposes an additional constraint on the rotor system,thereby weakening the influence of the maneuver load and becoming the major factor that determines the dynamic behavior of the rotor system at high speeds. 展开更多
关键词 maneuvering flight Rub impact Rotor system Dynamic response Impact response
原文传递
Helicopter Maneuver Trajectory Tracking Control Based on Implicit Model and LADRC
16
作者 REN Binwu CUI Zhuangzhuang +2 位作者 XU Yousong DU Siliang ZHAO Qijun 《Transactions of Nanjing University of Aeronautics and Astronautics》 CSCD 2024年第6期739-749,共11页
To enhance the stability of helicopter maneuvers during task execution,a composite trajectory tracking controller design based on the implicit model(IM)and linear active disturbance rejection control(LADRC)is proposed... To enhance the stability of helicopter maneuvers during task execution,a composite trajectory tracking controller design based on the implicit model(IM)and linear active disturbance rejection control(LADRC)is proposed.Initially,aerodynamic models of the main and tail rotor are created using the blade element theory and the uniform inflow assumption.Subsequently,a comprehensive flight dynamic model of the helicopter is established through fitting aerodynamic force fitting.Subsequently,for precise helicopter maneuvering,including the spiral,spiral up,and Ranversman maneuver,a regular trim is undertaken,followed by minor perturbation linearization at the trim point.Utilizing the linearized model,controllers are created for the IM attitude inner loop and LADRC position outer loop of the helicopter.Ultimately,a comparison is made between the maneuver trajectory tracking results of the IM‑LADRC and the conventional proportional-integral-derivative(PID)control method is performed.Experimental results demonstrate that utilizing the post-trim minor perturbation linearized model in combination with the IM‑LADRC method can achieve higher precision in tracking results,thus enhancing the accuracy of helicopter maneuver execution. 展开更多
关键词 HELICOPTER trajectory tracking implicit model(IM) proportional-integral-derivative(PID) linear active disturbance rejection control small disturbance linearization spiral up Ranversman maneuver
在线阅读 下载PDF
Aerodynamic, Kinematic and Control Coupling Simulation of Aircraft Maneuvering Flight
17
作者 Haohui Tang Shuanghou Deng 《World Journal of Engineering and Technology》 2024年第4期1126-1145,共20页
Aiming at the high angle of attack pull-up and multi-channel roll pull-up coupling problems of high maneuvering aircraft, this paper establishes the flight attitude control rate by means of unsteady flow numerical sol... Aiming at the high angle of attack pull-up and multi-channel roll pull-up coupling problems of high maneuvering aircraft, this paper establishes the flight attitude control rate by means of unsteady flow numerical solution, dynamic unstructured nested mesh assembly method and numerical solution method of flight mechanics equation. On this basis, a virtual flight simulation platform integrating pneumatics, motion and control is established. Based on this virtual flight simulation platform, F-16 aircraft is simulated by high angle of attack pull-up flight mode and multi-channel roll pull-up coupling flight mode. Finally, the influence of rudder on the yaw control channel is investigated. The results show that the numerical virtual flight simulation platform established in this paper has the ability to simulate maneuvering flight of aircraft. 展开更多
关键词 High Angle of Attack Pull-Up High maneuvering Aircraft Flight Attitude Control Rate Dynamic Unstructured Nested Mesh Virtual Flight Simula-tion Platform
在线阅读 下载PDF
Exponential Time-varying Sliding Mode Control for Large Angle Attitude Eigenaxis Maneuver of Rigid Spacecraft 被引量:4
18
作者 丛炳龙 刘向东 陈振 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2010年第4期447-453,共7页
An eigenaxis maneuver strategy with global robustness is studied for large angle attitude maneuver of rigid spacecraft. A sliding mode attitude control algorithm with an exponential time-varying sliding surface is des... An eigenaxis maneuver strategy with global robustness is studied for large angle attitude maneuver of rigid spacecraft. A sliding mode attitude control algorithm with an exponential time-varying sliding surface is designed, which guarantees the sliding mode occurrence at the beginning and eliminates the reaching phase of time-invariant sliding mode control. The proposed control law is global robust against matched external disturbances and system uncertainties, and ensures the eigenaxis rotation in the presence of disturbances and parametric uncertainties. The stability of the control law and the existence of global siding mode are proved by Lyapunov method. Furthermore, the system states can be fully predicted by the analytical solution of state equations, which indicates that the attitude error does not exhibit any overshoots and the system has a good dynamic response. A control torque command regulator is introduced to ensure the eigenaxis rotation under the actuator saturation. Finally, a numerical simulation is employed to illustrate the advantages of the proposed control law. 展开更多
关键词 attitude maneuver nonlinear eigenaxis rotation torque saturation time-varying sliding mode control
原文传递
Trajectory and Correction Maneuver During the Transfer from Earth to Halo Orbit 被引量:8
19
作者 徐明 徐世杰 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第3期200-206,共7页
This article addresses the design of the trajectory transferring from Earth to Halo orbit, and proposes a timing closed-loop strategy of correction maneuver during the transfer in the frame of circular restricted thre... This article addresses the design of the trajectory transferring from Earth to Halo orbit, and proposes a timing closed-loop strategy of correction maneuver during the transfer in the frame of circular restricted three body problem (CR3BP). The relation between the Floquet multipliers and the magnitudes of Halo orbit is established, so that the suitable magnitude for the aerospace mission is chosen in terms of the stability of Halo orbit. The stable manifold is investigated from the Poincar6 mapping defined which is different from the previous researches, and six types of single-impulse transfer trajectories are attained from the geometry of the invariant manifolds. Based on one of the trajectories of indirect transfer which are ignored in the most of literatures, the stochastic control theory for imperfect information of the discrete linear stochastic system is applied to design the trajectory correction maneuver. The statistical dispersion analysis is performed by Monte-Carlo simulation, 展开更多
关键词 libration point Halo orbit orbit design trajectory correction maneuver stochastic control theory Monte-Carlo simulation
在线阅读 下载PDF
Fish maneuver analysis system based on sequence images 被引量:2
20
作者 蒋明 何小元 《Journal of Southeast University(English Edition)》 EI CAS 2009年第2期228-231,共4页
The aim is to establish an automatic system to analyze the maneuver performance of fish. A high speed camera (1 000 frame/s) is employed to record fast-start maneuver. Three steps are taken to analyze the kinematics... The aim is to establish an automatic system to analyze the maneuver performance of fish. A high speed camera (1 000 frame/s) is employed to record fast-start maneuver. Three steps are taken to analyze the kinematics: first, the midline in the first image is partitioned into equal interval lengths and the coordinates of all inter segmental points are saved. Secondly, these points coordinates are searched in the next frame with the digital image correlation (DIC) method, then these points are fitted with a spline curve function. Repeat this step until all the midlines are figured out frame by frame. Finally, according to the variety of midlines, the kinematics of the fast-start is calculated. Using this system to test carp C-start, the duration is divided into two stages: stage 1 is defined as the formation of the C shape and stage 2 as the return flip of the tail followed with forward motion. By tracing the middle line, the kinematic parameters of turning rate, centre of mass (CM) turning rate, CM turning radius, etc. are obtained. 展开更多
关键词 CARP maneuver KINEMATICS digital image CORRELATION
在线阅读 下载PDF
上一页 1 2 61 下一页 到第
使用帮助 返回顶部