Using electric motors instead of diesel engines as the driving system for mining excavators can reduce the energy consumption and operating costs.However,pure electric-driven mining excavators are prone to unexpected ...Using electric motors instead of diesel engines as the driving system for mining excavators can reduce the energy consumption and operating costs.However,pure electric-driven mining excavators are prone to unexpected power outages in mines because of drastic changes in load power,leading to significant fluctuations in the power demand of the grid,which in turn affects production.To solve the above problem,a pure electric-driven mining hydraulic excavator based on electric-motor-driven swing platform and hydraulic pumps was used as the research object.Moreover,supercapacitors and DC/DC converter,as the energy storage system(ESS)adjust the output power of the grid and recover the braking kinetic energy of the swing platform.Subsequently,a novel integrated energy management strategy for a DC bus voltage predictive controller based on the power feedforward of fuzzy rules is proposed to run mining excavators efficiently and reliably.Specifically,the working modes of the ESS are determined by the DC bus voltage and state of charge(SOC)of the supercapacitor.Next,the output power of the supercapacitor and the DC bus voltage were controlled by adjusting the charging and discharging currents of the DC/DC converter using a predictive controller and fuzzy rules.In addition,a digital prototype of the excavator was verified using an original machine test.The performance of the different strategies and driven systems were analyzed using digital prototypes.The results showed that,compared with traditional excavators with diesel engines,the operational cost of the developed excavators was reduced by 54.02%.Compared to pure electric-driven excavators without an ESS,the peak power of the grid for the developed excavators was reduced by 10%.This study designed an integrated energy management strategy for a pure electric mining excavator that can regulate the power output of the grid and maintain the stability of the bus voltage and SOC of the ESS.展开更多
Hydrogen fuel cell ships are one of the key solutions to achieving zero carbon emissions in shipping.Multi-fuel cell stacks(MFCS)systems are frequently employed to fulfill the power requirements of high-load power equ...Hydrogen fuel cell ships are one of the key solutions to achieving zero carbon emissions in shipping.Multi-fuel cell stacks(MFCS)systems are frequently employed to fulfill the power requirements of high-load power equipment on ships.Compared to single-stack system,MFCS may be difficult to apply traditional energy management strategies(EMS)due to their complex structure.In this paper,a two-layer power allocation strategy for MFCS of a hydrogen fuel cell ship is proposed to reduce the complexity of the allocation task by splitting it into each layer of the EMS.The first layer of the EMSis centered on the Nonlinear Model Predictive Control(NMPC).The Northern Goshawk Optimization(NGO)algorithm is used to solve the nonlinear optimization problem in NMPC,and the local fine search is performed using sequential quadratic programming(SQP).Based on the power allocation results of the first layer,the second layer is centered on a fuzzy rule-based adaptive power allocation strategy(AP-Fuzzy).The membership function bounds of the fuzzy controller are related to the aging level of the MFCS.The Particle Swarm Optimization(PSO)algorithm is used to optimize the parameters of the residual membership function to improve the performance of the proposed strategy.The effectiveness of the proposed EMS is verified by comparing it with the traditional EMS.The experimental results show that the EMS proposed in this paper can ensure reasonable hydrogen consumption,slow down the FC aging and equalize its performance,effectively extend the system life,and ensure that the ship has good endurance after completing the mission.展开更多
Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorith...Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorithm is proposed. The aim of it is to minimize theengine fuel consumption and maintain the battery state of charge (SOC) in its operation range, whilesatisfying the vehicle performance and drivability requirements. The hybrid powertrain bench testis carried out to collect data of the engine, motor and battery pack, which are used in the EMS tocontrol the powertrain. Computer simulation model of the HEV is established in the MATLAB/Simulinkenvironment according to the bench test results. Simulation results are presented for behaviors ofthe engine, motor and battery. The proposed EMS is implemented for a real parallel hybrid carcontrol system and validated by vehicle field tests.展开更多
The defects from electron transport layer,perovskite layer and their interface would result in carrier nonradiative recombination losses.Poor buried interfacial contact is detrimental to charge extraction and device s...The defects from electron transport layer,perovskite layer and their interface would result in carrier nonradiative recombination losses.Poor buried interfacial contact is detrimental to charge extraction and device stability.Here,we report a bottom-up holistic carrier management strategy induced synergistically by multiple chemical bonds to minimize bulk and interfacial energy losses for high-performance perovskite photovoltaics.4-trifluoromethyl-benzamidine hydrochloride(TBHCl)containing–CF_(3),amidine cation and Cl^(-)is in advance incorporated into SnO_(2)colloid solution to realize bottom-up modification.The synergistic effect of multiple functional groups and multiple-bond-induced chemical interaction are revealed theoretically and experimentally.F and Cl^(-)can passivate oxygen vacancy and/or undercoordinated Sn^(4+)defects by coordinating with Sn^(4+).The F can suppress cation migration and modulate crystallization via hydrogen bond with FA^(+),and can passivate lead defects by coordinating with Pb^(2+).The–NH_(2)–C=NH^(+)_(2)and Cl^(-)can passivate cation and anion vacancy defects through ionic bonds with perovskites,respectively.Through TBHCl modification,the suppression of agglomeration of SnO_(2)nanoparticles,bulk and interfacial defect passivation,and release of tensile strains of perovskite films are demonstrated,which resulted in a PCE enhancement from 21.28%to 23.40%and improved stability.With post-treatment,the efficiency is further improved to 23.63%.展开更多
Purpose:To compare the effectiveness of the interventional limb raising management strategy(ILRMS)to elastic bandage compression at radial vascular access sites following coronary angiographies(CAGs)and percutaneous c...Purpose:To compare the effectiveness of the interventional limb raising management strategy(ILRMS)to elastic bandage compression at radial vascular access sites following coronary angiographies(CAGs)and percutaneous coronary interventions(PCIs).Methods:Patients with ischemic coronary heart disease whose condition was stable over three months were enrolled in this clinical study(n=590;aged 25e80).All participants had just undergone CAG and PCI.Patients were randomized into either the ILRMS group(n=360)or standard post-intervention care with an elastic bandage(n=230).Overall comfort and wrist pain was assessed and the degree of index finger swelling and oxygen saturation was measured on the affected arm.All variables were measured prior to postintervention treatment and again at six hours after CAG and PCI.Results:We found that patients receiving ILRMS had significantly lower wrist pain scores and swelling around the index finger compared to the elastic bandage group(p<0.05).Oxygen saturation of the index finger was not statistically significant(p>0.05).We also found that 19.57%of the elastic bandage patients were comfortable,while ILRMS patients were significantly more comfortable(93.06%;p<0.05).Conclusions:We find that ILRMS alleviates swelling and pain of the wrist more effectively than current practices and improves the degree of overall comfort of patients who undergo CAG and PCI.展开更多
Understanding of how combinations of agronomic options can be used to improve the grain yield and nitrogen use efficiency(NUE) of winter wheat is limited. A three-year experiment involving four integrated management...Understanding of how combinations of agronomic options can be used to improve the grain yield and nitrogen use efficiency(NUE) of winter wheat is limited. A three-year experiment involving four integrated management strategies was conducted from 2013 to 2015 in Tai'an, Shandong Province, China, to evaluate changes in grain yield and NUE. The integrated management treatments were as follows: current practice(T1); improvement of current practice(T2); high-yield management(T3), which aimed to maximize grain yield regardless of the cost of resource inputs; and integrated soil and crop system management(T4) with a higher seeding rate, delayed sowing date, and optimized nutrient management. Seeding rates increased by 75 seeds m^-2 with each treatment from T1(225 seeds m^-2) to T4(450 seeds m^-2). The sowing dates were delayed from T1(5 th Oct.) to T2 and T3(8 th Oct.), and to T4 treatment(12 th Oct.). T1, T2, T3, and T4 received 315, 210, 315, and 240 kg N ha^-1, 120, 90, 210 and 120 kg P2O5 ha^-1, 30, 75, 90, and 45 kg K2O ha^-1, respectively. The ratio of basal application to topdressing for T1, T2, T3, and T4 was 6:4, 5:5, 4:6, and 4:6, respectively, with the N topdressing applied at regreening for T1 and at jointing stage for T2, T3, and T4. The P fertilizers in all treatments were applied as basal fertilizer. The K fertilizer for T1 and T2 was applied as basal fertilizer while the ratio of basal application to topdressing(at jointing stage) of K fertilizer for both T3 and T4 was 6:4. T1, T2, T3, and T4 were irrigated five, four, four and three times, respectively. Treatment T3 produced the highest grain yield among all treatments over three years and the average yield was 9 277.96 kg ha^-1. Grain yield averaged across three years with the T4 treatment(8 892.93 kg ha^-1) was 95.85% of that with T3 and was 21.72 and 6.10% higher than that with T1(7 305.95 kg ha^-1) and T2(8 381.41 kg ha^-1), respectively. Treatment T2 produced the highest NUE of all the integrated treatments. The NUE with T4 was 95.36% of that with T2 and was 51.91 and 25.62% higher than that with T1 and T3, respectively. The N uptake efficiency(UPE) averaged across three years with T4 was 50.75 and 16.62% higher than that with T1and T3, respectively. The N utilization efficiency(UTE) averaged across three years with T4 was 7.74% higher than that with T3. The increased UPE with T4 compared with T3 could be attributed mostly to the lower available N in T4, while the increased UTE with T4 was mainly due to the highest N harvest index and low grain N concentration, which consequently led to improved NUE. The net profit for T4 was the highest among four treatments and was 174.94, 22.27, and 28.10% higher than that for T1, T2, and T3, respectively. Therefore, the T4 treatment should be a recommendable management strategy to obtain high grain yield, high NUE, and high economic benefits in the target region, although further improvements of NUE are required.展开更多
A novel parallel hybrid electrical urban bus (PHEUB) configuration consisting of an extra one-way clutch and an automatic mechanical transmission (AMT) is taken as the study subject. An energy management strategy ...A novel parallel hybrid electrical urban bus (PHEUB) configuration consisting of an extra one-way clutch and an automatic mechanical transmission (AMT) is taken as the study subject. An energy management strategy combining a logic threshold approach and an instantaneous optimization algorithm is proposed for the investigated PHEUB. The objective of the energy management strategy is to achieve acceptable vehicle performance and drivability requirements while simultaneously maximizing the engine fuel consumption and maintaining the battery state of charge in its operation range at all times. Under the environment of Matlab/Simulink, a computer simulation model for the PHEUB is constructed by using the model building method combining theoretical analysis and bench test data. Simulation and experiment results for China Typical Bus Driving Schedule at Urban District (CTBDS_UD) are obtained, and the results indicate that the proposed control strategy not only controls the hybrid system efficiently but also improves the fuel economy significantly.展开更多
According to overall mean square root of weighted deviation, presented an evaluation model of geology-technique-social conditions with a significant index system for the estimation of operating quality in productive c...According to overall mean square root of weighted deviation, presented an evaluation model of geology-technique-social conditions with a significant index system for the estimation of operating quality in productive coal mines. In the given example, the evaluation result is used to decide management strategy of coal mine, which plays a guiding role in the production.展开更多
The development of intelligent connected technology has brought opportunities and challenges to the design of energy management strategies for hybrid electric vehicles.First,to achieve car-following in a connected env...The development of intelligent connected technology has brought opportunities and challenges to the design of energy management strategies for hybrid electric vehicles.First,to achieve car-following in a connected environment while reducing vehicle fuel consumption,a power split hybrid electric vehicle was used as the research object,and a mathematical model including engine,motor,generator,battery and vehicle longitudinal dynamics is established.Second,with the goal of vehicle energy saving,a layered optimization framework for hybrid electric vehicles in a networked environment is proposed.The speed planning problem is established in the upper-level controller,and the optimized speed of the vehicle is obtained and input to the lower-level controller.Furthermore,after the lower-level controller reaches the optimized speed,it distributes the torque among the energy sources of the hybrid electric vehicle based on the equivalent consumption minimum strategy.The simulation results show that the proposed layered control framework can achieve good car-following performance and obtain good fuel economy.展开更多
In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is d...In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is divided into power mode and economy mode. Energy management strategy designing methods of power mode and economy mode are proposed. Maximum velocity, acceleration performance and fuel consumption are simulated during the CS period in the AVL CRUISE simulation environment. The simulation results indicate that the maximum velocity and acceleration time of the power mode are better than those in the economy mode. Fuel consumption of the economy mode is better than that in the power mode. Fuel consumption of PHEV during the CS period is further improved by using the methods proposed in this paper, and this is meaningful for research and development of PHEV.展开更多
A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal...A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal components,electric motor,system efficiency optimization models are developed.According to the target of instantaneous optimization of system efficiency,operating ranges of each mode of power-train are determined,and the corresponding energy management strategies are established.The simulation results demonstrate that the energy management strategy proposed can substantially improve the vehicle fuel economy,and keep battery state of charge(SOC)change in a reasonable variation range.展开更多
The flux-modulated compound-structure permanent magnet synchronous machine (CS-PMSM), composed of a brushless double rotor machine (DRM) and a conventional permanent magnet synchronous machine (PMSM), is a power split...The flux-modulated compound-structure permanent magnet synchronous machine (CS-PMSM), composed of a brushless double rotor machine (DRM) and a conventional permanent magnet synchronous machine (PMSM), is a power split device for plug-in hybrid electric vehicles. In this paper, its operating principle and mathematical model are introduced. A modified current controller with decoupled state feedback is proposed and verified. The system control strategy is simulated in Matlab, and the feasibility of the control system is proven. To improve fuel economy, an energy management strategy based on fuzzy logic controller is proposed and evaluated by the Urban Dynamometer Driving Schedule (UDDS) drive cycle. The results show that the total energy consumption is similar to that of Prius 2012.展开更多
In order to improve the management strategy for personnel files in colleges and universities,simplify the complex process of file management,and improve file management security and content preservation of the files.T...In order to improve the management strategy for personnel files in colleges and universities,simplify the complex process of file management,and improve file management security and content preservation of the files.This paper elaborates on the application of Artificial Intelligence(AI)technology in university personnel file management through theoretical analysis based on the understanding of Al technology.展开更多
This paper proposes an energy management strategy for a fuel cell(FC)hybrid power system based on dynamic programming and state machine strategy,which takes into account the durability of the FC and the hydrogen consu...This paper proposes an energy management strategy for a fuel cell(FC)hybrid power system based on dynamic programming and state machine strategy,which takes into account the durability of the FC and the hydrogen consumption of the system.The strategy first uses the principle of dynamic programming to solve the optimal power distribution between the FC and supercapacitor(SC),and then uses the optimization results of dynamic programming to update the threshold values in each state of the finite state machine to realize real-time management of the output power of the FC and SC.An FC/SC hybrid tramway simulation platform is established based on RTLAB real-time simulator.The compared results verify that the proposed EMS can improve the durability of the FC,increase its working time in the high-efficiency range,effectively reduce the hydrogen consumption,and keep the state of charge in an ideal range.展开更多
WCDMA Radio Resource Management (RRM) controls the allocation and usage of all radio resources. The purpose of RRM is to have optimal coverage and capacity while ensuring the QoS. RRM directly affects the system perfo...WCDMA Radio Resource Management (RRM) controls the allocation and usage of all radio resources. The purpose of RRM is to have optimal coverage and capacity while ensuring the QoS. RRM directly affects the system performance. As the soul of system control, it includes power control, handoff control, load control, admission control, code allocation, etc. This paper introduces the RRM strategy of ZTE's WCDMA equipment.展开更多
“Li Ziqi”is not only a Chinese girl,but also a cultural brand of new media with certain international influence.Currently,she has more than 20 million fans on the YouTube platform.In July 2021,she stopped making wor...“Li Ziqi”is not only a Chinese girl,but also a cultural brand of new media with certain international influence.Currently,she has more than 20 million fans on the YouTube platform.In July 2021,she stopped making works,and then gradually faded from the public eye.Until November 12,2024,she released her new work“Carved Lacquer With Hidden Flowers,Carrying Auspiciousness!”For a while,the whole network was boiling,netizens rushed to tell each other,the video has been played more than 100 million times,and she easily returned to the“top of flow rate”.In today’s ever-changing world,why does her work continue to be popular after she stopped working for 1,200 days?The way of management is worth thinking about.This paper analyzes the Weibo comments data of her first work of comeback,to explore the cultural brand management strategy of new media.展开更多
At present, with the rapid development of economy, the pressure of market competition among all walks of life is also increasing. Especially since the reform and opening up, all kinds of private enterprises and compan...At present, with the rapid development of economy, the pressure of market competition among all walks of life is also increasing. Especially since the reform and opening up, all kinds of private enterprises and companies have mushroomed, which has promoted the competition among entrepreneurs and industrialists. With the development of information technology, the extensive use of network and related by-products makes the information circulation between enterprises become faster, and many companies gradually assimilate the differences in their own management mode and operation mode. Therefore, the human resource management of senior economists has become an important strategy for enterprises to compete with basic companies.展开更多
The fierce competition in the market brings many challenges to the development of enterprises, and also brings development opportunities. In the market development of state-owned enterprises, facing the rapid developm...The fierce competition in the market brings many challenges to the development of enterprises, and also brings development opportunities. In the market development of state-owned enterprises, facing the rapid development of social economy and the international cooperation and exchange of global economy, the experience development challenges of state-owned enterprises are upgraded. In financial management, the management system of centralized accounting will affect the quality and efficiency of financial management and the stable economic development of state-owned enterprises. Therefore, this paper studies the financial management strategy in centralized accounting, so that it can have more available accounting resources in the development of state-owned enterprises. This paper analyzes the financial management strategy of state-owned enterprises under centralized accounting, hoping to enhance the role of financial management.展开更多
With the development of economy and society, urbanization is also developing rapidly. Therefore, many construction companies have appeared. The appearance of these companies has accelerated the urbanization process an...With the development of economy and society, urbanization is also developing rapidly. Therefore, many construction companies have appeared. The appearance of these companies has accelerated the urbanization process and improved the urbanization level. However, there are advantages and disadvantages. In the process of urbanization, a lot of pollution has been caused, such as noise pollution, dust pollution, light pollution, etc., which has a significant impact on peoples lives and health. With the continuous development of urbanization, the concept of low-carbon life came into being. This is a new concept of environmental protection and green construction, and it is also the aspiration of people for green development in the new era. Therefore, all localities are also actively taking measures to reduce the pollution hazards of construction projects.展开更多
The total area of grassland in the world is about 50 million km^2, accounting for 33.5% of the total land area (Lieth, 1975). The permanent grassland used by mankind is 33.04 million km^2, accounting for 25.3% of the ...The total area of grassland in the world is about 50 million km^2, accounting for 33.5% of the total land area (Lieth, 1975). The permanent grassland used by mankind is 33.04 million km^2, accounting for 25.3% of the total land area (FAO,1990). Grassland can provide feed for herbivore and produce high-quality food,clothing,medicines and industrial materials for man.On the other hand,it also plays an important role in the fertility of the soil,the conservation of water, the improvement of the environment and maintaining the ecological balance of the Earth’s surface.展开更多
基金Supported by National Natural Science Foundation of ChinaShanxi Coalbased Low-Carbon Joint Fund(Grant No.U1910211)。
文摘Using electric motors instead of diesel engines as the driving system for mining excavators can reduce the energy consumption and operating costs.However,pure electric-driven mining excavators are prone to unexpected power outages in mines because of drastic changes in load power,leading to significant fluctuations in the power demand of the grid,which in turn affects production.To solve the above problem,a pure electric-driven mining hydraulic excavator based on electric-motor-driven swing platform and hydraulic pumps was used as the research object.Moreover,supercapacitors and DC/DC converter,as the energy storage system(ESS)adjust the output power of the grid and recover the braking kinetic energy of the swing platform.Subsequently,a novel integrated energy management strategy for a DC bus voltage predictive controller based on the power feedforward of fuzzy rules is proposed to run mining excavators efficiently and reliably.Specifically,the working modes of the ESS are determined by the DC bus voltage and state of charge(SOC)of the supercapacitor.Next,the output power of the supercapacitor and the DC bus voltage were controlled by adjusting the charging and discharging currents of the DC/DC converter using a predictive controller and fuzzy rules.In addition,a digital prototype of the excavator was verified using an original machine test.The performance of the different strategies and driven systems were analyzed using digital prototypes.The results showed that,compared with traditional excavators with diesel engines,the operational cost of the developed excavators was reduced by 54.02%.Compared to pure electric-driven excavators without an ESS,the peak power of the grid for the developed excavators was reduced by 10%.This study designed an integrated energy management strategy for a pure electric mining excavator that can regulate the power output of the grid and maintain the stability of the bus voltage and SOC of the ESS.
基金supported by the National Key R&D Program of China(2022YFB4301403).
文摘Hydrogen fuel cell ships are one of the key solutions to achieving zero carbon emissions in shipping.Multi-fuel cell stacks(MFCS)systems are frequently employed to fulfill the power requirements of high-load power equipment on ships.Compared to single-stack system,MFCS may be difficult to apply traditional energy management strategies(EMS)due to their complex structure.In this paper,a two-layer power allocation strategy for MFCS of a hydrogen fuel cell ship is proposed to reduce the complexity of the allocation task by splitting it into each layer of the EMS.The first layer of the EMSis centered on the Nonlinear Model Predictive Control(NMPC).The Northern Goshawk Optimization(NGO)algorithm is used to solve the nonlinear optimization problem in NMPC,and the local fine search is performed using sequential quadratic programming(SQP).Based on the power allocation results of the first layer,the second layer is centered on a fuzzy rule-based adaptive power allocation strategy(AP-Fuzzy).The membership function bounds of the fuzzy controller are related to the aging level of the MFCS.The Particle Swarm Optimization(PSO)algorithm is used to optimize the parameters of the residual membership function to improve the performance of the proposed strategy.The effectiveness of the proposed EMS is verified by comparing it with the traditional EMS.The experimental results show that the EMS proposed in this paper can ensure reasonable hydrogen consumption,slow down the FC aging and equalize its performance,effectively extend the system life,and ensure that the ship has good endurance after completing the mission.
基金This project is supported by Electric Vehicle Key Project of National 863 Program of China (No.2001AA501200, 2001AA501211).
文摘Energy management strategy (EMS) is the core of the real-time controlalgorithm of the hybrid electric vehicle (HEV). A novel EMS using the logic threshold approach withincorporation of a stand-by optimization algorithm is proposed. The aim of it is to minimize theengine fuel consumption and maintain the battery state of charge (SOC) in its operation range, whilesatisfying the vehicle performance and drivability requirements. The hybrid powertrain bench testis carried out to collect data of the engine, motor and battery pack, which are used in the EMS tocontrol the powertrain. Computer simulation model of the HEV is established in the MATLAB/Simulinkenvironment according to the bench test results. Simulation results are presented for behaviors ofthe engine, motor and battery. The proposed EMS is implemented for a real parallel hybrid carcontrol system and validated by vehicle field tests.
基金financially supported by the Support Plan for Overseas Students to Return to China for Entrepreneurship and Innovation(cx2020003)the Fundamental Research Funds for the Central Universities(2020CDJ-LHZZ-074)the Natural Science Foundation of Chongqing(cstc2020jcyj-msxm X0629)。
文摘The defects from electron transport layer,perovskite layer and their interface would result in carrier nonradiative recombination losses.Poor buried interfacial contact is detrimental to charge extraction and device stability.Here,we report a bottom-up holistic carrier management strategy induced synergistically by multiple chemical bonds to minimize bulk and interfacial energy losses for high-performance perovskite photovoltaics.4-trifluoromethyl-benzamidine hydrochloride(TBHCl)containing–CF_(3),amidine cation and Cl^(-)is in advance incorporated into SnO_(2)colloid solution to realize bottom-up modification.The synergistic effect of multiple functional groups and multiple-bond-induced chemical interaction are revealed theoretically and experimentally.F and Cl^(-)can passivate oxygen vacancy and/or undercoordinated Sn^(4+)defects by coordinating with Sn^(4+).The F can suppress cation migration and modulate crystallization via hydrogen bond with FA^(+),and can passivate lead defects by coordinating with Pb^(2+).The–NH_(2)–C=NH^(+)_(2)and Cl^(-)can passivate cation and anion vacancy defects through ionic bonds with perovskites,respectively.Through TBHCl modification,the suppression of agglomeration of SnO_(2)nanoparticles,bulk and interfacial defect passivation,and release of tensile strains of perovskite films are demonstrated,which resulted in a PCE enhancement from 21.28%to 23.40%and improved stability.With post-treatment,the efficiency is further improved to 23.63%.
基金This work was supported by the National Natural Science Foundation of China(GrantNos.81170279,81370408,81370409)the Social Development Projects of Jiangsu Province(WS074,LJ201116,Q201308)the Projects from Social Development of Zhenjiang(SS2012002,SH2013023,SH2013024).
文摘Purpose:To compare the effectiveness of the interventional limb raising management strategy(ILRMS)to elastic bandage compression at radial vascular access sites following coronary angiographies(CAGs)and percutaneous coronary interventions(PCIs).Methods:Patients with ischemic coronary heart disease whose condition was stable over three months were enrolled in this clinical study(n=590;aged 25e80).All participants had just undergone CAG and PCI.Patients were randomized into either the ILRMS group(n=360)or standard post-intervention care with an elastic bandage(n=230).Overall comfort and wrist pain was assessed and the degree of index finger swelling and oxygen saturation was measured on the affected arm.All variables were measured prior to postintervention treatment and again at six hours after CAG and PCI.Results:We found that patients receiving ILRMS had significantly lower wrist pain scores and swelling around the index finger compared to the elastic bandage group(p<0.05).Oxygen saturation of the index finger was not statistically significant(p>0.05).We also found that 19.57%of the elastic bandage patients were comfortable,while ILRMS patients were significantly more comfortable(93.06%;p<0.05).Conclusions:We find that ILRMS alleviates swelling and pain of the wrist more effectively than current practices and improves the degree of overall comfort of patients who undergo CAG and PCI.
基金supported by the National Basic Research Program of China (2015CB150404)the Special Fund for Agro-scientific Research in the Public Interest, China (201203096)the Project of Shandong Province Higher Educational Science and Technology Program, China (J15LF07)
文摘Understanding of how combinations of agronomic options can be used to improve the grain yield and nitrogen use efficiency(NUE) of winter wheat is limited. A three-year experiment involving four integrated management strategies was conducted from 2013 to 2015 in Tai'an, Shandong Province, China, to evaluate changes in grain yield and NUE. The integrated management treatments were as follows: current practice(T1); improvement of current practice(T2); high-yield management(T3), which aimed to maximize grain yield regardless of the cost of resource inputs; and integrated soil and crop system management(T4) with a higher seeding rate, delayed sowing date, and optimized nutrient management. Seeding rates increased by 75 seeds m^-2 with each treatment from T1(225 seeds m^-2) to T4(450 seeds m^-2). The sowing dates were delayed from T1(5 th Oct.) to T2 and T3(8 th Oct.), and to T4 treatment(12 th Oct.). T1, T2, T3, and T4 received 315, 210, 315, and 240 kg N ha^-1, 120, 90, 210 and 120 kg P2O5 ha^-1, 30, 75, 90, and 45 kg K2O ha^-1, respectively. The ratio of basal application to topdressing for T1, T2, T3, and T4 was 6:4, 5:5, 4:6, and 4:6, respectively, with the N topdressing applied at regreening for T1 and at jointing stage for T2, T3, and T4. The P fertilizers in all treatments were applied as basal fertilizer. The K fertilizer for T1 and T2 was applied as basal fertilizer while the ratio of basal application to topdressing(at jointing stage) of K fertilizer for both T3 and T4 was 6:4. T1, T2, T3, and T4 were irrigated five, four, four and three times, respectively. Treatment T3 produced the highest grain yield among all treatments over three years and the average yield was 9 277.96 kg ha^-1. Grain yield averaged across three years with the T4 treatment(8 892.93 kg ha^-1) was 95.85% of that with T3 and was 21.72 and 6.10% higher than that with T1(7 305.95 kg ha^-1) and T2(8 381.41 kg ha^-1), respectively. Treatment T2 produced the highest NUE of all the integrated treatments. The NUE with T4 was 95.36% of that with T2 and was 51.91 and 25.62% higher than that with T1 and T3, respectively. The N uptake efficiency(UPE) averaged across three years with T4 was 50.75 and 16.62% higher than that with T1and T3, respectively. The N utilization efficiency(UTE) averaged across three years with T4 was 7.74% higher than that with T3. The increased UPE with T4 compared with T3 could be attributed mostly to the lower available N in T4, while the increased UTE with T4 was mainly due to the highest N harvest index and low grain N concentration, which consequently led to improved NUE. The net profit for T4 was the highest among four treatments and was 174.94, 22.27, and 28.10% higher than that for T1, T2, and T3, respectively. Therefore, the T4 treatment should be a recommendable management strategy to obtain high grain yield, high NUE, and high economic benefits in the target region, although further improvements of NUE are required.
基金Shanghai Municipal Science and Technology Commission, China (No. 033012017).
文摘A novel parallel hybrid electrical urban bus (PHEUB) configuration consisting of an extra one-way clutch and an automatic mechanical transmission (AMT) is taken as the study subject. An energy management strategy combining a logic threshold approach and an instantaneous optimization algorithm is proposed for the investigated PHEUB. The objective of the energy management strategy is to achieve acceptable vehicle performance and drivability requirements while simultaneously maximizing the engine fuel consumption and maintaining the battery state of charge in its operation range at all times. Under the environment of Matlab/Simulink, a computer simulation model for the PHEUB is constructed by using the model building method combining theoretical analysis and bench test data. Simulation and experiment results for China Typical Bus Driving Schedule at Urban District (CTBDS_UD) are obtained, and the results indicate that the proposed control strategy not only controls the hybrid system efficiently but also improves the fuel economy significantly.
文摘According to overall mean square root of weighted deviation, presented an evaluation model of geology-technique-social conditions with a significant index system for the estimation of operating quality in productive coal mines. In the given example, the evaluation result is used to decide management strategy of coal mine, which plays a guiding role in the production.
基金supported by the National Natural Science Foundation of China(Grant No.62111530196)and the Technology Development Program of Jilin Province(Grant No.20200501010G X).
文摘The development of intelligent connected technology has brought opportunities and challenges to the design of energy management strategies for hybrid electric vehicles.First,to achieve car-following in a connected environment while reducing vehicle fuel consumption,a power split hybrid electric vehicle was used as the research object,and a mathematical model including engine,motor,generator,battery and vehicle longitudinal dynamics is established.Second,with the goal of vehicle energy saving,a layered optimization framework for hybrid electric vehicles in a networked environment is proposed.The speed planning problem is established in the upper-level controller,and the optimized speed of the vehicle is obtained and input to the lower-level controller.Furthermore,after the lower-level controller reaches the optimized speed,it distributes the torque among the energy sources of the hybrid electric vehicle based on the equivalent consumption minimum strategy.The simulation results show that the proposed layered control framework can achieve good car-following performance and obtain good fuel economy.
文摘In this paper, a plug-in hybrid electrical vehicle(PHEV) is taken as the research object, and its dynamic performance and economic performance are taken as the research goals. Battery charge-sustaining(CS) period is divided into power mode and economy mode. Energy management strategy designing methods of power mode and economy mode are proposed. Maximum velocity, acceleration performance and fuel consumption are simulated during the CS period in the AVL CRUISE simulation environment. The simulation results indicate that the maximum velocity and acceleration time of the power mode are better than those in the economy mode. Fuel consumption of the economy mode is better than that in the power mode. Fuel consumption of PHEV during the CS period is further improved by using the methods proposed in this paper, and this is meaningful for research and development of PHEV.
基金Supported by the National Science and Technology Support Program(2013BAG12B01)Foundational and Advanced Research Program General Project of Chongqing City(cstc2013jcyjjq60002)
文摘A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal components,electric motor,system efficiency optimization models are developed.According to the target of instantaneous optimization of system efficiency,operating ranges of each mode of power-train are determined,and the corresponding energy management strategies are established.The simulation results demonstrate that the energy management strategy proposed can substantially improve the vehicle fuel economy,and keep battery state of charge(SOC)change in a reasonable variation range.
基金This work was supported by National Natural Science Foundation of China under Project 51325701,51377030,and 51407042.
文摘The flux-modulated compound-structure permanent magnet synchronous machine (CS-PMSM), composed of a brushless double rotor machine (DRM) and a conventional permanent magnet synchronous machine (PMSM), is a power split device for plug-in hybrid electric vehicles. In this paper, its operating principle and mathematical model are introduced. A modified current controller with decoupled state feedback is proposed and verified. The system control strategy is simulated in Matlab, and the feasibility of the control system is proven. To improve fuel economy, an energy management strategy based on fuzzy logic controller is proposed and evaluated by the Urban Dynamometer Driving Schedule (UDDS) drive cycle. The results show that the total energy consumption is similar to that of Prius 2012.
文摘In order to improve the management strategy for personnel files in colleges and universities,simplify the complex process of file management,and improve file management security and content preservation of the files.This paper elaborates on the application of Artificial Intelligence(AI)technology in university personnel file management through theoretical analysis based on the understanding of Al technology.
基金supported by the National Natural Science Foundation(Nos.51977181,52077180,52007157)Fok Ying-Tong Education Foundation of China(No.171104).
文摘This paper proposes an energy management strategy for a fuel cell(FC)hybrid power system based on dynamic programming and state machine strategy,which takes into account the durability of the FC and the hydrogen consumption of the system.The strategy first uses the principle of dynamic programming to solve the optimal power distribution between the FC and supercapacitor(SC),and then uses the optimization results of dynamic programming to update the threshold values in each state of the finite state machine to realize real-time management of the output power of the FC and SC.An FC/SC hybrid tramway simulation platform is established based on RTLAB real-time simulator.The compared results verify that the proposed EMS can improve the durability of the FC,increase its working time in the high-efficiency range,effectively reduce the hydrogen consumption,and keep the state of charge in an ideal range.
文摘WCDMA Radio Resource Management (RRM) controls the allocation and usage of all radio resources. The purpose of RRM is to have optimal coverage and capacity while ensuring the QoS. RRM directly affects the system performance. As the soul of system control, it includes power control, handoff control, load control, admission control, code allocation, etc. This paper introduces the RRM strategy of ZTE's WCDMA equipment.
文摘“Li Ziqi”is not only a Chinese girl,but also a cultural brand of new media with certain international influence.Currently,she has more than 20 million fans on the YouTube platform.In July 2021,she stopped making works,and then gradually faded from the public eye.Until November 12,2024,she released her new work“Carved Lacquer With Hidden Flowers,Carrying Auspiciousness!”For a while,the whole network was boiling,netizens rushed to tell each other,the video has been played more than 100 million times,and she easily returned to the“top of flow rate”.In today’s ever-changing world,why does her work continue to be popular after she stopped working for 1,200 days?The way of management is worth thinking about.This paper analyzes the Weibo comments data of her first work of comeback,to explore the cultural brand management strategy of new media.
文摘At present, with the rapid development of economy, the pressure of market competition among all walks of life is also increasing. Especially since the reform and opening up, all kinds of private enterprises and companies have mushroomed, which has promoted the competition among entrepreneurs and industrialists. With the development of information technology, the extensive use of network and related by-products makes the information circulation between enterprises become faster, and many companies gradually assimilate the differences in their own management mode and operation mode. Therefore, the human resource management of senior economists has become an important strategy for enterprises to compete with basic companies.
文摘The fierce competition in the market brings many challenges to the development of enterprises, and also brings development opportunities. In the market development of state-owned enterprises, facing the rapid development of social economy and the international cooperation and exchange of global economy, the experience development challenges of state-owned enterprises are upgraded. In financial management, the management system of centralized accounting will affect the quality and efficiency of financial management and the stable economic development of state-owned enterprises. Therefore, this paper studies the financial management strategy in centralized accounting, so that it can have more available accounting resources in the development of state-owned enterprises. This paper analyzes the financial management strategy of state-owned enterprises under centralized accounting, hoping to enhance the role of financial management.
文摘With the development of economy and society, urbanization is also developing rapidly. Therefore, many construction companies have appeared. The appearance of these companies has accelerated the urbanization process and improved the urbanization level. However, there are advantages and disadvantages. In the process of urbanization, a lot of pollution has been caused, such as noise pollution, dust pollution, light pollution, etc., which has a significant impact on peoples lives and health. With the continuous development of urbanization, the concept of low-carbon life came into being. This is a new concept of environmental protection and green construction, and it is also the aspiration of people for green development in the new era. Therefore, all localities are also actively taking measures to reduce the pollution hazards of construction projects.
文摘The total area of grassland in the world is about 50 million km^2, accounting for 33.5% of the total land area (Lieth, 1975). The permanent grassland used by mankind is 33.04 million km^2, accounting for 25.3% of the total land area (FAO,1990). Grassland can provide feed for herbivore and produce high-quality food,clothing,medicines and industrial materials for man.On the other hand,it also plays an important role in the fertility of the soil,the conservation of water, the improvement of the environment and maintaining the ecological balance of the Earth’s surface.