The Internet plays increasingly important roles in everyone's life; however, the existence of a mismatch between the basic architectural idea beneath the Internet and the emerging requirements for it is becoming m...The Internet plays increasingly important roles in everyone's life; however, the existence of a mismatch between the basic architectural idea beneath the Internet and the emerging requirements for it is becoming more and more obvious. Although the Internet community came up with a consensus that the future network should be trustworthy, the concept of 'trustworthy networks' and the ways leading us to a trustworthy network are not yet clear. This research insists that the security, controllability, manageability, and survivability should be basic properties of a trustworthy network. The key ideas and techniques involved in these properties are studied, and recent developments and progresses are surveyed. At the same time, the technical trends and challenges are briefly discussed. The network trustworthiness could and should be eventually achieved.展开更多
Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fund...Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fundamental trade-off between haze and transparency,coupled with impractical thicknesses(≥1 mm).Inspired by squid’s skin-peeling mechanism,this work develops a peroxyformic acid(HCOOOH)-enabled precision peeling strategy to isolate intact 10-μm-thick bamboo green(BG)frameworks—100×thinner than wood-based counterparts while achieving an unprecedented optical performance(88%haze with 80%transparency).This performance surpasses delignified biomass(transparency<40%at 1 mm)and matches engineered cellulose composites,yet requires no energy-intensive nanofibrillation.The preserved native cellulose I crystalline structure(64.76%crystallinity)and wax-coated uniaxial fibril alignment(Hermans factor:0.23)contribute to high mechanical strength(903 MPa modulus)and broadband light scattering.As a light-management layer in polycrystalline silicon solar cells,the BG framework boosts photoelectric conversion efficiency by 0.41%absolute(18.74%→19.15%),outperforming synthetic anti-reflective coatings.The work establishes a scalable,waste-to-wealth route for optical-grade cellulose materials in next-generation optoelectronics.展开更多
While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfa...While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfacial evaporation offers sustainable management potential,yet inevitable salt nucleation at evaporation interfaces degrades photothermal conversion and operational stability via light scattering and pathway blockage.Inspired by the mangrove leaf,we propose a photothermal 3D polydopamine and polypyrrole polymerized spacer fabric(PPSF)-based upward hanging model evaporation configuration with a reverse water feeding mechanism.This design enables zero-liquiddischarge(ZLD)desalination through phase-separation crystallization.The interconnected porous architecture and the rough surface of the PPSF enable superior water transport,achieving excellent solar-absorbing efficiency of 97.8%.By adjusting the tilt angle(θ),the evaporator separates the evaporation and salt crystallization zones via controlled capillary-driven brine transport,minimizing heat dissipation from brine discharge.At an optimal tilt angle of 52°,the evaporator reaches an evaporation rate of 2.81 kg m^(−2) h^(−1) with minimal heat loss(0.366 W)under 1-sun illumination while treating a 7 wt%waste brine solution.Furthermore,it sustains an evaporation rate of 2.71 kg m^(−2) h^(−1) over 72 h while ensuring efficient salt recovery.These results highlight a scalable,energy-efficient approach for sustainable ZLD desalination.展开更多
Perovskite solar cells(PSCs)have emerged as promising photovoltaic technologies owing to their remarkable power conversion efficiency(PCE).However,heat accumulation under continuous illumination remains a critical bot...Perovskite solar cells(PSCs)have emerged as promising photovoltaic technologies owing to their remarkable power conversion efficiency(PCE).However,heat accumulation under continuous illumination remains a critical bottleneck,severely affecting device stability and long-term operational performance.Herein,we present a multifunctional strategy by incorporating highly thermally conductive Ti_(3)C_(2)T_(X) MXene nanosheets into the perovskite layer to simultaneously enhance thermal management and optoelectronic properties.The Ti_(3)C_(2)T_(X) nanosheets,embedded at perovskite grain boundaries,construct efficient thermal conduction pathways,significantly improving the thermal conductivity and diffusivity of the film.This leads to a notable reduction in the device’s steady-state operating temperature from 42.96 to 39.97 under 100 mW cm^(−2) illumination,thereby alleviating heat-induced performance degradation.Beyond thermal regulation,Ti_(3)C_(2)T_(X),with high conductivity and negatively charged surface terminations,also serves as an effective defect passivation agent,reducing trap-assisted recombination,while simultaneously facilitating charge extraction and transport by optimizing interfacial energy alignment.As a result,the Ti_(3)C_(2)T_(X)-modified PSC achieve a champion PCE of 25.13%and exhibit outstanding thermal stability,retaining 80%of the initial PCE after 500 h of thermal aging at 85 and 30±5%relative humidity.(In contrast,control PSC retain only 58%after 200 h.)Moreover,under continuous maximum power point tracking in N2 atmosphere,Ti_(3)C_(2)T_(X)-modified PSC retained 70%of the initial PCE after 500 h,whereas the control PSC drop sharply to 20%.These findings highlight the synergistic role of Ti_(3)C_(2)T_(X) in thermal management and optoelectronic performance,paving the way for the development of high-efficiency and heat-resistant perovskite photovoltaics.展开更多
BACKGROUND Humeral shaft fractures are common and vary by age,with high-energy trauma observed in younger adults and low-impact injuries in older adults.Radial nerve palsy is a frequent complication.Treatment ranges f...BACKGROUND Humeral shaft fractures are common and vary by age,with high-energy trauma observed in younger adults and low-impact injuries in older adults.Radial nerve palsy is a frequent complication.Treatment ranges from nonoperative methods to surgical interventions such as intramedullary K-wires,which promote faster rehabilitation and improved elbow mobility.AIM To evaluate the outcomes of managing humeral shaft fractures using closed reduction and internal fixation with flexible intramedullary K-wires.METHODS This was a retrospective cohort study analyzing the medical records of patients with humeral shaft fractures managed with flexible intramedullary K-wires at King Abdulaziz Medical City,using non-random sampling and descriptive analysis for outcome evaluation.RESULTS This study assessed the clinical outcomes of 20 patients treated for humeral shaft fractures with intramedullary K-wires.Patients were predominantly male(n=16,80%),had an average age of 39.2 years,and a mean body mass index of 29.5 kg/m^(2).The fractures most frequently occurred in the middle third of the humerus(n=14,70%),with oblique fractures being the most common type(n=7,35%).All surgeries used general anesthesia and a posterior approach,with no intraoperative complications reported.Postoperatively,all patients achieved clinical and radiological union(n=20,100%),and the majority(n=13,65%)reached an elbow range of motion from 0 to 150 degrees.CONCLUSION These results suggest that intramedullary K-wire fixation may be an effective option for treating humeral shaft fractures,with favorable outcomes in range of motion recovery,fracture union,and a low rate of intraoperative complications.展开更多
Sustainable water,energy and food(WEF)supplies are the bedrock upon which human society depends.Solar-driven interfacial evaporation,combined with electricity generation and cultivation,is a promising approach to miti...Sustainable water,energy and food(WEF)supplies are the bedrock upon which human society depends.Solar-driven interfacial evaporation,combined with electricity generation and cultivation,is a promising approach to mitigate the freshwater,energy and food crises.However,the performance of solar-driven systems decreases significantly during operation due to uncontrollable weather.This study proposes an integrated water/electricity cogeneration-cultivation system with superior thermal management.The energy storage evaporator,consisting of energy storage microcapsules/hydrogel composites,is optimally designed for sustainable desalination,achieving an evaporation rate of around 1.91 kg m^(-2)h^(-1).In the dark,heat released from the phase-change layer supported an evaporation rate of around 0.54kg m^(-2)h^(-1).Reverse electrodialysis harnessed the salinity-gradient energy enhanced during desalination,enabling the long-running WEC system to achieve a power output of~0.3 W m^(-2),which was almost three times higher than that of conventional seawater/surface water mixing.Additionally,an integrated crop irrigation platform utilized system drainage for real-time,on-demand wheat cultivation without secondary contaminants,facilitating seamless WEF integration.This work presents a novel approach to all-day solar water production,electricity generation and crop irrigation,offering a solution and blueprint for the sustainable development of WEF.展开更多
BACKGROUND Complement-mediated thrombotic microangiopathy(TMA)is a rare endothelial injury syndrome caused by dysregulated activation of the alternative complement pathway,often linked to genetic abnormalities in comp...BACKGROUND Complement-mediated thrombotic microangiopathy(TMA)is a rare endothelial injury syndrome caused by dysregulated activation of the alternative complement pathway,often linked to genetic abnormalities in complement factor H(CFH),complement factor I,or complement factor H-related(CFHR)proteins.Both renal transplantation and pregnancy are independent triggers for recurrence.This case highlights a genetically high-risk patient who achieved a successful term pregnancy after renal transplantation without complement inhibition,emphasizing individualized risk stratification,close surveillance,and multidisciplinary management for favourable maternal and graft outcomes.CASE SUMMARY A 32-year-old woman with end-stage renal disease secondary to genetically confirmed complement-mediated TMA—homozygous CFH exon 17 deletion and CFHR3-CFHR1 duplication—was maintained on dialysis for 2.5 years before undergoing a successful live-donor kidney transplant from her mother.Post-transplant immunosuppression included tacrolimus,mycophenolate mofetil,and prednisolone,later modified to azathioprine during pregnancy planning.One-year post-transplant,she conceived spontaneously.Pregnancy was complicated by transient gestational hypertension,controlled with nifedipine,labetalol,and amlodipine.Proteinuria remained<150 mg/day;white blood cell counts 5.8-7.2×109/L without cytopenia.Serum creatinine ranged 0.9-1.1 mg/dL,and tacrolimus trough levels 5-7 ng/mL.At 36 weeks,she delivered a healthy 3 kg infant by elective caesarean section.Postpartum follow-up at three months confirmed stable maternal and graft function.CONCLUSION High-risk complement-mediated TMA patients can achieve successful pregnancy post-transplant through individualized care without mandatory complement blockade.展开更多
Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network act...Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.展开更多
Colonoscopy represents a safe procedure that is widely used in medical practice either to diagnose or treat various gastrointestinal diseases.During the last few years,the incidence rate of perforations in colonoscopi...Colonoscopy represents a safe procedure that is widely used in medical practice either to diagnose or treat various gastrointestinal diseases.During the last few years,the incidence rate of perforations in colonoscopic procedures has increased,especially in therapeutic colonoscopies.The recent advancements in endoscopic techniques and gastrointestinal tumoral resection procedures such as endoscopic mucosal resection,endoscopic full-thickness resection,and endoscopic submucosal dissection(ESD)could be a risk factor for this increased risk.The incidence rate of mortality of serious colonoscopic perforations is 7.1%.The management plan for these perforations starts with conservative treatment in mild cases,endoscopic closure,and surgical management in severe cases.Recently,endoluminal vacuum therapy was found to be effective in the management of colorectal perforations and this has been reported in multiple case reports.This editorial provides an overview of the current guidelines for the management of iatrogenic colorectal perforations.These insights are from the perspectives of endoscopists and gastroenterologists.We also present a management algorithm based on the guidelines of the European Society of Gastrointestinal Endoscopy,the American Gastroenterological Association,and the World Society of Emergency Surgery.We also discussed in brief the use of endoluminal vacuum therapy in colorectal perforations.展开更多
BACKGROUND Addressing the growing challenge of hospitalizing chronic multimorbid patients,this study examines the strain these conditions impose on healthcare systems at a local level,focusing on a pilot program.Chron...BACKGROUND Addressing the growing challenge of hospitalizing chronic multimorbid patients,this study examines the strain these conditions impose on healthcare systems at a local level,focusing on a pilot program.Chronic diseases and complex patients require comprehensive management strategies to reduce healthcare burdens and improve patient outcomes.If proven effective,this pilot model has the potential to be replicated in other healthcare settings to enhance the management of chronic multimorbid patients.AIM To evaluate the effectiveness of the high complexity unit(HCU)in managing chronic multimorbid patients through a multidisciplinary care model and to compare it with standard hospital care.METHODS The study employed a descriptive longitudinal approach,analyzing data from the Basic Minimum Data Set(BMDS)to compare hospitalization variables among the HCU,the Internal Medicine Service,and other services at Antequera Hospital throughout 2022.The HCU,designed for patients with complex chronic conditions,integrates a patient-centered model emphasizing multidisciplinary care and continuity post-discharge.RESULTS The study employed a descriptive longitudinal approach,analyzing data from the BMDS to compare hospitalization variables among the HCU,the Internal Medicine Service,and other services at Antequera Hospital throughout 2022.The HCU,designed for patients with complex chronic conditions,integrates a patient-centered model emphasizing multidisciplinary care and continuity post-discharge.CONCLUSION This study demonstrates the effectiveness of the HCU in managing patients with complex chronic diseases through a multidisciplinary approach.The coordinated care provided by the HCU results in improved patient outcomes,reduced unnecessary hospitalizations,and better management of patient complexity.The superiority of the HCU compared to standard care is evident in key outcomes such as fewer readmissions and higher patient satisfaction,reinforcing its value as a model of care to be replicated.展开更多
BACKGROUND There is a lack of clinical evidence on the efficacy and safety of transitioning from a thrice-daily pre-mixed insulin or basal-prandial regimen to insulin degludec/aspart(IDegAsp)therapy,with insufficient ...BACKGROUND There is a lack of clinical evidence on the efficacy and safety of transitioning from a thrice-daily pre-mixed insulin or basal-prandial regimen to insulin degludec/aspart(IDegAsp)therapy,with insufficient data from the Chinese population.AIM To demonstrate the efficacy,safety,and treatment satisfaction associated with the transition to IDegAsp in type 2 diabetes mellitus(T2DM).METHODS In this 12-week open-label,non-randomized,single-center,pilot study,patients with T2DM receiving thrice-daily insulin or intensive insulin treatment were transitioned to twice-daily injections of insulin IDegAsp.Insulin doses,hemoglobin A1c(HbA1c)levels,fasting blood glucose(FBG),hypoglycemic events,a Diabetes Treatment Satisfaction Questionnaire,and other parameters were assessed at baseline and 12-weeks.RESULTS This study included 21 participants.A marked enhancement was observed in the FBG level(P=0.02),daily total insulin dose(P=0.03),and overall diabetes treatment satisfaction(P<0.01)in the participants who switched to IDegAsp.There was a decrease in HbA1c levels(7.6±1.1 vs 7.4±0.9,P=0.31)and the frequency of hypoglycemic events of those who switched to IDegAsp decreased,however,there was no statistically significant difference.CONCLUSION The present findings suggest that treatment with IDegAsp enhances clinical outcomes,particularly FBG levels,daily cumulative insulin dose,and overall satisfaction with diabetes treatment.展开更多
To meet the challenge of mismatches between power supply and demand,modern buildings must schedule flexible energy loads in order to improve the efficiency of power grids.Furthermore,it is essential to understand the ...To meet the challenge of mismatches between power supply and demand,modern buildings must schedule flexible energy loads in order to improve the efficiency of power grids.Furthermore,it is essential to understand the effectiveness of flexibility management strategies under different climate conditions and extreme weather events.Using both typical and extreme weather data from cities in five major climate zones of China,this study investigates the energy flexibility potential of an office building under three short-term HVAC management strategies in the context of different climates.The results show that the peak load flexibility and overall energy performance of the three short-term strategies were affected by the surrounding climate conditions.The peak load reduction rate of the pre-cooling and zone temperature reset strategies declined linearly as outdoor temperature increased.Under extreme climate conditions,the daily peak-load time was found to be over two hours earlier than under typical conditions,and the intensive solar radiation found in the extreme conditions can weaken the correlation between peak load reduction and outdoor temperature,risking the ability of a building’s HVAC system to maintain a comfortable indoor environment.展开更多
Black soils represent only one-sixth of the global arable land area but play an important role in maintaining world food security due to their high fertility and gigantic potential for food production.With the ongoing...Black soils represent only one-sixth of the global arable land area but play an important role in maintaining world food security due to their high fertility and gigantic potential for food production.With the ongoing intensification of agricultural practices and negative natural factors,black soils are confronting enhanced degradation.The holistic overview of black soil degradation and the underlying mechanisms for soil health improvement will be key for agricultural sustainability and food security.In this review,the current status and driving factors of soil degradation in the four major black soil regions of the world are summarized,and effective measures for black soil conservation are proposed.The Northeast Plain of China is the research hotspot with 41.5%of the published studies related to black soil degradation,despite its relatively short history of agricultural reclamation,followed by the East European Plain(28.3%),the Great Plains of North America(20.7%),and the Pampas of South American(7.9%).Among the main types of soil degradation,soil erosion and soil fertility decline(especially organic matter loss)have been reported as the most common problems,with 27.6%and 39.4%of the published studies,respectively.In addition to the natural influences of climate and topography,human activities have been reported to have great influences on the degradation of black soils globally.Unsustainable farming practices and excess in agrochemical applications are common factors reported to accelerate the degradation process and threaten the sustainable use of black soils.Global efforts for black soil conservation and utilization should focus on standardizing evaluation criteria including real-time monitoring and the measures of prevention and restoration for sustainable management.International cooperation in technology and policy is crucial for overcoming the challenges and thus achieving the protection,sustainable use,and management of global black soil resources.展开更多
Infected necrotizing pancreatitis(INP)remains a life-threatening complication of acute pancreatitis.Despite advancements such as endoscopic ultrasound(EUS)-guided drainage,lumen-apposing metal stents,and protocolized ...Infected necrotizing pancreatitis(INP)remains a life-threatening complication of acute pancreatitis.Despite advancements such as endoscopic ultrasound(EUS)-guided drainage,lumen-apposing metal stents,and protocolized step-up strate-gies,the clinical practice remains heterogeneous,with variability in endoscopic strategies,procedural timing,device selection,and adjunctive techniques contri-buting to inconsistent outcomes.This review synthesizes current evidence to contribute to a structured framework integrating multidisciplinary team decision-making,advanced imaging(three-dimensional reconstruction,contrast-enhanced computed tomography/magnetic resonance imaging),EUS assessment,and biomarker-driven risk stratification(C-reactive protein,procalcitonin)to optimize patient selection,intervention timing,and complication management.Key stan-dardization components include endoscopic assessment and procedural strate-gies,optimal timing of intervention,personalized approaches for complex pan-creatic collections,and techniques to reduce the number of endoscopic debride-ments and mitigate complications.This work aims to enhance clinical outcomes,minimize practice heterogeneity,and establish a foundation for future research and guideline development in endoscopic management of INP.展开更多
The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a pati...The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings.展开更多
Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In th...Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In the project,we evaluated novel approaches integrating adaptive management,technological innovations,and community-based action towards more efficient sustainable conservation results and ecosystem resilience.The multi-site experimental design was based on comparison between conventional reserve management and novel integrative models implemented in diverse ecological zones.Data were collected over a period of three years employing remote sensing technologies,in situ biodiversity assessments,and large socioeconomic surveys.These instruments enabled a robust and multi-dimensional measurement of variables such as species diversity,ecological resilience,community engagement,and stakeholder engagement.The results indicate that adaptive strategies significantly enhance real-time decision-making abilities and enhance long-term ecosystem resilience.Further,technology-driven monitoring greatly enhances data accuracy,responsiveness,and early warning capabilities.Besides that,community-based conservation initiatives were found to be pivotal in facilitating local stewardship,enhancing participatory governance,and enabling more adaptive and adaptive policy systems.This research rejects mainstream conservation paradigms by placing importance on flexibility,interdisciplinarity,and inclusivity of governance systems in effectively mitigating the impacts of climate change and loss of biodiversity.Our findings offer strong evidence that emerging paradigms of conservation can provide greater ecological and social sustainability than traditional methods.These results support the need for a paradigm shift towards conservation strategies that are dynamic,collaborative,and technologically integrated,with significant implications for policy formulation as well as operational environmental management.展开更多
Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.T...Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.To contribute to a better understanding of the state of the art of smart techniques for engineering projects,this paper provides a comprehensive review of multi-criteria decision-making(MCDM)techniques,intelligent techniques,and their applications in CEM.First,a comprehensive framework detailing smart technologies for construction projects is developed.Next,the characteristics of CEM are summarized.A bibliometric review is then conducted to investigate the keywords,journals,and clusters related to the application of smart techniques in CEM during 2000-2022.Recent advancements in intelligent techniques are also discussed under the following six topics:①big data technology;②computer vision;③speech recognition;④natural language processing;⑤machine learning;and⑥knowledge representation,understanding,and reasoning.The applications of smart techniques are then illustrated via underground space exploitation.Finally,future research directions for the sustainable development of smart construction are highlighted.展开更多
This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,includin...This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,including frame forced air/liquid cooling,oil jet cooling for endwinding,and rotor shaft cooling.To address the temperature misestimation in the LP thermal modelling due to assumptions of concentrated loss input and uniform heat flows,the developed HF-LPTM introduces two compensation thermal resistances for the winding and PM components,which are analytically derived from the multi-dimensional heat transfer equations and are robust against different load/thermal conditions.As validated by the finite element analysis method and experiments,the conventional LPTMs exhibit significant winding temperature deviations,while the proposed HF-LPTM can accurately predict both the midpoint and average temperatures.The developed HFLPTM is further used to assess the effectiveness of various cooling techniques under different scenarios,i.e.,steady-state thermal states under the rated load condition,and transient temperature profiles under city,freeway,and hybrid(city+freeway)driving cycles.Results indicate that no single cooling technique can maintain both winding and PM temperatures within safety limits.The combination of frame liquid cooling and oil jet cooling for end winding can sufficiently mitigate PMSM thermal stress in EV applications.展开更多
Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in ...Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in a rice cropping system.A15N2-labeling chamber system was placed in a rice field to evaluate BNF with straw incorporation under CFI or IFI for 90 d.The nif H(gene encoding the nitrogenase reductase subunit)DNA and c DNA in soil were amplified using real-time quantitative polymerase chain reaction,and high-throughput sequencing was applied to the nif H gene.The total fixed N in the straw incorporation treatment was 14.3 kg ha^(-1)under CFI,being 116%higher than that under IFI(6.62 kg ha^(-1)).Straw incorporation and CFI showed significant interactive effects on the total fixed N and abundances of nif H DNA and c DNA.The increase in BNF was mainly due to the increase in the abundances of heterotrophic diazotrophs such as Desulfovibrio,Azonexus,and Azotobacter.These results indicated that straw incorporation stimulated BNF under CFI relative to IFI,which might ultimately lead to a rapid enhancement of soil fertility.展开更多
基金the National Key BasicResearch Program (973 Program) under Grant2007CB307104.
文摘The Internet plays increasingly important roles in everyone's life; however, the existence of a mismatch between the basic architectural idea beneath the Internet and the emerging requirements for it is becoming more and more obvious. Although the Internet community came up with a consensus that the future network should be trustworthy, the concept of 'trustworthy networks' and the ways leading us to a trustworthy network are not yet clear. This research insists that the security, controllability, manageability, and survivability should be basic properties of a trustworthy network. The key ideas and techniques involved in these properties are studied, and recent developments and progresses are surveyed. At the same time, the technical trends and challenges are briefly discussed. The network trustworthiness could and should be eventually achieved.
基金supported by National Natural Science Foundation of China(32494793).
文摘Cellulose frameworks have emerged as promising materials for light management due to their exceptional light-scattering capabilities and sustainable nature.Conventional biomass-derived cellulose frameworks face a fundamental trade-off between haze and transparency,coupled with impractical thicknesses(≥1 mm).Inspired by squid’s skin-peeling mechanism,this work develops a peroxyformic acid(HCOOOH)-enabled precision peeling strategy to isolate intact 10-μm-thick bamboo green(BG)frameworks—100×thinner than wood-based counterparts while achieving an unprecedented optical performance(88%haze with 80%transparency).This performance surpasses delignified biomass(transparency<40%at 1 mm)and matches engineered cellulose composites,yet requires no energy-intensive nanofibrillation.The preserved native cellulose I crystalline structure(64.76%crystallinity)and wax-coated uniaxial fibril alignment(Hermans factor:0.23)contribute to high mechanical strength(903 MPa modulus)and broadband light scattering.As a light-management layer in polycrystalline silicon solar cells,the BG framework boosts photoelectric conversion efficiency by 0.41%absolute(18.74%→19.15%),outperforming synthetic anti-reflective coatings.The work establishes a scalable,waste-to-wealth route for optical-grade cellulose materials in next-generation optoelectronics.
基金supported by National Key Research and Development Program of China(2022YFB3804902,2022YFB3804900)the National Natural Science Foundation of China(52203226,52161145406,42376045)the Fundamental Research Funds for the Central Universities(2232024Y-01,2232025D-02).
文摘While desalination is a key solution for global freshwater scarcity,its implementation faces environmental challenges due to concentrated brine byproducts mainly disposed of via coastal discharge systems.Solar interfacial evaporation offers sustainable management potential,yet inevitable salt nucleation at evaporation interfaces degrades photothermal conversion and operational stability via light scattering and pathway blockage.Inspired by the mangrove leaf,we propose a photothermal 3D polydopamine and polypyrrole polymerized spacer fabric(PPSF)-based upward hanging model evaporation configuration with a reverse water feeding mechanism.This design enables zero-liquiddischarge(ZLD)desalination through phase-separation crystallization.The interconnected porous architecture and the rough surface of the PPSF enable superior water transport,achieving excellent solar-absorbing efficiency of 97.8%.By adjusting the tilt angle(θ),the evaporator separates the evaporation and salt crystallization zones via controlled capillary-driven brine transport,minimizing heat dissipation from brine discharge.At an optimal tilt angle of 52°,the evaporator reaches an evaporation rate of 2.81 kg m^(−2) h^(−1) with minimal heat loss(0.366 W)under 1-sun illumination while treating a 7 wt%waste brine solution.Furthermore,it sustains an evaporation rate of 2.71 kg m^(−2) h^(−1) over 72 h while ensuring efficient salt recovery.These results highlight a scalable,energy-efficient approach for sustainable ZLD desalination.
基金the National Natural Science Foundation of China(Nos.62374029,22175029,62474033,and W2433038)the Young Elite Scientists Sponsorship Program by CAST(No.YESS20220550)+2 种基金the Sichuan Science and Technology Program(No.2024NSFSC0250)the Natural Science Foundation of Shenzhen Innovation Committee(JCYJ20210324135614040)the Fundamental Research Funds for the Central Universities of China(No.ZYGX2022J032).
文摘Perovskite solar cells(PSCs)have emerged as promising photovoltaic technologies owing to their remarkable power conversion efficiency(PCE).However,heat accumulation under continuous illumination remains a critical bottleneck,severely affecting device stability and long-term operational performance.Herein,we present a multifunctional strategy by incorporating highly thermally conductive Ti_(3)C_(2)T_(X) MXene nanosheets into the perovskite layer to simultaneously enhance thermal management and optoelectronic properties.The Ti_(3)C_(2)T_(X) nanosheets,embedded at perovskite grain boundaries,construct efficient thermal conduction pathways,significantly improving the thermal conductivity and diffusivity of the film.This leads to a notable reduction in the device’s steady-state operating temperature from 42.96 to 39.97 under 100 mW cm^(−2) illumination,thereby alleviating heat-induced performance degradation.Beyond thermal regulation,Ti_(3)C_(2)T_(X),with high conductivity and negatively charged surface terminations,also serves as an effective defect passivation agent,reducing trap-assisted recombination,while simultaneously facilitating charge extraction and transport by optimizing interfacial energy alignment.As a result,the Ti_(3)C_(2)T_(X)-modified PSC achieve a champion PCE of 25.13%and exhibit outstanding thermal stability,retaining 80%of the initial PCE after 500 h of thermal aging at 85 and 30±5%relative humidity.(In contrast,control PSC retain only 58%after 200 h.)Moreover,under continuous maximum power point tracking in N2 atmosphere,Ti_(3)C_(2)T_(X)-modified PSC retained 70%of the initial PCE after 500 h,whereas the control PSC drop sharply to 20%.These findings highlight the synergistic role of Ti_(3)C_(2)T_(X) in thermal management and optoelectronic performance,paving the way for the development of high-efficiency and heat-resistant perovskite photovoltaics.
基金approved by King Abdullah International Medical Research Center Ethics Committee(approval No.0000074524).
文摘BACKGROUND Humeral shaft fractures are common and vary by age,with high-energy trauma observed in younger adults and low-impact injuries in older adults.Radial nerve palsy is a frequent complication.Treatment ranges from nonoperative methods to surgical interventions such as intramedullary K-wires,which promote faster rehabilitation and improved elbow mobility.AIM To evaluate the outcomes of managing humeral shaft fractures using closed reduction and internal fixation with flexible intramedullary K-wires.METHODS This was a retrospective cohort study analyzing the medical records of patients with humeral shaft fractures managed with flexible intramedullary K-wires at King Abdulaziz Medical City,using non-random sampling and descriptive analysis for outcome evaluation.RESULTS This study assessed the clinical outcomes of 20 patients treated for humeral shaft fractures with intramedullary K-wires.Patients were predominantly male(n=16,80%),had an average age of 39.2 years,and a mean body mass index of 29.5 kg/m^(2).The fractures most frequently occurred in the middle third of the humerus(n=14,70%),with oblique fractures being the most common type(n=7,35%).All surgeries used general anesthesia and a posterior approach,with no intraoperative complications reported.Postoperatively,all patients achieved clinical and radiological union(n=20,100%),and the majority(n=13,65%)reached an elbow range of motion from 0 to 150 degrees.CONCLUSION These results suggest that intramedullary K-wire fixation may be an effective option for treating humeral shaft fractures,with favorable outcomes in range of motion recovery,fracture union,and a low rate of intraoperative complications.
基金supported by the National Natural Science Foundation of China(No.52070057)China Postdoctoral Science Foundation(No.2023M730855)Heilongjiang Postdoctoral Fund(No.LBH-Z22183)for financial support。
文摘Sustainable water,energy and food(WEF)supplies are the bedrock upon which human society depends.Solar-driven interfacial evaporation,combined with electricity generation and cultivation,is a promising approach to mitigate the freshwater,energy and food crises.However,the performance of solar-driven systems decreases significantly during operation due to uncontrollable weather.This study proposes an integrated water/electricity cogeneration-cultivation system with superior thermal management.The energy storage evaporator,consisting of energy storage microcapsules/hydrogel composites,is optimally designed for sustainable desalination,achieving an evaporation rate of around 1.91 kg m^(-2)h^(-1).In the dark,heat released from the phase-change layer supported an evaporation rate of around 0.54kg m^(-2)h^(-1).Reverse electrodialysis harnessed the salinity-gradient energy enhanced during desalination,enabling the long-running WEC system to achieve a power output of~0.3 W m^(-2),which was almost three times higher than that of conventional seawater/surface water mixing.Additionally,an integrated crop irrigation platform utilized system drainage for real-time,on-demand wheat cultivation without secondary contaminants,facilitating seamless WEF integration.This work presents a novel approach to all-day solar water production,electricity generation and crop irrigation,offering a solution and blueprint for the sustainable development of WEF.
文摘BACKGROUND Complement-mediated thrombotic microangiopathy(TMA)is a rare endothelial injury syndrome caused by dysregulated activation of the alternative complement pathway,often linked to genetic abnormalities in complement factor H(CFH),complement factor I,or complement factor H-related(CFHR)proteins.Both renal transplantation and pregnancy are independent triggers for recurrence.This case highlights a genetically high-risk patient who achieved a successful term pregnancy after renal transplantation without complement inhibition,emphasizing individualized risk stratification,close surveillance,and multidisciplinary management for favourable maternal and graft outcomes.CASE SUMMARY A 32-year-old woman with end-stage renal disease secondary to genetically confirmed complement-mediated TMA—homozygous CFH exon 17 deletion and CFHR3-CFHR1 duplication—was maintained on dialysis for 2.5 years before undergoing a successful live-donor kidney transplant from her mother.Post-transplant immunosuppression included tacrolimus,mycophenolate mofetil,and prednisolone,later modified to azathioprine during pregnancy planning.One-year post-transplant,she conceived spontaneously.Pregnancy was complicated by transient gestational hypertension,controlled with nifedipine,labetalol,and amlodipine.Proteinuria remained<150 mg/day;white blood cell counts 5.8-7.2×109/L without cytopenia.Serum creatinine ranged 0.9-1.1 mg/dL,and tacrolimus trough levels 5-7 ng/mL.At 36 weeks,she delivered a healthy 3 kg infant by elective caesarean section.Postpartum follow-up at three months confirmed stable maternal and graft function.CONCLUSION High-risk complement-mediated TMA patients can achieve successful pregnancy post-transplant through individualized care without mandatory complement blockade.
基金Technology Development Program of Jilin Province(YDZJ202201ZYTS640)the National Key Research and Development Program of China(2022YFB4200400)funded by MOST+4 种基金the National Natural Science Foundation of China(52172048 and 52103221)Shandong Provincial Natural Science Foundation(ZR2021QB024 and ZR2021ZD06)Guangdong Basic and Applied Basic Research Foundation(2023A1515012323,2023A1515010943,and 2024A1515010023)the Qingdao New Energy Shandong Laboratory open Project(QNESL OP 202309)the Fundamental Research Funds of Shandong University.
文摘Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.
文摘Colonoscopy represents a safe procedure that is widely used in medical practice either to diagnose or treat various gastrointestinal diseases.During the last few years,the incidence rate of perforations in colonoscopic procedures has increased,especially in therapeutic colonoscopies.The recent advancements in endoscopic techniques and gastrointestinal tumoral resection procedures such as endoscopic mucosal resection,endoscopic full-thickness resection,and endoscopic submucosal dissection(ESD)could be a risk factor for this increased risk.The incidence rate of mortality of serious colonoscopic perforations is 7.1%.The management plan for these perforations starts with conservative treatment in mild cases,endoscopic closure,and surgical management in severe cases.Recently,endoluminal vacuum therapy was found to be effective in the management of colorectal perforations and this has been reported in multiple case reports.This editorial provides an overview of the current guidelines for the management of iatrogenic colorectal perforations.These insights are from the perspectives of endoscopists and gastroenterologists.We also present a management algorithm based on the guidelines of the European Society of Gastrointestinal Endoscopy,the American Gastroenterological Association,and the World Society of Emergency Surgery.We also discussed in brief the use of endoluminal vacuum therapy in colorectal perforations.
基金Supported by Fundación Progreso y Salud,No.AP-0306-2022-C3-F2.
文摘BACKGROUND Addressing the growing challenge of hospitalizing chronic multimorbid patients,this study examines the strain these conditions impose on healthcare systems at a local level,focusing on a pilot program.Chronic diseases and complex patients require comprehensive management strategies to reduce healthcare burdens and improve patient outcomes.If proven effective,this pilot model has the potential to be replicated in other healthcare settings to enhance the management of chronic multimorbid patients.AIM To evaluate the effectiveness of the high complexity unit(HCU)in managing chronic multimorbid patients through a multidisciplinary care model and to compare it with standard hospital care.METHODS The study employed a descriptive longitudinal approach,analyzing data from the Basic Minimum Data Set(BMDS)to compare hospitalization variables among the HCU,the Internal Medicine Service,and other services at Antequera Hospital throughout 2022.The HCU,designed for patients with complex chronic conditions,integrates a patient-centered model emphasizing multidisciplinary care and continuity post-discharge.RESULTS The study employed a descriptive longitudinal approach,analyzing data from the BMDS to compare hospitalization variables among the HCU,the Internal Medicine Service,and other services at Antequera Hospital throughout 2022.The HCU,designed for patients with complex chronic conditions,integrates a patient-centered model emphasizing multidisciplinary care and continuity post-discharge.CONCLUSION This study demonstrates the effectiveness of the HCU in managing patients with complex chronic diseases through a multidisciplinary approach.The coordinated care provided by the HCU results in improved patient outcomes,reduced unnecessary hospitalizations,and better management of patient complexity.The superiority of the HCU compared to standard care is evident in key outcomes such as fewer readmissions and higher patient satisfaction,reinforcing its value as a model of care to be replicated.
基金Supported by CAMS Innovation Fund for Medical Sciences,No.2023-I2M-C&T-B-043National High Level Hospital Clinical Research Funding,No.2022-PUMCH-B-015+1 种基金CAMS Innovation Fund for Medical Sciences,No.2021-1-12M-002Beijing Municipal Natural Science Foundation,No.M22014.
文摘BACKGROUND There is a lack of clinical evidence on the efficacy and safety of transitioning from a thrice-daily pre-mixed insulin or basal-prandial regimen to insulin degludec/aspart(IDegAsp)therapy,with insufficient data from the Chinese population.AIM To demonstrate the efficacy,safety,and treatment satisfaction associated with the transition to IDegAsp in type 2 diabetes mellitus(T2DM).METHODS In this 12-week open-label,non-randomized,single-center,pilot study,patients with T2DM receiving thrice-daily insulin or intensive insulin treatment were transitioned to twice-daily injections of insulin IDegAsp.Insulin doses,hemoglobin A1c(HbA1c)levels,fasting blood glucose(FBG),hypoglycemic events,a Diabetes Treatment Satisfaction Questionnaire,and other parameters were assessed at baseline and 12-weeks.RESULTS This study included 21 participants.A marked enhancement was observed in the FBG level(P=0.02),daily total insulin dose(P=0.03),and overall diabetes treatment satisfaction(P<0.01)in the participants who switched to IDegAsp.There was a decrease in HbA1c levels(7.6±1.1 vs 7.4±0.9,P=0.31)and the frequency of hypoglycemic events of those who switched to IDegAsp decreased,however,there was no statistically significant difference.CONCLUSION The present findings suggest that treatment with IDegAsp enhances clinical outcomes,particularly FBG levels,daily cumulative insulin dose,and overall satisfaction with diabetes treatment.
基金National Key R&D Program of China of the 13th Five-Year Plan(No.2018YFD1100704)。
文摘To meet the challenge of mismatches between power supply and demand,modern buildings must schedule flexible energy loads in order to improve the efficiency of power grids.Furthermore,it is essential to understand the effectiveness of flexibility management strategies under different climate conditions and extreme weather events.Using both typical and extreme weather data from cities in five major climate zones of China,this study investigates the energy flexibility potential of an office building under three short-term HVAC management strategies in the context of different climates.The results show that the peak load flexibility and overall energy performance of the three short-term strategies were affected by the surrounding climate conditions.The peak load reduction rate of the pre-cooling and zone temperature reset strategies declined linearly as outdoor temperature increased.Under extreme climate conditions,the daily peak-load time was found to be over two hours earlier than under typical conditions,and the intensive solar radiation found in the extreme conditions can weaken the correlation between peak load reduction and outdoor temperature,risking the ability of a building’s HVAC system to maintain a comfortable indoor environment.
基金funded by the Science and Technology Plan for the Belt and Road Innovation Cooperation Project of Jiangsu Province,China(No.BZ2023003)the National Key Research and Development Program of China(No.2021YFD1500202)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA28010100)the“14th Five-Year Plan”Self-Deployment Project of the Institute of Soil Science,Chinese Academy of Sciences(No.ISSAS2418)the National Natural Science Foundation of China(No.42107334)。
文摘Black soils represent only one-sixth of the global arable land area but play an important role in maintaining world food security due to their high fertility and gigantic potential for food production.With the ongoing intensification of agricultural practices and negative natural factors,black soils are confronting enhanced degradation.The holistic overview of black soil degradation and the underlying mechanisms for soil health improvement will be key for agricultural sustainability and food security.In this review,the current status and driving factors of soil degradation in the four major black soil regions of the world are summarized,and effective measures for black soil conservation are proposed.The Northeast Plain of China is the research hotspot with 41.5%of the published studies related to black soil degradation,despite its relatively short history of agricultural reclamation,followed by the East European Plain(28.3%),the Great Plains of North America(20.7%),and the Pampas of South American(7.9%).Among the main types of soil degradation,soil erosion and soil fertility decline(especially organic matter loss)have been reported as the most common problems,with 27.6%and 39.4%of the published studies,respectively.In addition to the natural influences of climate and topography,human activities have been reported to have great influences on the degradation of black soils globally.Unsustainable farming practices and excess in agrochemical applications are common factors reported to accelerate the degradation process and threaten the sustainable use of black soils.Global efforts for black soil conservation and utilization should focus on standardizing evaluation criteria including real-time monitoring and the measures of prevention and restoration for sustainable management.International cooperation in technology and policy is crucial for overcoming the challenges and thus achieving the protection,sustainable use,and management of global black soil resources.
基金Supported by the Education and Teaching Reform Project of the First Clinical College of Chongqing Medical University,No.CMER202305Natural Science Foundation of Xizang Autonomous Region,No.XZ2024ZR-ZY100(Z)Program for Youth Innovation in Future Medicine,Chongqing Medical University,China,No.W0138.
文摘Infected necrotizing pancreatitis(INP)remains a life-threatening complication of acute pancreatitis.Despite advancements such as endoscopic ultrasound(EUS)-guided drainage,lumen-apposing metal stents,and protocolized step-up strate-gies,the clinical practice remains heterogeneous,with variability in endoscopic strategies,procedural timing,device selection,and adjunctive techniques contri-buting to inconsistent outcomes.This review synthesizes current evidence to contribute to a structured framework integrating multidisciplinary team decision-making,advanced imaging(three-dimensional reconstruction,contrast-enhanced computed tomography/magnetic resonance imaging),EUS assessment,and biomarker-driven risk stratification(C-reactive protein,procalcitonin)to optimize patient selection,intervention timing,and complication management.Key stan-dardization components include endoscopic assessment and procedural strate-gies,optimal timing of intervention,personalized approaches for complex pan-creatic collections,and techniques to reduce the number of endoscopic debride-ments and mitigate complications.This work aims to enhance clinical outcomes,minimize practice heterogeneity,and establish a foundation for future research and guideline development in endoscopic management of INP.
文摘The critical role of patient-reported outcome measures(PROMs)in enhancing clinical decision-making and promoting patient-centered care has gained a profound significance in scientific research.PROMs encapsulate a patient's health status directly from their perspective,encompassing various domains such as symptom severity,functional status,and overall quality of life.By integrating PROMs into routine clinical practice and research,healthcare providers can achieve a more nuanced understanding of patient experiences and tailor treatments accordingly.The deployment of PROMs supports dynamic patient-provider interactions,fostering better patient engagement and adherence to tre-atment plans.Moreover,PROMs are pivotal in clinical settings for monitoring disease progression and treatment efficacy,particularly in chronic and mental health conditions.However,challenges in implementing PROMs include data collection and management,integration into existing health systems,and acceptance by patients and providers.Overcoming these barriers necessitates technological advancements,policy development,and continuous education to enhance the acceptability and effectiveness of PROMs.The paper concludes with recommendations for future research and policy-making aimed at optimizing the use and impact of PROMs across healthcare settings.
基金supported by the Lebanese International University(LIU)with a funding amount of$500.
文摘Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In the project,we evaluated novel approaches integrating adaptive management,technological innovations,and community-based action towards more efficient sustainable conservation results and ecosystem resilience.The multi-site experimental design was based on comparison between conventional reserve management and novel integrative models implemented in diverse ecological zones.Data were collected over a period of three years employing remote sensing technologies,in situ biodiversity assessments,and large socioeconomic surveys.These instruments enabled a robust and multi-dimensional measurement of variables such as species diversity,ecological resilience,community engagement,and stakeholder engagement.The results indicate that adaptive strategies significantly enhance real-time decision-making abilities and enhance long-term ecosystem resilience.Further,technology-driven monitoring greatly enhances data accuracy,responsiveness,and early warning capabilities.Besides that,community-based conservation initiatives were found to be pivotal in facilitating local stewardship,enhancing participatory governance,and enabling more adaptive and adaptive policy systems.This research rejects mainstream conservation paradigms by placing importance on flexibility,interdisciplinarity,and inclusivity of governance systems in effectively mitigating the impacts of climate change and loss of biodiversity.Our findings offer strong evidence that emerging paradigms of conservation can provide greater ecological and social sustainability than traditional methods.These results support the need for a paradigm shift towards conservation strategies that are dynamic,collaborative,and technologically integrated,with significant implications for policy formulation as well as operational environmental management.
基金funded by the project of Guangdong Provincial Basic and Applied Basic Research Fund Committee(2022A1515240073)the Pearl River Talent Recruitment Program(2019CX01G338),Guangdong Province.
文摘Construction engineering and management(CEM)has become increasingly complicated with the increasing size of engineering projects under different construction environments,motivating the digital transformation of CEM.To contribute to a better understanding of the state of the art of smart techniques for engineering projects,this paper provides a comprehensive review of multi-criteria decision-making(MCDM)techniques,intelligent techniques,and their applications in CEM.First,a comprehensive framework detailing smart technologies for construction projects is developed.Next,the characteristics of CEM are summarized.A bibliometric review is then conducted to investigate the keywords,journals,and clusters related to the application of smart techniques in CEM during 2000-2022.Recent advancements in intelligent techniques are also discussed under the following six topics:①big data technology;②computer vision;③speech recognition;④natural language processing;⑤machine learning;and⑥knowledge representation,understanding,and reasoning.The applications of smart techniques are then illustrated via underground space exploitation.Finally,future research directions for the sustainable development of smart construction are highlighted.
文摘This paper presents a high-fidelity lumpedparameter(LP)thermal model(HF-LPTM)for permanent magnet synchronous machines(PMSMs)in electric vehicle(EV)applications,where various cooling techniques are considered,including frame forced air/liquid cooling,oil jet cooling for endwinding,and rotor shaft cooling.To address the temperature misestimation in the LP thermal modelling due to assumptions of concentrated loss input and uniform heat flows,the developed HF-LPTM introduces two compensation thermal resistances for the winding and PM components,which are analytically derived from the multi-dimensional heat transfer equations and are robust against different load/thermal conditions.As validated by the finite element analysis method and experiments,the conventional LPTMs exhibit significant winding temperature deviations,while the proposed HF-LPTM can accurately predict both the midpoint and average temperatures.The developed HFLPTM is further used to assess the effectiveness of various cooling techniques under different scenarios,i.e.,steady-state thermal states under the rated load condition,and transient temperature profiles under city,freeway,and hybrid(city+freeway)driving cycles.Results indicate that no single cooling technique can maintain both winding and PM temperatures within safety limits.The combination of frame liquid cooling and oil jet cooling for end winding can sufficiently mitigate PMSM thermal stress in EV applications.
基金supported by the National Natural Science Foundation of China(Nos.42177333 and 31870500)the National Special Program for Key Basic Research of the Ministry of Science and Technology of China(No.2015FY110700)the Jiangsu Agriculture Science and Technology Innovation Fund,China(No.JASTIFCX(20)2003)。
文摘Both straw incorporation and irrigation practices affect biological nitrogen(N)fixation(BNF),but it is still unclear how straw incorporation impacts BNF under continuous(CFI)or intermittent(IFI)flooding irrigation in a rice cropping system.A15N2-labeling chamber system was placed in a rice field to evaluate BNF with straw incorporation under CFI or IFI for 90 d.The nif H(gene encoding the nitrogenase reductase subunit)DNA and c DNA in soil were amplified using real-time quantitative polymerase chain reaction,and high-throughput sequencing was applied to the nif H gene.The total fixed N in the straw incorporation treatment was 14.3 kg ha^(-1)under CFI,being 116%higher than that under IFI(6.62 kg ha^(-1)).Straw incorporation and CFI showed significant interactive effects on the total fixed N and abundances of nif H DNA and c DNA.The increase in BNF was mainly due to the increase in the abundances of heterotrophic diazotrophs such as Desulfovibrio,Azonexus,and Azotobacter.These results indicated that straw incorporation stimulated BNF under CFI relative to IFI,which might ultimately lead to a rapid enhancement of soil fertility.