Across four studies,we explore the impact of solitude on consumers’reliance on feelings versus reasons in decision making,along with the underlying mechanism and boundary conditions.The results indicate that solitude...Across four studies,we explore the impact of solitude on consumers’reliance on feelings versus reasons in decision making,along with the underlying mechanism and boundary conditions.The results indicate that solitude individuals(vs.non-solitude)would prefer feeling-based strategy in decision-making,resulting in a higher intention of choosing the affectively superior option over the cognitively superior option(Study 1).Self-focus plays the underlying mechanism in the solitude effect(Study 2).Moreover,we also examine two boundary conditions:motivation(Study 3)and temporal orientation(Study 4),which indicates that involuntary motivation and future orientation can mitigate the solitude effect on affective processing.These findings provide insights into consumers’judgments of product attributes and selection of decision-making strategies according to their situations.展开更多
Decision Making Trial and Evaluation Laboratory(DEMATEL)method is a powerful tool for understanding and visualizing the causal relationships among factors in complex decision-making problems.The method uses diagrams a...Decision Making Trial and Evaluation Laboratory(DEMATEL)method is a powerful tool for understanding and visualizing the causal relationships among factors in complex decision-making problems.The method uses diagrams and matrixes to map out the causal relationships and interdependencies among factors,allowing decision-makers to identify key drivers and potential solutions to the problem.DEMATEL has a wide range of application areas,including supply chain management,environmental planning,healthcare,finance,and engineering,among others.The DEMATEL method is a valuable tool for decision-makers who need to understand the complex causal relationships among factors in order to make informed decisions.The method provides a structured approach for analyzing and prioritizing factors and for identifying potential solutions to complex problems.This paper describes the main features of this method,its application areas as well as the main process steps in the DEMATEL method.展开更多
Making plans is a good idea,but every one's schedule looks differe nt.You may have to talk about your plans before you're able to make some.It could sound like this:You ask,"Do you have plans this Friday ...Making plans is a good idea,but every one's schedule looks differe nt.You may have to talk about your plans before you're able to make some.It could sound like this:You ask,"Do you have plans this Friday night?"If the person already has plans,they may say,"I do.But I'm free on Saturday."If that day doesn't work for you,you can say,"I'm not available that day.How about Sunday after no on?"After you figure out the day and time,mark it on your calendar.展开更多
The high maneuverability of modern fighters in close air combat imposes significant cognitive demands on pilots,making rapid,accurate decision-making challenging.While reinforcement learning(RL)has shown promise in th...The high maneuverability of modern fighters in close air combat imposes significant cognitive demands on pilots,making rapid,accurate decision-making challenging.While reinforcement learning(RL)has shown promise in this domain,the existing methods often lack strategic depth and generalization in complex,high-dimensional environments.To address these limitations,this paper proposes an optimized self-play method enhanced by advancements in fighter modeling,neural network design,and algorithmic frameworks.This study employs a six-degree-of-freedom(6-DOF)F-16 fighter model based on open-source aerodynamic data,featuring airborne equipment and a realistic visual simulation platform,unlike traditional 3-DOF models.To capture temporal dynamics,Long Short-Term Memory(LSTM)layers are integrated into the neural network,complemented by delayed input stacking.The RL environment incorporates expert strategies,curiositydriven rewards,and curriculum learning to improve adaptability and strategic decision-making.Experimental results demonstrate that the proposed approach achieves a winning rate exceeding90%against classical single-agent methods.Additionally,through enhanced 3D visual platforms,we conducted human-agent confrontation experiments,where the agent attained an average winning rate of over 75%.The agent's maneuver trajectories closely align with human pilot strategies,showcasing its potential in decision-making and pilot training applications.This study highlights the effectiveness of integrating advanced modeling and self-play techniques in developing robust air combat decision-making systems.展开更多
Enhancing Autonomous Decision-Making (ADM) for unmanned combat aerial vehicle formations in beyond-visual-range air combat is pivotal for future battlefields, whereas the predominant reinforcement learning technique f...Enhancing Autonomous Decision-Making (ADM) for unmanned combat aerial vehicle formations in beyond-visual-range air combat is pivotal for future battlefields, whereas the predominant reinforcement learning technique for ADM has been proven to be inadequately fitting complex tactical Unit Coordination (UC), limiting the integrity of decision-making for formations. This study proposes a knowledge-enhanced ADM method, with a focus on UC, to elevate formation combat effectiveness. The main innovation is integrating data mining technique with tactical knowledge mining and integration. Foremost, based on Frequent Event Arrangement Mining (FEAM) theory, a cross-channel UC knowledge mining method is designed by introducing data flow, which is capable of capturing dynamic coordinative action sequences. Then, a dual-mode knowledge integration method is proposed by employing the Graph Attention Network (GAT) and attenuated structural similarity, bolstering the interplay between autonomous UC tactics fitting and knowledge injection. The experimental results demonstrate that the algorithm surpasses the existing methods, providing more strategic maneuver trajectories and a win rate of more than 90% in different scenarios. The method is promising to augment the autonomous operational capabilities of unmanned formations and drive the evolution of combat effectiveness.展开更多
WEIFANG City of east China’s Shandong Province is located in the central part of the Shandong Peninsula,bordering the Bohai Sea to the north and the Yellow Sea to the south.In springtime,the region sees little rainfa...WEIFANG City of east China’s Shandong Province is located in the central part of the Shandong Peninsula,bordering the Bohai Sea to the north and the Yellow Sea to the south.In springtime,the region sees little rainfall yet many windy days,with a single prevailing wind direction and minimal turbulence-an environmental condition ideal for kite flying.展开更多
Transportation systems are rapidly transforming in response to urbanization,sustainability challenges,and advances in digital technologies.This review synthesizes the intersection of artificial intelligence(AI),fuzzy ...Transportation systems are rapidly transforming in response to urbanization,sustainability challenges,and advances in digital technologies.This review synthesizes the intersection of artificial intelligence(AI),fuzzy logic,and multi-criteria decision-making(MCDM)in transportation research.A comprehensive literature search was conducted in the Scopus database,utilizing carefully selected AI,fuzzy,and MCDM keywords.Studies were rigorously screened according to explicit inclusion and exclusion criteria,resulting in 73 eligible publications spanning 2006-2025.The review protocol included transparent data extraction on methodological approaches,application domains,and geographic distribution.Key findings highlight the prevalence of hybrid fuzzyAHPand TOPSIS methods,the widespread integration of machine learning for prediction and optimization,and a predominant focus on logistics and infrastructure planning within the transportation sector.Geographic analysis underscores a marked concentration of research activity in Asia,while other regions remain underrepresented,signaling the need for broader international collaboration.The review also addresses persistent challenges such asmethodological complexity,data limitations,and model interpretability.Future research directions are proposed,including the integration of reinforcement learning,real-time analytics,and big data-driven adaptive solutions.This study offers a comprehensive synthesis and critical perspective,serving as a valuable reference for researchers,practitioners,and policymakers seeking to enhance the efficiency,resilience,and sustainability of transportation systems through intelligent decision-making frameworks.展开更多
With the civilization and modernization of human society,occupational health has emerged as a fundamental goal of social justice,as highlighted in the United Nations'Sustainable Development Goals(SDGs)since 2016.S...With the civilization and modernization of human society,occupational health has emerged as a fundamental goal of social justice,as highlighted in the United Nations'Sustainable Development Goals(SDGs)since 2016.Specifically,"SDG Goal 1:No Poverty","SDG 3:Good Health and Well-being",and"SDG 8:Decent Work and Economic Growth",are interconnected with other SDGs to support the pursuit of occupational health.展开更多
This study introduces a novel distance measure(DM)for(p,q,r)-spherical fuzzy sets((p,q,to improve decision-making in complex and uncertain environments.Many existing distance measures eitherr)-SFSs)fail to satisfy ess...This study introduces a novel distance measure(DM)for(p,q,r)-spherical fuzzy sets((p,q,to improve decision-making in complex and uncertain environments.Many existing distance measures eitherr)-SFSs)fail to satisfy essential axiomatic properties or produce unintuitive outcomes.To address these limitations,we propose a new three-dimensional divergence-based DM that ensures mathematical consistency,enhances the discrimination of information,and adheres to the axiomatic framework of distance theory.Building on this foundation,we construct a multi-criteria decision-making(MCDM)model that utilizes the proposed DM to evaluate and rank alternatives effectively.The applicability and robustness of the model are validated through a practical case study,demonstrating that it leads to more rational,consistent,and reliable decision outcomes compared to existing approaches.展开更多
We examined the relationship between social support and career adaptability,as well as the mediating roles of proactive personality and career decision-making self-efficacy in this process.A total of 1354 Chinese coll...We examined the relationship between social support and career adaptability,as well as the mediating roles of proactive personality and career decision-making self-efficacy in this process.A total of 1354 Chinese college students(female=964;mean age=19.53 years,SD=1.33 years)completed an online questionnaire.Path analysis indicated that social support was positively associated with higher levels of career adaptability.Both proactive personality and career decision-making self-efficacy served as parallel mediators,strengthening the relationship between social support and career adaptability.The complete chain mediation analysis revealed that social support influences career adaptability primarily through proactive personality,which in turn enhances career decision-making self-efficacy,further contributing to increased career adaptability.These findings extend career capital theory by demonstrating that social and psychological resources jointly facilitate career adaptability.展开更多
This study focuses on the construction and application of intelligent financial decision-making models driven by generative artificial intelligence(AI).It analyzes the mechanisms by which generative AI empowers financ...This study focuses on the construction and application of intelligent financial decision-making models driven by generative artificial intelligence(AI).It analyzes the mechanisms by which generative AI empowers financial decision-making within a dual framework of dynamic knowledge evolution and risk control.The research reveals that generative AI,with its superior data processing,pattern recognition,and autonomous learning capabilities,can transcend the limitations of traditional decision-making models,facilitating a significant shift from causal inference to probabilistic creation in decision-making paradigms.By systematically constructing an intelligent financial decision-making model that includes data governance,core engine,and decision output layers,the study clarifies the functional roles and collaborative mechanisms of each layer.Additionally,it addresses key challenges in technology application,institutional adaptation,and organizational transformation by proposing systematic strategies for technical risk management,institutional innovation,and organizational capability enhancement,aiming to provide robust theoretical support and practical guidance for the intelligent transformation of corporate financial decision-making.展开更多
In this manuscript,the notion of a hesitant fuzzy soft fixed point is introduced.Using this notion and the concept of Suzuki-type(μ,ν)-weak contraction for hesitant fuzzy soft set valued-mapping,some fixed point res...In this manuscript,the notion of a hesitant fuzzy soft fixed point is introduced.Using this notion and the concept of Suzuki-type(μ,ν)-weak contraction for hesitant fuzzy soft set valued-mapping,some fixed point results are established in the framework of metric spaces.Based on the presented work,some examples reflecting decision-making problems related to real life are also solved.The suggested method’s flexibility and efficacy compared to conventional techniques are demonstrated in decision-making situations involving uncertainty,such as choosing the best options in multi-criteria settings.We noted that the presented work combines and generalizes two major concepts,the idea of soft sets and hesitant fuzzy set-valued mapping from the existing literature.展开更多
The present work reviews different decision making tools(material comparing and choosing tools)used for selecting the best material considering different parameters.In this review work,the authors have tried to addres...The present work reviews different decision making tools(material comparing and choosing tools)used for selecting the best material considering different parameters.In this review work,the authors have tried to address the following important enquiries:1)the engineering applications addressed by the different material choosing and ranking methods;2)the predominantly used decision making tools addressing the optimal material selection for the engineering applications;3)merits and demerits of decision making tools used;4)the dominantly used criteria or objectives considered while selecting a suitable alternative material;5)overview of DEA on material selection field.The authors have surveyed literatures from different regions of the globe and considered literatures since 1988.The present review not only stresses the importance of material selection in the early design stage of the product development but also aids the design and material engineers to apply different decision making tools systematically.展开更多
A semantics-based model is proposed to enable weakened hedges, such as "more or less" and "roughly" in the context of linguistic multi-criteria decision making. First, the resemblance relations are defined based o...A semantics-based model is proposed to enable weakened hedges, such as "more or less" and "roughly" in the context of linguistic multi-criteria decision making. First, the resemblance relations are defined based on the semantics of terms on the domain. Then, the hedges can be represented after the upper and loose upper approximations of a linguistic term are derived. Accordingly, some compact formulae can be derived for the semantics of linguistic expressions with hedges. Parameters in these formulae are objectively determined according to the semantics of original terms. The proposed model presents a more natural way to express the decision information under uncertainties and its semantics is clear. The proposed model is clarified by solving the problem of evaluation and selection of sustainable innovative energy technologies. Computational results demonstrate that the model can deal with various uncertainties of the problem. Finally, the model is compared with existing techniques and extended to the case when the semantics of terms are represented by trapezoidal fuzzy numbers.展开更多
The ELECTRE(ELimination Et Choix Traduisant la REalite)method has gained widespread recognition as one of the most effective multi-criteria decision-making(MCDM)methods.Its versatility allows it to be applied in a wid...The ELECTRE(ELimination Et Choix Traduisant la REalite)method has gained widespread recognition as one of the most effective multi-criteria decision-making(MCDM)methods.Its versatility allows it to be applied in a wide range of areas such as engineering,economics,business,environmental management and many others.This paper aims to provide an overview of the ELECTRE method,including its fundamental concepts,applications,advantages,and limitations.At its core,the ELECTRE method is an outranking family of MCDM techniques,which allows for the direct comparison of alternatives based on a set of criteria.The method takes into account the preferences and importance of decision-makers and generates a ranking of the alternatives based on their relative strengths and weaknesses.The ELECTRE method is a powerful tool for decision-making,and its applicability to a wide range of fields demonstrates its versatility and adaptability.By understanding its concepts,applications,merits,and demerits,decision-makers can use the ELECTRE method to make informed and effective decisions in a variety of contexts.展开更多
A grey multi-stage decision making method is proposed for a type of grey multi-index decision problems with weighted values completely unknown and attributes as interval grey numbers. Firstly, a method for compar- ing...A grey multi-stage decision making method is proposed for a type of grey multi-index decision problems with weighted values completely unknown and attributes as interval grey numbers. Firstly, a method for compar- ing two grey numbers based on probability is developed to calculate weighted values of the attributes. Secondly, the experts' evaluation scores for attribute values are presented in terms of internal grey numbers. Finally, a weight solving method for multiple-stages evaluation is proposed. An example analysis verifies the availability of the proposed method. The method provides a new way of thinking for solving grey decision problem.展开更多
By combining the advantages of the additive weighted mean (AWM) operator and the ordered weighted averaging (OWA) operator, this paper first presents a hybrid operator for aggregating data information, and then propos...By combining the advantages of the additive weighted mean (AWM) operator and the ordered weighted averaging (OWA) operator, this paper first presents a hybrid operator for aggregating data information, and then proposes a hybrid aggregation (HA) operator-based method for multiple attribute decision making (MADM) problems. The theoretical analyses and the numerical results show that the HA operator generalizes both the AWM and OWA operators, and reflects the importance of both the given argument and the ordered position of the argument. Thus, the HA operator can reflect better real situations in practical applications. Finally, an illustrative example is given.展开更多
The problem of multiple attribute decision making under fuzzy linguistic environments, in which decision makers can only provide their preferences (attribute values)in the form of trapezoid fuzzy linguistic variable...The problem of multiple attribute decision making under fuzzy linguistic environments, in which decision makers can only provide their preferences (attribute values)in the form of trapezoid fuzzy linguistic variables(TFLV), is studied. The formula of the degree of possibility between two TFLVs is defined, and some of its characteristics are studied. Based on the degree of possibility of fuzzy linguistic variables, an approach to ranking the decision alternatives in multiple attribute decision making with TFLV is developed. The trapezoid fuzzy linguistic weighted averaging (TFLWA) operator method is utilized to aggregate the decision information, and then all the alternatives are ranked by comparing the degree of possibility of TFLV. The method can carry out linguistic computation processes easily without loss of linguistic information, and thus makes the decision results reasonable and effective. Finally, the implementation process of the proposed method is illustrated and analyzed by a practical example.展开更多
As multi-discipline coupling and components interference often affect the aircraft configuration decision-making and analysis during conceptual design process, this article presents an approach of multidimensional gam...As multi-discipline coupling and components interference often affect the aircraft configuration decision-making and analysis during conceptual design process, this article presents an approach of multidimensional game theory based on aircraft compo- nents to deal with this problem. The idea is that the configuration decision-making process is regarded as the game for different disciplines and technologies, and the aircraft components are players. The payoff function with highest total gain means that ac- cording to the game protocols and multidimensional theory, the optimal aircraft configuration within the strategy set will be cho- sen. The decision-making model is applied to conceptual design process of the high altitude long endurance (HALE) unmanned aerial vehicle (UAV) based on the assessment of technological risk. The obtained optimum configuration is quite consistent with the current HALE UAV development trends. Thus, taking into account the coupling and interference factors, the multidimensional gaming model based on aircraft components will be an effective analysis method in the decision-making process of aircraft optimum configuration.展开更多
文摘Across four studies,we explore the impact of solitude on consumers’reliance on feelings versus reasons in decision making,along with the underlying mechanism and boundary conditions.The results indicate that solitude individuals(vs.non-solitude)would prefer feeling-based strategy in decision-making,resulting in a higher intention of choosing the affectively superior option over the cognitively superior option(Study 1).Self-focus plays the underlying mechanism in the solitude effect(Study 2).Moreover,we also examine two boundary conditions:motivation(Study 3)and temporal orientation(Study 4),which indicates that involuntary motivation and future orientation can mitigate the solitude effect on affective processing.These findings provide insights into consumers’judgments of product attributes and selection of decision-making strategies according to their situations.
文摘Decision Making Trial and Evaluation Laboratory(DEMATEL)method is a powerful tool for understanding and visualizing the causal relationships among factors in complex decision-making problems.The method uses diagrams and matrixes to map out the causal relationships and interdependencies among factors,allowing decision-makers to identify key drivers and potential solutions to the problem.DEMATEL has a wide range of application areas,including supply chain management,environmental planning,healthcare,finance,and engineering,among others.The DEMATEL method is a valuable tool for decision-makers who need to understand the complex causal relationships among factors in order to make informed decisions.The method provides a structured approach for analyzing and prioritizing factors and for identifying potential solutions to complex problems.This paper describes the main features of this method,its application areas as well as the main process steps in the DEMATEL method.
文摘Making plans is a good idea,but every one's schedule looks differe nt.You may have to talk about your plans before you're able to make some.It could sound like this:You ask,"Do you have plans this Friday night?"If the person already has plans,they may say,"I do.But I'm free on Saturday."If that day doesn't work for you,you can say,"I'm not available that day.How about Sunday after no on?"After you figure out the day and time,mark it on your calendar.
基金co-supported by the National Natural Science Foundation of China(No.91852115)。
文摘The high maneuverability of modern fighters in close air combat imposes significant cognitive demands on pilots,making rapid,accurate decision-making challenging.While reinforcement learning(RL)has shown promise in this domain,the existing methods often lack strategic depth and generalization in complex,high-dimensional environments.To address these limitations,this paper proposes an optimized self-play method enhanced by advancements in fighter modeling,neural network design,and algorithmic frameworks.This study employs a six-degree-of-freedom(6-DOF)F-16 fighter model based on open-source aerodynamic data,featuring airborne equipment and a realistic visual simulation platform,unlike traditional 3-DOF models.To capture temporal dynamics,Long Short-Term Memory(LSTM)layers are integrated into the neural network,complemented by delayed input stacking.The RL environment incorporates expert strategies,curiositydriven rewards,and curriculum learning to improve adaptability and strategic decision-making.Experimental results demonstrate that the proposed approach achieves a winning rate exceeding90%against classical single-agent methods.Additionally,through enhanced 3D visual platforms,we conducted human-agent confrontation experiments,where the agent attained an average winning rate of over 75%.The agent's maneuver trajectories closely align with human pilot strategies,showcasing its potential in decision-making and pilot training applications.This study highlights the effectiveness of integrating advanced modeling and self-play techniques in developing robust air combat decision-making systems.
文摘Enhancing Autonomous Decision-Making (ADM) for unmanned combat aerial vehicle formations in beyond-visual-range air combat is pivotal for future battlefields, whereas the predominant reinforcement learning technique for ADM has been proven to be inadequately fitting complex tactical Unit Coordination (UC), limiting the integrity of decision-making for formations. This study proposes a knowledge-enhanced ADM method, with a focus on UC, to elevate formation combat effectiveness. The main innovation is integrating data mining technique with tactical knowledge mining and integration. Foremost, based on Frequent Event Arrangement Mining (FEAM) theory, a cross-channel UC knowledge mining method is designed by introducing data flow, which is capable of capturing dynamic coordinative action sequences. Then, a dual-mode knowledge integration method is proposed by employing the Graph Attention Network (GAT) and attenuated structural similarity, bolstering the interplay between autonomous UC tactics fitting and knowledge injection. The experimental results demonstrate that the algorithm surpasses the existing methods, providing more strategic maneuver trajectories and a win rate of more than 90% in different scenarios. The method is promising to augment the autonomous operational capabilities of unmanned formations and drive the evolution of combat effectiveness.
文摘WEIFANG City of east China’s Shandong Province is located in the central part of the Shandong Peninsula,bordering the Bohai Sea to the north and the Yellow Sea to the south.In springtime,the region sees little rainfall yet many windy days,with a single prevailing wind direction and minimal turbulence-an environmental condition ideal for kite flying.
文摘Transportation systems are rapidly transforming in response to urbanization,sustainability challenges,and advances in digital technologies.This review synthesizes the intersection of artificial intelligence(AI),fuzzy logic,and multi-criteria decision-making(MCDM)in transportation research.A comprehensive literature search was conducted in the Scopus database,utilizing carefully selected AI,fuzzy,and MCDM keywords.Studies were rigorously screened according to explicit inclusion and exclusion criteria,resulting in 73 eligible publications spanning 2006-2025.The review protocol included transparent data extraction on methodological approaches,application domains,and geographic distribution.Key findings highlight the prevalence of hybrid fuzzyAHPand TOPSIS methods,the widespread integration of machine learning for prediction and optimization,and a predominant focus on logistics and infrastructure planning within the transportation sector.Geographic analysis underscores a marked concentration of research activity in Asia,while other regions remain underrepresented,signaling the need for broader international collaboration.The review also addresses persistent challenges such asmethodological complexity,data limitations,and model interpretability.Future research directions are proposed,including the integration of reinforcement learning,real-time analytics,and big data-driven adaptive solutions.This study offers a comprehensive synthesis and critical perspective,serving as a valuable reference for researchers,practitioners,and policymakers seeking to enhance the efficiency,resilience,and sustainability of transportation systems through intelligent decision-making frameworks.
文摘With the civilization and modernization of human society,occupational health has emerged as a fundamental goal of social justice,as highlighted in the United Nations'Sustainable Development Goals(SDGs)since 2016.Specifically,"SDG Goal 1:No Poverty","SDG 3:Good Health and Well-being",and"SDG 8:Decent Work and Economic Growth",are interconnected with other SDGs to support the pursuit of occupational health.
文摘This study introduces a novel distance measure(DM)for(p,q,r)-spherical fuzzy sets((p,q,to improve decision-making in complex and uncertain environments.Many existing distance measures eitherr)-SFSs)fail to satisfy essential axiomatic properties or produce unintuitive outcomes.To address these limitations,we propose a new three-dimensional divergence-based DM that ensures mathematical consistency,enhances the discrimination of information,and adheres to the axiomatic framework of distance theory.Building on this foundation,we construct a multi-criteria decision-making(MCDM)model that utilizes the proposed DM to evaluate and rank alternatives effectively.The applicability and robustness of the model are validated through a practical case study,demonstrating that it leads to more rational,consistent,and reliable decision outcomes compared to existing approaches.
基金supported by“Planning Subject for the 14th Five Year Plan of National Education Sciences of China(DBA210296)”.
文摘We examined the relationship between social support and career adaptability,as well as the mediating roles of proactive personality and career decision-making self-efficacy in this process.A total of 1354 Chinese college students(female=964;mean age=19.53 years,SD=1.33 years)completed an online questionnaire.Path analysis indicated that social support was positively associated with higher levels of career adaptability.Both proactive personality and career decision-making self-efficacy served as parallel mediators,strengthening the relationship between social support and career adaptability.The complete chain mediation analysis revealed that social support influences career adaptability primarily through proactive personality,which in turn enhances career decision-making self-efficacy,further contributing to increased career adaptability.These findings extend career capital theory by demonstrating that social and psychological resources jointly facilitate career adaptability.
文摘This study focuses on the construction and application of intelligent financial decision-making models driven by generative artificial intelligence(AI).It analyzes the mechanisms by which generative AI empowers financial decision-making within a dual framework of dynamic knowledge evolution and risk control.The research reveals that generative AI,with its superior data processing,pattern recognition,and autonomous learning capabilities,can transcend the limitations of traditional decision-making models,facilitating a significant shift from causal inference to probabilistic creation in decision-making paradigms.By systematically constructing an intelligent financial decision-making model that includes data governance,core engine,and decision output layers,the study clarifies the functional roles and collaborative mechanisms of each layer.Additionally,it addresses key challenges in technology application,institutional adaptation,and organizational transformation by proposing systematic strategies for technical risk management,institutional innovation,and organizational capability enhancement,aiming to provide robust theoretical support and practical guidance for the intelligent transformation of corporate financial decision-making.
基金funded by National Science,Research and Innovation Fund(NSRF)King Mongkut's University of Technology North Bangkok with Contract No.KMUTNB-FF-68-B-46.
文摘In this manuscript,the notion of a hesitant fuzzy soft fixed point is introduced.Using this notion and the concept of Suzuki-type(μ,ν)-weak contraction for hesitant fuzzy soft set valued-mapping,some fixed point results are established in the framework of metric spaces.Based on the presented work,some examples reflecting decision-making problems related to real life are also solved.The suggested method’s flexibility and efficacy compared to conventional techniques are demonstrated in decision-making situations involving uncertainty,such as choosing the best options in multi-criteria settings.We noted that the presented work combines and generalizes two major concepts,the idea of soft sets and hesitant fuzzy set-valued mapping from the existing literature.
基金the financial support received from MHRD, India during the course of research work.
文摘The present work reviews different decision making tools(material comparing and choosing tools)used for selecting the best material considering different parameters.In this review work,the authors have tried to address the following important enquiries:1)the engineering applications addressed by the different material choosing and ranking methods;2)the predominantly used decision making tools addressing the optimal material selection for the engineering applications;3)merits and demerits of decision making tools used;4)the dominantly used criteria or objectives considered while selecting a suitable alternative material;5)overview of DEA on material selection field.The authors have surveyed literatures from different regions of the globe and considered literatures since 1988.The present review not only stresses the importance of material selection in the early design stage of the product development but also aids the design and material engineers to apply different decision making tools systematically.
基金The National Natural Science Foundation of China(No.61273209)the Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1528)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX15-0191)
文摘A semantics-based model is proposed to enable weakened hedges, such as "more or less" and "roughly" in the context of linguistic multi-criteria decision making. First, the resemblance relations are defined based on the semantics of terms on the domain. Then, the hedges can be represented after the upper and loose upper approximations of a linguistic term are derived. Accordingly, some compact formulae can be derived for the semantics of linguistic expressions with hedges. Parameters in these formulae are objectively determined according to the semantics of original terms. The proposed model presents a more natural way to express the decision information under uncertainties and its semantics is clear. The proposed model is clarified by solving the problem of evaluation and selection of sustainable innovative energy technologies. Computational results demonstrate that the model can deal with various uncertainties of the problem. Finally, the model is compared with existing techniques and extended to the case when the semantics of terms are represented by trapezoidal fuzzy numbers.
文摘The ELECTRE(ELimination Et Choix Traduisant la REalite)method has gained widespread recognition as one of the most effective multi-criteria decision-making(MCDM)methods.Its versatility allows it to be applied in a wide range of areas such as engineering,economics,business,environmental management and many others.This paper aims to provide an overview of the ELECTRE method,including its fundamental concepts,applications,advantages,and limitations.At its core,the ELECTRE method is an outranking family of MCDM techniques,which allows for the direct comparison of alternatives based on a set of criteria.The method takes into account the preferences and importance of decision-makers and generates a ranking of the alternatives based on their relative strengths and weaknesses.The ELECTRE method is a powerful tool for decision-making,and its applicability to a wide range of fields demonstrates its versatility and adaptability.By understanding its concepts,applications,merits,and demerits,decision-makers can use the ELECTRE method to make informed and effective decisions in a variety of contexts.
基金Supported by the National Natural Science Foundation of China(90924022,70901041,71071077,71171113,71171116)the China Postdoctoral Science Foundation Funded Project(20100481137)+5 种基金the Humanisticand Social Science Foundation of the Ministry of Education of China(11YJC630032,12YJA630122,11YJC630273,09YJC630129)the Social Science Foundation of the College of Jiangsu Province(2011SJB630004)the Research Project of National Bureau of Statistics(2011LY008)the Jiangsu Planned Projects for Postdoctoral Research Funds(1101094C)the Qing Lan Project of Jiangsu Province(2010)the Educational Science Planning Key Projects of Jiangsu Piovince(B-a/2011/01/008)~~
文摘A grey multi-stage decision making method is proposed for a type of grey multi-index decision problems with weighted values completely unknown and attributes as interval grey numbers. Firstly, a method for compar- ing two grey numbers based on probability is developed to calculate weighted values of the attributes. Secondly, the experts' evaluation scores for attribute values are presented in terms of internal grey numbers. Finally, a weight solving method for multiple-stages evaluation is proposed. An example analysis verifies the availability of the proposed method. The method provides a new way of thinking for solving grey decision problem.
文摘By combining the advantages of the additive weighted mean (AWM) operator and the ordered weighted averaging (OWA) operator, this paper first presents a hybrid operator for aggregating data information, and then proposes a hybrid aggregation (HA) operator-based method for multiple attribute decision making (MADM) problems. The theoretical analyses and the numerical results show that the HA operator generalizes both the AWM and OWA operators, and reflects the importance of both the given argument and the ordered position of the argument. Thus, the HA operator can reflect better real situations in practical applications. Finally, an illustrative example is given.
基金2008 Soft Science Program of Jiangsu Science and Technology Department (No.BR2008098)
文摘The problem of multiple attribute decision making under fuzzy linguistic environments, in which decision makers can only provide their preferences (attribute values)in the form of trapezoid fuzzy linguistic variables(TFLV), is studied. The formula of the degree of possibility between two TFLVs is defined, and some of its characteristics are studied. Based on the degree of possibility of fuzzy linguistic variables, an approach to ranking the decision alternatives in multiple attribute decision making with TFLV is developed. The trapezoid fuzzy linguistic weighted averaging (TFLWA) operator method is utilized to aggregate the decision information, and then all the alternatives are ranked by comparing the degree of possibility of TFLV. The method can carry out linguistic computation processes easily without loss of linguistic information, and thus makes the decision results reasonable and effective. Finally, the implementation process of the proposed method is illustrated and analyzed by a practical example.
文摘As multi-discipline coupling and components interference often affect the aircraft configuration decision-making and analysis during conceptual design process, this article presents an approach of multidimensional game theory based on aircraft compo- nents to deal with this problem. The idea is that the configuration decision-making process is regarded as the game for different disciplines and technologies, and the aircraft components are players. The payoff function with highest total gain means that ac- cording to the game protocols and multidimensional theory, the optimal aircraft configuration within the strategy set will be cho- sen. The decision-making model is applied to conceptual design process of the high altitude long endurance (HALE) unmanned aerial vehicle (UAV) based on the assessment of technological risk. The obtained optimum configuration is quite consistent with the current HALE UAV development trends. Thus, taking into account the coupling and interference factors, the multidimensional gaming model based on aircraft components will be an effective analysis method in the decision-making process of aircraft optimum configuration.