While Artificial Intelligence (AI) is leading the way in terms of hardware advancements, such as GPUs, memory, and processing power, real-time applications are still catching up. It is inevitable that when one aspect ...While Artificial Intelligence (AI) is leading the way in terms of hardware advancements, such as GPUs, memory, and processing power, real-time applications are still catching up. It is inevitable that when one aspect leads and other trails behind, they coexist in life, as is often the case. The trailing aspect cannot remain far behind because, without application and use, there would be a dead end. Everything, whether an object, software, or tool, must have a practical use for humans. Without this, it will become obsolete. We can see this in many instances, such as blockchain technology, which is superior yet faces challenges in practical implementation, leading to a decline in adoption. This publication aims to bridge the gap between AI advancements and maintenance, specifically focusing on making predictive maintenance a practical application. There are multiple building blocks that make predictive maintenance a practical application. Each block performs a function leading to an output. This output forms an input to the receiving block. There are also foundational parts for all these building blocks to perform a function. Eventually, once the building blocks are connected, they form a loop and start to lead the path to predictive maintenance. Predictive maintenance is indeed practically achievable, but one must comprehend all the building blocks necessary for its implementation. Although detailed explanations will be provided in the upcoming sections, it is important to understand that simply purchasing software and plugging it in might be a far-fetched approach.展开更多
The study aims to evaluate how safety-maintenance practices affect the mechanical engineering industry’s overall performance in Ghana. The study used a descriptive survey design technique to ascertain the type of mai...The study aims to evaluate how safety-maintenance practices affect the mechanical engineering industry’s overall performance in Ghana. The study used a descriptive survey design technique to ascertain the type of maintenance engineering that was practiced in Ghanaian mechanical engineering workshops at the time of the study. In the mechanical engineering workshops, respondents provided both qualitative and quantitative data using a variety of data collecting instruments, with the quantitative approach being more common. The study employed Kumasi, Tamale, and Accra’s mechanical engineering workshops as a case study. The number of mechanical engineering workshop enterprises that made up the sample size for the questionnaire administration was sixty (60), chosen at random from the AGI membership registry. Primary data was gathered using interview guides and questionnaires. To analyse the data, descriptive statistics were employed. According to the study’s findings, mechanical engineering companies combined different maintenance techniques in order to best fit their organisational culture and equipment. Preventive shut-down, with a mean score of 4.78 and RII = 0.98, placing first (1st) in the Likert rating order, is the most frequently used maintenance system by respondents. The maintenance procedures employed by mechanical engineering organisations were influenced not only by their equipment and organisational culture but also by other factors such as cost, personnel expertise and external partnerships.展开更多
BACKGROUND Research examining the relationships among anxiety,depression,self-perceived burden(SPB),and psychological resilience(PR),along with the determinants of PR,in patients with chronic renal failure(CRF)receivi...BACKGROUND Research examining the relationships among anxiety,depression,self-perceived burden(SPB),and psychological resilience(PR),along with the determinants of PR,in patients with chronic renal failure(CRF)receiving maintenance hemodia-lysis(MHD)is limited.AIM To investigate the correlation between anxiety,depression,SPB,and PR in pati-ents with CRF on MHD.METHODS This study included 225 patients with CRF on MHD who were admitted between June 2021 and June 2024.The anxiety level was evaluated using the Self-Rating Anxiety Scale(SAS);the depression status was assessed using the Self-Rating Depression Scale(SDS);the SPB was measured using the SPB Scale(SPBS);and the PR was determined using the Connor–Davidson Resilience Scale(CD-RISC).The correlations among the SAS,SDS,SPB,and CD-RISC were analyzed using Pearson’s correlation coefficients.Univariate and multivariate analyses were performed to identify the factors that influence the PR of patients with CRF on MHD.RESULTS The SAS,SDS,SPB,and CD-RISC scores of the 225 patients were 45.25±15.36,54.81±14.68,32.31±11.52,and 66.48±9.18,respectively.Significant negative correlations were observed between SAS,SDS,SPB,and CD-RISC.Furthermore,longer dialysis vintage(P=0.015),the absence of religious beliefs(P=0.020),lower monthly income(P=0.008),higher SAS score(P=0.013),and higher SDS score(P=0.006)were all independent factors that adversely affected the PR of patients with CRF on MHD.CONCLUSION Patients with CRF on MHD present with varying degrees of anxiety,depression,and SPB,all of which exhibit a significant negative correlation with their PR.Moreover,longer dialysis vintage,the absence of religious beliefs,lower monthly income,higher SAS score,and higher SDS score were factors that negatively affected the PR of patients with CRF on MHD.展开更多
Scientific and technological advancements are rapidly transforming underground engineering,shifting from labor-intensive,time-consuming methods to automated,real-time systems.This timely and comprehensive review cover...Scientific and technological advancements are rapidly transforming underground engineering,shifting from labor-intensive,time-consuming methods to automated,real-time systems.This timely and comprehensive review covers in-situ testing,intelligent monitoring,and geophysical testing methods,highlighting fundamental principles,testing apparatuses,data processing techniques,and engineering applications.The state-of-the-art summary emphasizes not only cutting-edge innovations for complex and harsh environments but also the transformative role of artificial intelligence and machine learning in data interpretations.The integration of big data and advanced algorithms is particularly impactful,enabling the identification,prediction,and mitigation of potential risks in underground projects.Key aspects of the discussion include detection capabilities,method integration,and data convergence of intelligent technologies to drive enhanced safety,operational efficiency,and predictive reliability.The review also examines future trends in intelligent technologies,emphasizing unified platforms that combine multiple methods,real-time data,and predictive analytics.These advancements are shaping the evolution of underground construction and maintenance,aiming for risk-free,high-efficiency underground engineering.展开更多
This paper presents a project aimed at developing a trilingual visual dictionary for aircraft maintenance professionals and students.The project addresses the growing demand for accurate communication and technical te...This paper presents a project aimed at developing a trilingual visual dictionary for aircraft maintenance professionals and students.The project addresses the growing demand for accurate communication and technical terminology in the aviation industry,particularly in Brazil and China.The study employs a corpus-driven approach,analyzing a large corpus of aircraft maintenance manuals to extract key technical terms and their collocates.Using specialized subcorpora and a comparative analysis,this paper demonstrates challenges and solutions into the identification of high-frequency keywords and explores their contextual use in aviation documentation,emphasizing the need for clear and accurate technical communication.By incorporating these findings into a trilingual visual dictionary,the project aims to enhance the understanding and usage of aviation terminology.展开更多
A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance ti...A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance time can be shared by more than one component, and the system availability can be improved. Then, the generation characteristics of the random failure time are researched based on the replacement maintenance and the minima[ maintenance. Furthermore, by choosing the opportunistic replacement ages of each component as opti- mized variables, a simulation algorithm based on an opportunistic maintenance policy is designed to maximize the total availability. Finally, the simulation result shows the validity of the algorithm by an example.展开更多
Taking the project of introducing reliability-centered maintenance( RCM) into maintenance decision in an AP1000 nuclear power plant( NPP) under construction as the research object,an improved RCM methodology was propo...Taking the project of introducing reliability-centered maintenance( RCM) into maintenance decision in an AP1000 nuclear power plant( NPP) under construction as the research object,an improved RCM methodology was proposed, and the application software and an RCM-based maintenance strategies management system were designed. In the pilot project,the RCMbased maintenance decision methodology had been applied to determining the maintenance strategies for two systems. Both the decision process and the results were described in this paper. The achievements of this project promoted the introduction and routinization of an advanced and effective maintenance decision mode in nuclear power field,which could provide valuable reference for new NPPs in China.展开更多
To provide some feasible condition-based maintenance (CBM) decision making methods for civil aeroengine, firstly, the theory of aeroengine CBM decision making is described. The proportional intensity(PI) model is ...To provide some feasible condition-based maintenance (CBM) decision making methods for civil aeroengine, firstly, the theory of aeroengine CBM decision making is described. The proportional intensity(PI) model is established based on the reliability and condition monitoring data. According to the model, the decision making methods are proposed for the optimal preventive maintenance(PM) interval and removal. Then, the time on wing (TOW) is predicted by collecting actual data based on the engine age and operating conditions. Finally, an example of a fleet for CF6-80C2 engines is illustrated. It shows that sufficient engine operation data are the key of accurate decision making. Results indicate that the CBM decision making methods are helpful for engineers in airlines to control engine maintenance actions and TOW, thus decreasing risks and maintenance costs.展开更多
BACKGROUND Eosinophilic esophagitis(EoE)is a chronic inflammatory disorder presenting as symptoms of dysphagia,esophageal food impaction,chest pain,and heartburn.After an initial trial of proton pump inhibitor(PPI)the...BACKGROUND Eosinophilic esophagitis(EoE)is a chronic inflammatory disorder presenting as symptoms of dysphagia,esophageal food impaction,chest pain,and heartburn.After an initial trial of proton pump inhibitor(PPI)therapy,swallowed topical corticosteroids(STC)are effective as induction therapy for EoE.However,out-come data for STC as a maintenance strategy is limited.RESULTS Three randomized control trials and one observational study were included,involving 303 patients(189 in the STC group,114 in the placebo-controlled group).Analysis showed that histologic recurrence was significantly lower with STC(OR:0.04,95%CI:0.01-0.28,P<0.00001,I^(2)=78%).Overall symptom recurrence was similar between groups(OR:0.23,95%CI:0.02-3.54,P=0.29,I^(2)=92%).On sensitivity analysis,symptom recurrence was significantly lower in the STC group(OR:0.05,95%CI:0.02-0.17,P=0.00001,I^(2)=39%).Odds of repeat dilation were significantly lower in the STC group(OR:0.14,95%CI:0.02-0.91,P=0.04,I^(2)=0%).Candida infection rates were similar between groups(OR:6.13,95%CI:0.85-44.26,P=0.07,I^(2)=24%).Proportion of concomitant PPI use was similar between groups(OR:1.64,95%CI:0.83-3.21,P=0.15,I^(2)=0%).CONCLUSION For patients who successfully achieved remission of EoE with STC induction therapy,maintaining treatment is effective in sustaining histologic remission,while newer regimens may be effective in preventing symptom recurrence compared to placebo.We found no significant difference for oropharyngeal/esophageal candidiasis with STC maintenance therapy.Future studies with longer follow-up periods are needed.展开更多
The fractionating tower bottom in fluid catalytic cracking Unit (FCCU) is highly susceptible to coking due to the interplay of complex external operating conditions and internal physical properties. Consequently, quan...The fractionating tower bottom in fluid catalytic cracking Unit (FCCU) is highly susceptible to coking due to the interplay of complex external operating conditions and internal physical properties. Consequently, quantitative risk assessment (QRA) and predictive maintenance (PdM) are essential to effectively manage coking risks influenced by multiple factors. However, the inherent uncertainties of the coking process, combined with the mixed-frequency nature of distributed control systems (DCS) and laboratory information management systems (LIMS) data, present significant challenges for the application of data-driven methods and their practical implementation in industrial environments. This study proposes a hierarchical framework that integrates deep learning and fuzzy logic inference, leveraging data and domain knowledge to monitor the coking condition and inform prescriptive maintenance planning. The framework proposes the multi-layer fuzzy inference system to construct the coking risk index, utilizes multi-label methods to select the optimal feature dataset across the reactor-regenerator and fractionation system using coking risk factors as label space, and designs the parallel encoder-integrated decoder architecture to address mixed-frequency data disparities and enhance adaptation capabilities through extracting the operation state and physical properties information. Additionally, triple attention mechanisms, whether in parallel or temporal modules, adaptively aggregate input information and enhance intrinsic interpretability to support the disposal decision-making. Applied in the 2.8 million tons FCCU under long-period complex operating conditions, enabling precise coking risk management at the fractionating tower bottom.展开更多
BACKGROUND No clear guidelines for long-term postoperative maintenance therapy have been established for patients with lung oligometastases from colorectal cancer(CRC)who achieve radiological no evidence of disease af...BACKGROUND No clear guidelines for long-term postoperative maintenance therapy have been established for patients with lung oligometastases from colorectal cancer(CRC)who achieve radiological no evidence of disease after radiofrequency ablation(RFA)treatment.We compared the outcomes of patients with lung oligometa-stases from CRC after RFA plus maintenance capecitabine with RFA alone.AIM To determine whether adding capecitabine to RFA improves prognosis compared with RFA alone.METHODS This multicenter retrospective study included consecutive patients from two tertiary cancer centers treated for pulmonary oligometastases from CRC between 2016 and 2023.Subjects were assigned to RFA plus capecitabine(combined)or RFA alone(only RFA)groups.Primary outcomes included overall survival(OS)and progression-free survival(PFS)survival and the secondary outcome was local tumor progression(LTP).The OS,PFS,and LTP rates were compared between the two groups.In addition,prognostic factors were identified using univariate and multivariate analyses.RESULTS Combination therapy(RFA+capecitabine,n=148)and RFA monotherapy(n=99)were compared in patients with CRC and lung metastases.The median OS was 37.8 months(22.4,50.3),the PFS was 18.7 months(13.0,36.5),and the LTP was 31.5 months(20.0,52.4)in the Only RFA group.The OS increased significantly(P=0.011)and the LTP decreased at all time points(P<0.001)in the combined group.The multivariate cox analysis revealed that combined chemotherapy significantly improved OS,with hazard ratios ranging from 0.29 to 0.35(all P<0.015)after adjusting for demographic,tumor,and treatment-related factors.The risk of death was consistently lower in the combination therapy group compared to RFA monotherapy.CONCLUSION RFA prolongs survival and local control in patients with CRC pulmonary oligometastases.Adjuvant capecitabine increases OS and reduces LTP compared to RFA alone,but PFS did not significantly change.展开更多
Preventing the recurrence of lung oligometastases after local therapy in patients with colorectal cancer is an area requiring investigation.A recent article demonstrated that adding capecitabine maintenance therapy af...Preventing the recurrence of lung oligometastases after local therapy in patients with colorectal cancer is an area requiring investigation.A recent article demonstrated that adding capecitabine maintenance therapy after radiofrequency ablation improved the 5-year overall survival(88.7%vs 69.1%)and reduced local tumor progression(22.7%vs 49.0%)compared with radiofrequency ablation alone.Although progression-free survival did not differ significantly between the two treatments,multivariate analysis confirmed a robust survival benefit.These findings support the use of systemic maintenance to eradicate micrometastases after locoregional control and warrant validation in prospective randomized trials.展开更多
This study focuses on the management of maintenance hemodialysis(MHD)patients,with a specific emphasis on the practical application effect of the network information management model including its impact on patients’...This study focuses on the management of maintenance hemodialysis(MHD)patients,with a specific emphasis on the practical application effect of the network information management model including its impact on patients’compliance.A network information management model for MHD patients was constructed around three management schemes:“software reminders+follow-up guidance”,“dietary records+self-management reminders”,and“dialysis plan+precise weight management”.These schemes were respectively used to optimize anemia management,control the risk of hyperphosphatemia,and improve toxin clearance efficiency.A controlled experiment was conducted,with an experimental group and a control group set up for comparative practice.The results showed that the network information management model can effectively improve patients’anemia,help alleviate mineral metabolism disorders and the accumulation of small-molecule toxins,and exert a positive impact on patients’treatment compliance.展开更多
This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. I...This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. In general, the duration of the mission is stochastic. However, existing studies rarely take into account system availability and the repairpersons with different skill levels. To solve this problem, a new multi-mission selective maintenance and repairpersons assignment model with stochastic duration of the mission are developed. To maximize the minimum phase-mission reliability while meeting the minimum system availability, the model is transformed into an optimization problem subject to limited maintenance resources. The optimization is then realized using an analytical method based on a self-programming function and a Monte Carlo simulation method, respectively. Finally, the validity of the model and solution method approaches are verified by numerical arithmetic examples. Comparative and sensitivity analyses are made to provide proven recommendations for decision-makers.展开更多
As an essential part of the urban infrastructure,underground utility tunnels have a long service life,complex structural performance evolution and dynamic changes both inside and outside the tunnel.These combined fact...As an essential part of the urban infrastructure,underground utility tunnels have a long service life,complex structural performance evolution and dynamic changes both inside and outside the tunnel.These combined factors result in a wide variety of disaster risks during the operation and maintenance phase,which make risk management and control particularly challenging.This work first reviews three common representative disaster factors during the operation and maintenance period:settlement,earthquakes,and explosions.It summarizes the causes of disasters,key technologies,and research methods.Then,it delves into the research on the intelligent operation and maintenance architecture for utility tunnels.Additionally,it explores the data challenges,monitoring technologies,and management platform architectures faced during the operation and maintenance process.This work provides new research perspectives for the long-term,healthy,and sustainable development of utility tunnels,which serve as the underground arteries of cities.展开更多
Predictive maintenance plays a crucial role in preventing equipment failures and minimizing operational downtime in modern industries.However,traditional predictive maintenance methods often face challenges in adaptin...Predictive maintenance plays a crucial role in preventing equipment failures and minimizing operational downtime in modern industries.However,traditional predictive maintenance methods often face challenges in adapting to diverse industrial environments and ensuring the transparency and fairness of their predictions.This paper presents a novel predictive maintenance framework that integrates deep learning and optimization techniques while addressing key ethical considerations,such as transparency,fairness,and explainability,in artificial intelligence driven decision-making.The framework employs an Autoencoder for feature reduction,a Convolutional Neural Network for pattern recognition,and a Long Short-Term Memory network for temporal analysis.To enhance transparency,the decision-making process of the framework is made interpretable,allowing stakeholders to understand and trust the model’s predictions.Additionally,Particle Swarm Optimization is used to refine hyperparameters for optimal performance and mitigate potential biases in the model.Experiments are conducted on multiple datasets from different industrial scenarios,with performance validated using accuracy,precision,recall,F1-score,and training time metrics.The results demonstrate an impressive accuracy of up to 99.92%and 99.45%across different datasets,highlighting the framework’s effectiveness in enhancing predictive maintenance strategies.Furthermore,the model’s explainability ensures that the decisions can be audited for fairness and accountability,aligning with ethical standards for critical systems.By addressing transparency and reducing potential biases,this framework contributes to the responsible and trustworthy deployment of artificial intelligence in industrial environments,particularly in safety-critical applications.The results underscore its potential for wide application across various industrial contexts,enhancing both performance and ethical decision-making.展开更多
The “3·31” severe squall line event in eastern China was notable for its exceptional intensity and persistence,posing significant challenges to forecast accuracy. This study analyzed the maintenance stage of th...The “3·31” severe squall line event in eastern China was notable for its exceptional intensity and persistence,posing significant challenges to forecast accuracy. This study analyzed the maintenance stage of this event using highresolution convection-permitting numerical simulations, with a focus on vorticity budgets of the environmental flow, multiscale synoptic diagnostics, and Rotunno-Klemp-Weisman(RKW) theory. These analyses aimed to elucidate the mechanisms governing the morphological transition, the generation of associated convective gales, and the prolonged maintenance of the squall line event. The results show that the numerical simulation accurately reproduced the development and evolution of the squall line, particularly its location, with surface wind errors remaining within a reasonable range. The development of a mesoscale vortex modulated the dynamic and water vapor fields, providing favorable mesoscale environmental conditions for the organization and maintenance of the squall line. Vorticity budget analysis indicates that the divergence and tilting terms were the primary contributors to vorticity tendency. After the squall line entered Jiangxi Province, it exhibited a sharper leading edge and enhanced upward motion. Dry intrusion from the mid-toupper troposphere led to rapid downward momentum transfer at the meso-γ scale, thereby generating convective gales. In addition, the enhancement of the rear-inflow jet(RIJ) was related to the pressure difference between the interior and exterior of system, which resulted from the phase change of condensate within tilted updrafts. The RIJ was orthogonal to the squall line, causing it to transform from a linear into a bowing shape. Diagnosis based on the RKW theory underscore the important roles in both low-level and deep vertical wind shear in maintenaning the squall line. The ratios of the cold pool propagation velocity to the vertical wind shear were close to 1, which balanced with the ambient horizontal vorticity that allowed the convection to remain upright, thus sustaining the squall line's intensity for an extended period. In summary, the squall line event was sustained by a favorable environment created by the environmental vortex. The dry intrusion from the mid-to-upper troposphere and intensified RIJ resulted in the severe convective winds, while the balance between cold pool and ambient vertical wind shear promoted the system's prolonged maintenance. These findings provide an effective reference for the short-range forecasting of squall lines throughout their lifecycle.展开更多
Railway systems are critical components of transportation networks requiring consistent maintenance.This paper proposes a novel data-driven approach to detect various maintenance needs of railway track systems using a...Railway systems are critical components of transportation networks requiring consistent maintenance.This paper proposes a novel data-driven approach to detect various maintenance needs of railway track systems using acceleration data obtained from a passenger train in operation.The framework contains four modules.Firstly,data pre-processing and cleansing are performed to extract useful data from the whole dataset.Then,condition-sensitive features are extracted from the raw data in three different domains of time,frequency,and time-frequency.In the third module,the best subset of measurement features that characterize the state of the tracks are selected using the analysis of variance(ANOVA)algorithm which eliminates irrelevant characteristics from the feature set of responses.Finally,a multilabel classification algorithm based on the cascade feed-forward neural network(CFNN)is used to classify the type of maintenance needs of the track.An open-access dataset from a field study in Pennsylvania,USA,is used in this study for validation of the proposed method.The results indicate that employing a CFNN can achieve 95%accuracy in identifying two maintenance activities,tamping and surfacing,using time-domain features.Moreover,an extensive analysis has been conducted to evaluate the influence of various feature extraction and selection methods,diverse classification algorithms,and different types of accelerometers(uni-axial and tri-axial)on the accuracy of the proposed method.展开更多
Objective:To investigate the clinical efficacy and cost-effectiveness of combined hemodialysis(HD)and hemoperfusion(HP)therapy in managing secondary hyperparathyroidism(SHPT)in patients undergoing maintenance hemodial...Objective:To investigate the clinical efficacy and cost-effectiveness of combined hemodialysis(HD)and hemoperfusion(HP)therapy in managing secondary hyperparathyroidism(SHPT)in patients undergoing maintenance hemodialysis(MHD).Methods:A total of 195 patients with MHD and SHPT at Deyang People's Hospital from April 2024 to April 2025 were enrolled.Patients were randomly assigned to a control group receiving standard HD treatment and an experimental group receiving HD combined with HP therapy.The experimental group underwent 1 year of observation(97 cases in the experimental group,98 cases in the control group).During treatment,changes in parathyroid hormone(PTH),serum calcium,serum phosphorus,and inflammatory factors were monitored,along with analysis of treatment-related economic benefits and safety.Results:The experimental group demonstrated significantly better reductions in PTH,serum phosphorus,and inflammatory factors compared to the control group(P<0.05).Although the total treatment cost was slightly higher,the unit cost per therapeutic effect was lower,resulting in a superior cost-effectiveness ratio.Conclusion:Combined HD and HP therapy can significantly improve SHPT-related indicators in MHD patients,demonstrating safety,controllability,and high cost-effectiveness,making it a clinically applicable and recommended treatment option.展开更多
In the face of data scarcity in the optimization of maintenance strategies for civil aircraft,traditional failure data-driven methods are encountering challenges owing to the increasing reliability of aircraft design....In the face of data scarcity in the optimization of maintenance strategies for civil aircraft,traditional failure data-driven methods are encountering challenges owing to the increasing reliability of aircraft design.This study addresses this issue by presenting a novel combined data fusion algorithm,which serves to enhance the accuracy and reliability of failure rate analysis for a specific aircraft model by integrating historical failure data from similar models as supplementary information.Through a comprehensive analysis of two different maintenance projects,this study illustrates the application process of the algorithm.Building upon the analysis results,this paper introduces the innovative equal integral value method as a replacement for the conventional equal interval method in the context of maintenance schedule optimization.The Monte Carlo simulation example validates that the equivalent essential value method surpasses the traditional method by over 20%in terms of inspection efficiency ratio.This discovery indicates that the equal critical value method not only upholds maintenance efficiency but also substantially decreases workload and maintenance costs.The findings of this study open up novel perspectives for airlines grappling with data scarcity,offer fresh strategies for the optimization of aviation maintenance practices,and chart a new course toward achieving more efficient and cost-effective maintenance schedule optimization through refined data analysis.展开更多
文摘While Artificial Intelligence (AI) is leading the way in terms of hardware advancements, such as GPUs, memory, and processing power, real-time applications are still catching up. It is inevitable that when one aspect leads and other trails behind, they coexist in life, as is often the case. The trailing aspect cannot remain far behind because, without application and use, there would be a dead end. Everything, whether an object, software, or tool, must have a practical use for humans. Without this, it will become obsolete. We can see this in many instances, such as blockchain technology, which is superior yet faces challenges in practical implementation, leading to a decline in adoption. This publication aims to bridge the gap between AI advancements and maintenance, specifically focusing on making predictive maintenance a practical application. There are multiple building blocks that make predictive maintenance a practical application. Each block performs a function leading to an output. This output forms an input to the receiving block. There are also foundational parts for all these building blocks to perform a function. Eventually, once the building blocks are connected, they form a loop and start to lead the path to predictive maintenance. Predictive maintenance is indeed practically achievable, but one must comprehend all the building blocks necessary for its implementation. Although detailed explanations will be provided in the upcoming sections, it is important to understand that simply purchasing software and plugging it in might be a far-fetched approach.
文摘The study aims to evaluate how safety-maintenance practices affect the mechanical engineering industry’s overall performance in Ghana. The study used a descriptive survey design technique to ascertain the type of maintenance engineering that was practiced in Ghanaian mechanical engineering workshops at the time of the study. In the mechanical engineering workshops, respondents provided both qualitative and quantitative data using a variety of data collecting instruments, with the quantitative approach being more common. The study employed Kumasi, Tamale, and Accra’s mechanical engineering workshops as a case study. The number of mechanical engineering workshop enterprises that made up the sample size for the questionnaire administration was sixty (60), chosen at random from the AGI membership registry. Primary data was gathered using interview guides and questionnaires. To analyse the data, descriptive statistics were employed. According to the study’s findings, mechanical engineering companies combined different maintenance techniques in order to best fit their organisational culture and equipment. Preventive shut-down, with a mean score of 4.78 and RII = 0.98, placing first (1st) in the Likert rating order, is the most frequently used maintenance system by respondents. The maintenance procedures employed by mechanical engineering organisations were influenced not only by their equipment and organisational culture but also by other factors such as cost, personnel expertise and external partnerships.
基金Supported by Key Research Fund of Wannan Medical College,No.WK2021ZF15Research Foundation for Advanced Talents of Wannan Medical College,No.YR202213+3 种基金Foundation of Anhui Educational Committee,No.2023AH051759Excellent Youth Research Project of Anhui UniversitiesNo.2023AH030107Horizontal Project of Wannan Medical College,No.622202504003 and No.662202404013.
文摘BACKGROUND Research examining the relationships among anxiety,depression,self-perceived burden(SPB),and psychological resilience(PR),along with the determinants of PR,in patients with chronic renal failure(CRF)receiving maintenance hemodia-lysis(MHD)is limited.AIM To investigate the correlation between anxiety,depression,SPB,and PR in pati-ents with CRF on MHD.METHODS This study included 225 patients with CRF on MHD who were admitted between June 2021 and June 2024.The anxiety level was evaluated using the Self-Rating Anxiety Scale(SAS);the depression status was assessed using the Self-Rating Depression Scale(SDS);the SPB was measured using the SPB Scale(SPBS);and the PR was determined using the Connor–Davidson Resilience Scale(CD-RISC).The correlations among the SAS,SDS,SPB,and CD-RISC were analyzed using Pearson’s correlation coefficients.Univariate and multivariate analyses were performed to identify the factors that influence the PR of patients with CRF on MHD.RESULTS The SAS,SDS,SPB,and CD-RISC scores of the 225 patients were 45.25±15.36,54.81±14.68,32.31±11.52,and 66.48±9.18,respectively.Significant negative correlations were observed between SAS,SDS,SPB,and CD-RISC.Furthermore,longer dialysis vintage(P=0.015),the absence of religious beliefs(P=0.020),lower monthly income(P=0.008),higher SAS score(P=0.013),and higher SDS score(P=0.006)were all independent factors that adversely affected the PR of patients with CRF on MHD.CONCLUSION Patients with CRF on MHD present with varying degrees of anxiety,depression,and SPB,all of which exhibit a significant negative correlation with their PR.Moreover,longer dialysis vintage,the absence of religious beliefs,lower monthly income,higher SAS score,and higher SDS score were factors that negatively affected the PR of patients with CRF on MHD.
基金supported by Ministry of Education of Singapore,under Academic Research Fund Tier 1(Grant Number RG143/23).
文摘Scientific and technological advancements are rapidly transforming underground engineering,shifting from labor-intensive,time-consuming methods to automated,real-time systems.This timely and comprehensive review covers in-situ testing,intelligent monitoring,and geophysical testing methods,highlighting fundamental principles,testing apparatuses,data processing techniques,and engineering applications.The state-of-the-art summary emphasizes not only cutting-edge innovations for complex and harsh environments but also the transformative role of artificial intelligence and machine learning in data interpretations.The integration of big data and advanced algorithms is particularly impactful,enabling the identification,prediction,and mitigation of potential risks in underground projects.Key aspects of the discussion include detection capabilities,method integration,and data convergence of intelligent technologies to drive enhanced safety,operational efficiency,and predictive reliability.The review also examines future trends in intelligent technologies,emphasizing unified platforms that combine multiple methods,real-time data,and predictive analytics.These advancements are shaping the evolution of underground construction and maintenance,aiming for risk-free,high-efficiency underground engineering.
文摘This paper presents a project aimed at developing a trilingual visual dictionary for aircraft maintenance professionals and students.The project addresses the growing demand for accurate communication and technical terminology in the aviation industry,particularly in Brazil and China.The study employs a corpus-driven approach,analyzing a large corpus of aircraft maintenance manuals to extract key technical terms and their collocates.Using specialized subcorpora and a comparative analysis,this paper demonstrates challenges and solutions into the identification of high-frequency keywords and explores their contextual use in aviation documentation,emphasizing the need for clear and accurate technical communication.By incorporating these findings into a trilingual visual dictionary,the project aims to enhance the understanding and usage of aviation terminology.
文摘A multi-component system has the long fixed maintenance time, so the opportunistic maintenance policy is adopted to put preventive replacement and corrective replacement together, so that the long fixed maintenance time can be shared by more than one component, and the system availability can be improved. Then, the generation characteristics of the random failure time are researched based on the replacement maintenance and the minima[ maintenance. Furthermore, by choosing the opportunistic replacement ages of each component as opti- mized variables, a simulation algorithm based on an opportunistic maintenance policy is designed to maximize the total availability. Finally, the simulation result shows the validity of the algorithm by an example.
文摘Taking the project of introducing reliability-centered maintenance( RCM) into maintenance decision in an AP1000 nuclear power plant( NPP) under construction as the research object,an improved RCM methodology was proposed, and the application software and an RCM-based maintenance strategies management system were designed. In the pilot project,the RCMbased maintenance decision methodology had been applied to determining the maintenance strategies for two systems. Both the decision process and the results were described in this paper. The achievements of this project promoted the introduction and routinization of an advanced and effective maintenance decision mode in nuclear power field,which could provide valuable reference for new NPPs in China.
基金the National Natural Science Foundation of China(60672164)the National High Technology Research and Development Program of China(863Program)(2006AA04Z427)~~
文摘To provide some feasible condition-based maintenance (CBM) decision making methods for civil aeroengine, firstly, the theory of aeroengine CBM decision making is described. The proportional intensity(PI) model is established based on the reliability and condition monitoring data. According to the model, the decision making methods are proposed for the optimal preventive maintenance(PM) interval and removal. Then, the time on wing (TOW) is predicted by collecting actual data based on the engine age and operating conditions. Finally, an example of a fleet for CF6-80C2 engines is illustrated. It shows that sufficient engine operation data are the key of accurate decision making. Results indicate that the CBM decision making methods are helpful for engineers in airlines to control engine maintenance actions and TOW, thus decreasing risks and maintenance costs.
文摘BACKGROUND Eosinophilic esophagitis(EoE)is a chronic inflammatory disorder presenting as symptoms of dysphagia,esophageal food impaction,chest pain,and heartburn.After an initial trial of proton pump inhibitor(PPI)therapy,swallowed topical corticosteroids(STC)are effective as induction therapy for EoE.However,out-come data for STC as a maintenance strategy is limited.RESULTS Three randomized control trials and one observational study were included,involving 303 patients(189 in the STC group,114 in the placebo-controlled group).Analysis showed that histologic recurrence was significantly lower with STC(OR:0.04,95%CI:0.01-0.28,P<0.00001,I^(2)=78%).Overall symptom recurrence was similar between groups(OR:0.23,95%CI:0.02-3.54,P=0.29,I^(2)=92%).On sensitivity analysis,symptom recurrence was significantly lower in the STC group(OR:0.05,95%CI:0.02-0.17,P=0.00001,I^(2)=39%).Odds of repeat dilation were significantly lower in the STC group(OR:0.14,95%CI:0.02-0.91,P=0.04,I^(2)=0%).Candida infection rates were similar between groups(OR:6.13,95%CI:0.85-44.26,P=0.07,I^(2)=24%).Proportion of concomitant PPI use was similar between groups(OR:1.64,95%CI:0.83-3.21,P=0.15,I^(2)=0%).CONCLUSION For patients who successfully achieved remission of EoE with STC induction therapy,maintaining treatment is effective in sustaining histologic remission,while newer regimens may be effective in preventing symptom recurrence compared to placebo.We found no significant difference for oropharyngeal/esophageal candidiasis with STC maintenance therapy.Future studies with longer follow-up periods are needed.
基金financially supported by the Innovative Research Group Project of the National Natural Science Foundation of China (22021004)Sinopec Major Science and Technology Projects (321123-1)
文摘The fractionating tower bottom in fluid catalytic cracking Unit (FCCU) is highly susceptible to coking due to the interplay of complex external operating conditions and internal physical properties. Consequently, quantitative risk assessment (QRA) and predictive maintenance (PdM) are essential to effectively manage coking risks influenced by multiple factors. However, the inherent uncertainties of the coking process, combined with the mixed-frequency nature of distributed control systems (DCS) and laboratory information management systems (LIMS) data, present significant challenges for the application of data-driven methods and their practical implementation in industrial environments. This study proposes a hierarchical framework that integrates deep learning and fuzzy logic inference, leveraging data and domain knowledge to monitor the coking condition and inform prescriptive maintenance planning. The framework proposes the multi-layer fuzzy inference system to construct the coking risk index, utilizes multi-label methods to select the optimal feature dataset across the reactor-regenerator and fractionation system using coking risk factors as label space, and designs the parallel encoder-integrated decoder architecture to address mixed-frequency data disparities and enhance adaptation capabilities through extracting the operation state and physical properties information. Additionally, triple attention mechanisms, whether in parallel or temporal modules, adaptively aggregate input information and enhance intrinsic interpretability to support the disposal decision-making. Applied in the 2.8 million tons FCCU under long-period complex operating conditions, enabling precise coking risk management at the fractionating tower bottom.
基金Supported by the National Natural Science Foundation of China,No.82072034。
文摘BACKGROUND No clear guidelines for long-term postoperative maintenance therapy have been established for patients with lung oligometastases from colorectal cancer(CRC)who achieve radiological no evidence of disease after radiofrequency ablation(RFA)treatment.We compared the outcomes of patients with lung oligometa-stases from CRC after RFA plus maintenance capecitabine with RFA alone.AIM To determine whether adding capecitabine to RFA improves prognosis compared with RFA alone.METHODS This multicenter retrospective study included consecutive patients from two tertiary cancer centers treated for pulmonary oligometastases from CRC between 2016 and 2023.Subjects were assigned to RFA plus capecitabine(combined)or RFA alone(only RFA)groups.Primary outcomes included overall survival(OS)and progression-free survival(PFS)survival and the secondary outcome was local tumor progression(LTP).The OS,PFS,and LTP rates were compared between the two groups.In addition,prognostic factors were identified using univariate and multivariate analyses.RESULTS Combination therapy(RFA+capecitabine,n=148)and RFA monotherapy(n=99)were compared in patients with CRC and lung metastases.The median OS was 37.8 months(22.4,50.3),the PFS was 18.7 months(13.0,36.5),and the LTP was 31.5 months(20.0,52.4)in the Only RFA group.The OS increased significantly(P=0.011)and the LTP decreased at all time points(P<0.001)in the combined group.The multivariate cox analysis revealed that combined chemotherapy significantly improved OS,with hazard ratios ranging from 0.29 to 0.35(all P<0.015)after adjusting for demographic,tumor,and treatment-related factors.The risk of death was consistently lower in the combination therapy group compared to RFA monotherapy.CONCLUSION RFA prolongs survival and local control in patients with CRC pulmonary oligometastases.Adjuvant capecitabine increases OS and reduces LTP compared to RFA alone,but PFS did not significantly change.
文摘Preventing the recurrence of lung oligometastases after local therapy in patients with colorectal cancer is an area requiring investigation.A recent article demonstrated that adding capecitabine maintenance therapy after radiofrequency ablation improved the 5-year overall survival(88.7%vs 69.1%)and reduced local tumor progression(22.7%vs 49.0%)compared with radiofrequency ablation alone.Although progression-free survival did not differ significantly between the two treatments,multivariate analysis confirmed a robust survival benefit.These findings support the use of systemic maintenance to eradicate micrometastases after locoregional control and warrant validation in prospective randomized trials.
文摘This study focuses on the management of maintenance hemodialysis(MHD)patients,with a specific emphasis on the practical application effect of the network information management model including its impact on patients’compliance.A network information management model for MHD patients was constructed around three management schemes:“software reminders+follow-up guidance”,“dietary records+self-management reminders”,and“dialysis plan+precise weight management”.These schemes were respectively used to optimize anemia management,control the risk of hyperphosphatemia,and improve toxin clearance efficiency.A controlled experiment was conducted,with an experimental group and a control group set up for comparative practice.The results showed that the network information management model can effectively improve patients’anemia,help alleviate mineral metabolism disorders and the accumulation of small-molecule toxins,and exert a positive impact on patients’treatment compliance.
文摘This paper investigates the selective maintenance o systems that perform multi-mission in succession. Selective maintenance is performed on systems with limited break time to improve the success of the next mission. In general, the duration of the mission is stochastic. However, existing studies rarely take into account system availability and the repairpersons with different skill levels. To solve this problem, a new multi-mission selective maintenance and repairpersons assignment model with stochastic duration of the mission are developed. To maximize the minimum phase-mission reliability while meeting the minimum system availability, the model is transformed into an optimization problem subject to limited maintenance resources. The optimization is then realized using an analytical method based on a self-programming function and a Monte Carlo simulation method, respectively. Finally, the validity of the model and solution method approaches are verified by numerical arithmetic examples. Comparative and sensitivity analyses are made to provide proven recommendations for decision-makers.
基金financially supported by the Scientific Research Projects of the Education Department of Zhejiang Province(Grant No.Y202454744)the Ningbo Public Welfare Science and Technology Project(Grant Nos.2023S007 and 2023S165)the Key Research and Development Program of Zhejiang(Grant No.2023C03183).
文摘As an essential part of the urban infrastructure,underground utility tunnels have a long service life,complex structural performance evolution and dynamic changes both inside and outside the tunnel.These combined factors result in a wide variety of disaster risks during the operation and maintenance phase,which make risk management and control particularly challenging.This work first reviews three common representative disaster factors during the operation and maintenance period:settlement,earthquakes,and explosions.It summarizes the causes of disasters,key technologies,and research methods.Then,it delves into the research on the intelligent operation and maintenance architecture for utility tunnels.Additionally,it explores the data challenges,monitoring technologies,and management platform architectures faced during the operation and maintenance process.This work provides new research perspectives for the long-term,healthy,and sustainable development of utility tunnels,which serve as the underground arteries of cities.
文摘Predictive maintenance plays a crucial role in preventing equipment failures and minimizing operational downtime in modern industries.However,traditional predictive maintenance methods often face challenges in adapting to diverse industrial environments and ensuring the transparency and fairness of their predictions.This paper presents a novel predictive maintenance framework that integrates deep learning and optimization techniques while addressing key ethical considerations,such as transparency,fairness,and explainability,in artificial intelligence driven decision-making.The framework employs an Autoencoder for feature reduction,a Convolutional Neural Network for pattern recognition,and a Long Short-Term Memory network for temporal analysis.To enhance transparency,the decision-making process of the framework is made interpretable,allowing stakeholders to understand and trust the model’s predictions.Additionally,Particle Swarm Optimization is used to refine hyperparameters for optimal performance and mitigate potential biases in the model.Experiments are conducted on multiple datasets from different industrial scenarios,with performance validated using accuracy,precision,recall,F1-score,and training time metrics.The results demonstrate an impressive accuracy of up to 99.92%and 99.45%across different datasets,highlighting the framework’s effectiveness in enhancing predictive maintenance strategies.Furthermore,the model’s explainability ensures that the decisions can be audited for fairness and accountability,aligning with ethical standards for critical systems.By addressing transparency and reducing potential biases,this framework contributes to the responsible and trustworthy deployment of artificial intelligence in industrial environments,particularly in safety-critical applications.The results underscore its potential for wide application across various industrial contexts,enhancing both performance and ethical decision-making.
基金Jiangxi Meteorological Bureau Project (JXCX202304,JX2024Y01)Geological Disaster Prevention and Control Project of Jiangxi Provincial Department of Natural Resources(B360000030004)+1 种基金Key Research and Development Project of Jiangxi Province (20243BBH81005)Weather Review Project of China Meteorological Administration (FPZJ2025-066)。
文摘The “3·31” severe squall line event in eastern China was notable for its exceptional intensity and persistence,posing significant challenges to forecast accuracy. This study analyzed the maintenance stage of this event using highresolution convection-permitting numerical simulations, with a focus on vorticity budgets of the environmental flow, multiscale synoptic diagnostics, and Rotunno-Klemp-Weisman(RKW) theory. These analyses aimed to elucidate the mechanisms governing the morphological transition, the generation of associated convective gales, and the prolonged maintenance of the squall line event. The results show that the numerical simulation accurately reproduced the development and evolution of the squall line, particularly its location, with surface wind errors remaining within a reasonable range. The development of a mesoscale vortex modulated the dynamic and water vapor fields, providing favorable mesoscale environmental conditions for the organization and maintenance of the squall line. Vorticity budget analysis indicates that the divergence and tilting terms were the primary contributors to vorticity tendency. After the squall line entered Jiangxi Province, it exhibited a sharper leading edge and enhanced upward motion. Dry intrusion from the mid-toupper troposphere led to rapid downward momentum transfer at the meso-γ scale, thereby generating convective gales. In addition, the enhancement of the rear-inflow jet(RIJ) was related to the pressure difference between the interior and exterior of system, which resulted from the phase change of condensate within tilted updrafts. The RIJ was orthogonal to the squall line, causing it to transform from a linear into a bowing shape. Diagnosis based on the RKW theory underscore the important roles in both low-level and deep vertical wind shear in maintenaning the squall line. The ratios of the cold pool propagation velocity to the vertical wind shear were close to 1, which balanced with the ambient horizontal vorticity that allowed the convection to remain upright, thus sustaining the squall line's intensity for an extended period. In summary, the squall line event was sustained by a favorable environment created by the environmental vortex. The dry intrusion from the mid-to-upper troposphere and intensified RIJ resulted in the severe convective winds, while the balance between cold pool and ambient vertical wind shear promoted the system's prolonged maintenance. These findings provide an effective reference for the short-range forecasting of squall lines throughout their lifecycle.
基金supported by Research Ireland under Grant No.20/FFP-P/8706.
文摘Railway systems are critical components of transportation networks requiring consistent maintenance.This paper proposes a novel data-driven approach to detect various maintenance needs of railway track systems using acceleration data obtained from a passenger train in operation.The framework contains four modules.Firstly,data pre-processing and cleansing are performed to extract useful data from the whole dataset.Then,condition-sensitive features are extracted from the raw data in three different domains of time,frequency,and time-frequency.In the third module,the best subset of measurement features that characterize the state of the tracks are selected using the analysis of variance(ANOVA)algorithm which eliminates irrelevant characteristics from the feature set of responses.Finally,a multilabel classification algorithm based on the cascade feed-forward neural network(CFNN)is used to classify the type of maintenance needs of the track.An open-access dataset from a field study in Pennsylvania,USA,is used in this study for validation of the proposed method.The results indicate that employing a CFNN can achieve 95%accuracy in identifying two maintenance activities,tamping and surfacing,using time-domain features.Moreover,an extensive analysis has been conducted to evaluate the influence of various feature extraction and selection methods,diverse classification algorithms,and different types of accelerometers(uni-axial and tri-axial)on the accuracy of the proposed method.
基金supported by the Deyang City Science and Technology Planning Project[Grant Number 2023SZZ010].
文摘Objective:To investigate the clinical efficacy and cost-effectiveness of combined hemodialysis(HD)and hemoperfusion(HP)therapy in managing secondary hyperparathyroidism(SHPT)in patients undergoing maintenance hemodialysis(MHD).Methods:A total of 195 patients with MHD and SHPT at Deyang People's Hospital from April 2024 to April 2025 were enrolled.Patients were randomly assigned to a control group receiving standard HD treatment and an experimental group receiving HD combined with HP therapy.The experimental group underwent 1 year of observation(97 cases in the experimental group,98 cases in the control group).During treatment,changes in parathyroid hormone(PTH),serum calcium,serum phosphorus,and inflammatory factors were monitored,along with analysis of treatment-related economic benefits and safety.Results:The experimental group demonstrated significantly better reductions in PTH,serum phosphorus,and inflammatory factors compared to the control group(P<0.05).Although the total treatment cost was slightly higher,the unit cost per therapeutic effect was lower,resulting in a superior cost-effectiveness ratio.Conclusion:Combined HD and HP therapy can significantly improve SHPT-related indicators in MHD patients,demonstrating safety,controllability,and high cost-effectiveness,making it a clinically applicable and recommended treatment option.
文摘In the face of data scarcity in the optimization of maintenance strategies for civil aircraft,traditional failure data-driven methods are encountering challenges owing to the increasing reliability of aircraft design.This study addresses this issue by presenting a novel combined data fusion algorithm,which serves to enhance the accuracy and reliability of failure rate analysis for a specific aircraft model by integrating historical failure data from similar models as supplementary information.Through a comprehensive analysis of two different maintenance projects,this study illustrates the application process of the algorithm.Building upon the analysis results,this paper introduces the innovative equal integral value method as a replacement for the conventional equal interval method in the context of maintenance schedule optimization.The Monte Carlo simulation example validates that the equivalent essential value method surpasses the traditional method by over 20%in terms of inspection efficiency ratio.This discovery indicates that the equal critical value method not only upholds maintenance efficiency but also substantially decreases workload and maintenance costs.The findings of this study open up novel perspectives for airlines grappling with data scarcity,offer fresh strategies for the optimization of aviation maintenance practices,and chart a new course toward achieving more efficient and cost-effective maintenance schedule optimization through refined data analysis.