Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous s...Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous solutions,resulting in significant optical losses and exciton recombination.In this study,two series of six novel polymer photocatalysts(FLUSO,FLUSO-PEG10,FLUSO-PEG30;CPDTSO,CPDTSO-PEG10,CPDTSO-PEG30)are designed and synthesized by incorporating the hydrophilic,non-conjugated polyethylene glycol(PEG)chain,into both the main and side chains of polymers.By precisely optimizing the ratio of hydrophilic PEG segments,the water dispersibility is significantly improved while the light absorption capability of the polymer photocatalysts is well maintained.The experimental results confirm that the optimized FLUSO-PEG10 exhibits excellent photocatalytic hydrogen evolution rate,reaching up to 33.9 mmol/(g·h),which is nearly three times higher than that of fullyπ-conjugated counterparts.Water contact angles and particle size analyses reveal that incorporating non-conjugated segments into the main chains enhances the capacitance of the polymer/water interface and reduces particle aggregation,leading to improved photocatalyst dispersion and enhanced charge generation.展开更多
The synthesis of a new azobenzene(azo)-containing main-chain crystalline polymer with reactive secondary amino groups in its backbone and photodeformation behaviors of its supramolecular hydrogen-bonded fibers are des...The synthesis of a new azobenzene(azo)-containing main-chain crystalline polymer with reactive secondary amino groups in its backbone and photodeformation behaviors of its supramolecular hydrogen-bonded fibers are described. This main-chain azo polymer(namely Azo-MP6) was prepared via first the synthesis of a diacrylate-type azo monomer and its subsequent Michael addition copolymerization with trans-1,4-cyclohexanediamine under a mild reaction condition. Azo-MP6 was found to have a linear main-chain chemical structure instead of a branched one, as verified by comparing its ~1H-NMR spectrum with that of the azo polymer prepared via the polymer analogous reaction of AzoMP6 with acetic anhydride. The thermal stability, phase transition behavior, and photoresponsivity of Azo-MP6 were characterized with TGA,DSC, POM, XRD, and UV-Vis spectroscopy. The experimental results revealed that it had good thermal stability, low glass transition temperature,broad crystalline phase temperature range, and highly reversible photoresponsivity. Physically crosslinked supramolecular hydrogen-bonded fibers with good mechanical properties and a high alignment order of azo mesogens were readily fabricated from Azo-MP6 by using the simple melt spinning method, and they could show "reversible" photoinduced bending under the same UV light irradiation and good anti-fatigue properties.展开更多
A main-chain liquid crystalline ionomer(MLCI) containing sulfonic group was synthesized by an interfacial condensation reaction.The MLCI was blended with polybutylene terephthalate(PBT) and polypropylene(PP).MLC...A main-chain liquid crystalline ionomer(MLCI) containing sulfonic group was synthesized by an interfacial condensation reaction.The MLCI was blended with polybutylene terephthalate(PBT) and polypropylene(PP).MLCI interacted with both the dispersed(PP) phase and the matrix(PBT) phase to modify the interfacial interaction of PBT and PP.Differential scanning calorimetry(DSC),scanning electron microscopy(SEM) and FTIR imaging system analysis demonstrated the significance of interfacial interaction in the polymer blends.MLCI brought about good adhesion at the interfacial,which reduced the disperse phase size and enabled a fine PP phase at matrix.The mechanical properties of the ternary blends were improved when a proper amount of MLCI was added.This was attributed to enhanced adhesion at the interface,which invoked better mechanical properties in the blends.展开更多
The experimental investigation on the conformation of a thermotropic main-chain nematic polymer by small-angle X-ray scattering (SAXS) has been carried out. The average radius of gyration of the polymer has been deter...The experimental investigation on the conformation of a thermotropic main-chain nematic polymer by small-angle X-ray scattering (SAXS) has been carried out. The average radius of gyration of the polymer has been determined in nematic and isotropic state respectively. The experiment shows that the boundary between domains is not sharp but diffuse, and the diffuse-boundary thickness of the polymer as a function of temperature has been given.展开更多
In the domain of high-performance engineering polymers, the enhancement of mechanical flexibility in poly(phenylene sulfide) (PPS) resins has long posed a significant challenge. A novel molecular structure, designated...In the domain of high-performance engineering polymers, the enhancement of mechanical flexibility in poly(phenylene sulfide) (PPS) resins has long posed a significant challenge. A novel molecular structure, designated as PP-He-IS, wherein imide rings and an aliphatic hexylene chain are covalently incorporated into the PPS backbone to enhance its flexibility, is introduced in this study. Molecular dynamics (MD) simulations are employed to systematically explore the effects of diversifying the backbone chain structures by substituting phenyl units with alkyl chains of varying lengths, referred to as PP-A-IS where “A” signifies the distinct intermediary alkyl chain configurations. Computational analyses reveal a discernable decrement in the glass transition temperature (Tg) and elastic modulus, counterbalanced by an increment in yield strength as the alkyl chain length is extended. Notably, the PP-He-IS variant is shown to exhibit superior yield strength while simultaneously maintaining reduced elastic modulus and Tg values, positioning it as an advantageous candidate for flexible PPS applications. Mesoscopic analyses further indicate that structures such as PP-He-IS, PP-Pe-IS, and PP-Bu-IS manifest remarkable flexibility, attributable to the presence of freely rotatable carbon-carbon single bonds. Experimental validation confirms that a melting temperature of 504 K which is lower than that of conventional PPS, and lower crystallinity are exhibited by PP-He-IS, thereby affording enhanced processability without compromising inherent thermal stability. Novel insights into the strategic modification of PPS for mechanical flexibility are thus furnished by this study, which also accentuates the pivotal role played by molecular dynamics simulations in spearheading high-throughput investigations in polymer material modifications.展开更多
文摘Traditional polymeric photocatalysts are typically constructed using aromatic building blocks to enhanceπ-conjugation.However,their inherent hydrophobicity and rigid structure lead to poor dispersibility in aqueous solutions,resulting in significant optical losses and exciton recombination.In this study,two series of six novel polymer photocatalysts(FLUSO,FLUSO-PEG10,FLUSO-PEG30;CPDTSO,CPDTSO-PEG10,CPDTSO-PEG30)are designed and synthesized by incorporating the hydrophilic,non-conjugated polyethylene glycol(PEG)chain,into both the main and side chains of polymers.By precisely optimizing the ratio of hydrophilic PEG segments,the water dispersibility is significantly improved while the light absorption capability of the polymer photocatalysts is well maintained.The experimental results confirm that the optimized FLUSO-PEG10 exhibits excellent photocatalytic hydrogen evolution rate,reaching up to 33.9 mmol/(g·h),which is nearly three times higher than that of fullyπ-conjugated counterparts.Water contact angles and particle size analyses reveal that incorporating non-conjugated segments into the main chains enhances the capacitance of the polymer/water interface and reduces particle aggregation,leading to improved photocatalyst dispersion and enhanced charge generation.
基金financially supported by the National Natural Science Foundation of China (Nos. 21574070 and 21774063)Natural Science Foundation of Tianjin (No. 16JCZDJC36800)
文摘The synthesis of a new azobenzene(azo)-containing main-chain crystalline polymer with reactive secondary amino groups in its backbone and photodeformation behaviors of its supramolecular hydrogen-bonded fibers are described. This main-chain azo polymer(namely Azo-MP6) was prepared via first the synthesis of a diacrylate-type azo monomer and its subsequent Michael addition copolymerization with trans-1,4-cyclohexanediamine under a mild reaction condition. Azo-MP6 was found to have a linear main-chain chemical structure instead of a branched one, as verified by comparing its ~1H-NMR spectrum with that of the azo polymer prepared via the polymer analogous reaction of AzoMP6 with acetic anhydride. The thermal stability, phase transition behavior, and photoresponsivity of Azo-MP6 were characterized with TGA,DSC, POM, XRD, and UV-Vis spectroscopy. The experimental results revealed that it had good thermal stability, low glass transition temperature,broad crystalline phase temperature range, and highly reversible photoresponsivity. Physically crosslinked supramolecular hydrogen-bonded fibers with good mechanical properties and a high alignment order of azo mesogens were readily fabricated from Azo-MP6 by using the simple melt spinning method, and they could show "reversible" photoinduced bending under the same UV light irradiation and good anti-fatigue properties.
基金Supported by the High-Tech Research and Development Program of China(No.2006AA02Z291)the National Natural Science Foundation of China(No.50673105)
文摘A main-chain liquid crystalline ionomer(MLCI) containing sulfonic group was synthesized by an interfacial condensation reaction.The MLCI was blended with polybutylene terephthalate(PBT) and polypropylene(PP).MLCI interacted with both the dispersed(PP) phase and the matrix(PBT) phase to modify the interfacial interaction of PBT and PP.Differential scanning calorimetry(DSC),scanning electron microscopy(SEM) and FTIR imaging system analysis demonstrated the significance of interfacial interaction in the polymer blends.MLCI brought about good adhesion at the interfacial,which reduced the disperse phase size and enabled a fine PP phase at matrix.The mechanical properties of the ternary blends were improved when a proper amount of MLCI was added.This was attributed to enhanced adhesion at the interface,which invoked better mechanical properties in the blends.
文摘The experimental investigation on the conformation of a thermotropic main-chain nematic polymer by small-angle X-ray scattering (SAXS) has been carried out. The average radius of gyration of the polymer has been determined in nematic and isotropic state respectively. The experiment shows that the boundary between domains is not sharp but diffuse, and the diffuse-boundary thickness of the polymer as a function of temperature has been given.
文摘In the domain of high-performance engineering polymers, the enhancement of mechanical flexibility in poly(phenylene sulfide) (PPS) resins has long posed a significant challenge. A novel molecular structure, designated as PP-He-IS, wherein imide rings and an aliphatic hexylene chain are covalently incorporated into the PPS backbone to enhance its flexibility, is introduced in this study. Molecular dynamics (MD) simulations are employed to systematically explore the effects of diversifying the backbone chain structures by substituting phenyl units with alkyl chains of varying lengths, referred to as PP-A-IS where “A” signifies the distinct intermediary alkyl chain configurations. Computational analyses reveal a discernable decrement in the glass transition temperature (Tg) and elastic modulus, counterbalanced by an increment in yield strength as the alkyl chain length is extended. Notably, the PP-He-IS variant is shown to exhibit superior yield strength while simultaneously maintaining reduced elastic modulus and Tg values, positioning it as an advantageous candidate for flexible PPS applications. Mesoscopic analyses further indicate that structures such as PP-He-IS, PP-Pe-IS, and PP-Bu-IS manifest remarkable flexibility, attributable to the presence of freely rotatable carbon-carbon single bonds. Experimental validation confirms that a melting temperature of 504 K which is lower than that of conventional PPS, and lower crystallinity are exhibited by PP-He-IS, thereby affording enhanced processability without compromising inherent thermal stability. Novel insights into the strategic modification of PPS for mechanical flexibility are thus furnished by this study, which also accentuates the pivotal role played by molecular dynamics simulations in spearheading high-throughput investigations in polymer material modifications.