Main lobe jamming seriously affects the detection performance of airborne early warning radar.The joint processing of polarization-space has become an effective way to suppress the main lobe jamming.To avoid the main ...Main lobe jamming seriously affects the detection performance of airborne early warning radar.The joint processing of polarization-space has become an effective way to suppress the main lobe jamming.To avoid the main beam distortion and wave crest migration caused by the main lobe jamming in adaptive beamforming,a joint optimization algorithm based on adaptive polarization canceller(APC)and stochastic variance reduction gradient descent(SVRGD)is proposed.First,the polarization plane array structure and receiving signal model based on primary and auxiliary array cancellation are established,and an APC iterative algorithm model is constructed to calculate the optimal weight vector of the auxiliary channel.Second,based on the stochastic gradient descent principle,the variance reduction method is introduced to modify the gradient through internal and external iteration to reduce the variance of the stochastic gradient estimation,the airspace optimal weight vector is calculated and the equivalent weight vector is introduced to measure the beamforming effect.Third,by setting up a planar polarization array simulation scene,the performance of the algorithm against the interference of the main lobe and the side lobe is analyzed,and the effectiveness of the algorithm is verified under the condition of short snapshot number and certain signal to interference plus noise ratio.展开更多
在基于短时傅里叶变换(short-time Fourier transform,STFT)的智能音乐生成系统中,引入梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC)作为输入特征,并对STFT的损失函数进行优化设计,以提升音乐生成的质量。在对音符输入信号...在基于短时傅里叶变换(short-time Fourier transform,STFT)的智能音乐生成系统中,引入梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC)作为输入特征,并对STFT的损失函数进行优化设计,以提升音乐生成的质量。在对音符输入信号进行短时傅里叶变换时,需要对时域信号进行截断并添加窗函数,对信号添加时域窗等效于在频域信号中进行卷积。时域信号在截断过程中存在频谱分析误差,使得频谱以实际频率值为中心,以窗函数频谱波形的形状向两侧扩散,从而产生频谱泄漏。不同窗函数的选择对最终生成音乐的品质具有显著影响。为此,提出一种基于能量校正因子、频域最大副瓣和主瓣增益的窗函数分析与选择方法,并开发相应脚本工具,从而完成基于符号域音乐的混合窗函数设计。实验结果表明,混合窗函数在不同的MIDI(musical instrument digital interface)数据集上均可有效减少频谱泄漏对信号截断的影响,具有很好的适应性和灵活性,从而更好地作用于基于STFT的智能音乐生成系统中。展开更多
针对主瓣干扰(main-lobe jamming,MLJ)在空域与有用信号(signal of interest,SOI)高度相关而难以被有效抑制的问题,基于跳变编码波形的抗MLJ系统通过对波形进行编码调制,接收端据此重构接收信号,利用码-空映射等效改变SOI空域信道,实现...针对主瓣干扰(main-lobe jamming,MLJ)在空域与有用信号(signal of interest,SOI)高度相关而难以被有效抑制的问题,基于跳变编码波形的抗MLJ系统通过对波形进行编码调制,接收端据此重构接收信号,利用码-空映射等效改变SOI空域信道,实现SOI与干扰信号在空域的分辨。但理论分析发现,信号带宽的增大将掩盖编码特征并使该方法失效。为此,利用多抽头系统的时-频映射特质,通过多抽头结构设计降低带宽掩盖,重新凸显编码特征。仿真结果显示,所提方法可在10 MHz的全带宽内,使干扰对消比大于20 dB,SOI对消比小于3 dB,具有较好的抗主瓣非零带宽干扰性能。展开更多
基金supported by the Aviation Science Foundation of China(20175596020)。
文摘Main lobe jamming seriously affects the detection performance of airborne early warning radar.The joint processing of polarization-space has become an effective way to suppress the main lobe jamming.To avoid the main beam distortion and wave crest migration caused by the main lobe jamming in adaptive beamforming,a joint optimization algorithm based on adaptive polarization canceller(APC)and stochastic variance reduction gradient descent(SVRGD)is proposed.First,the polarization plane array structure and receiving signal model based on primary and auxiliary array cancellation are established,and an APC iterative algorithm model is constructed to calculate the optimal weight vector of the auxiliary channel.Second,based on the stochastic gradient descent principle,the variance reduction method is introduced to modify the gradient through internal and external iteration to reduce the variance of the stochastic gradient estimation,the airspace optimal weight vector is calculated and the equivalent weight vector is introduced to measure the beamforming effect.Third,by setting up a planar polarization array simulation scene,the performance of the algorithm against the interference of the main lobe and the side lobe is analyzed,and the effectiveness of the algorithm is verified under the condition of short snapshot number and certain signal to interference plus noise ratio.
文摘在基于短时傅里叶变换(short-time Fourier transform,STFT)的智能音乐生成系统中,引入梅尔倒谱系数(Mel frequency cepstrum coefficient,MFCC)作为输入特征,并对STFT的损失函数进行优化设计,以提升音乐生成的质量。在对音符输入信号进行短时傅里叶变换时,需要对时域信号进行截断并添加窗函数,对信号添加时域窗等效于在频域信号中进行卷积。时域信号在截断过程中存在频谱分析误差,使得频谱以实际频率值为中心,以窗函数频谱波形的形状向两侧扩散,从而产生频谱泄漏。不同窗函数的选择对最终生成音乐的品质具有显著影响。为此,提出一种基于能量校正因子、频域最大副瓣和主瓣增益的窗函数分析与选择方法,并开发相应脚本工具,从而完成基于符号域音乐的混合窗函数设计。实验结果表明,混合窗函数在不同的MIDI(musical instrument digital interface)数据集上均可有效减少频谱泄漏对信号截断的影响,具有很好的适应性和灵活性,从而更好地作用于基于STFT的智能音乐生成系统中。