Stereoscopic particle image velocimetry technology was employed to investigate the planar three-dimensional velocity field and the process of proppant entry into branch fractures in a fracture configuration of“vertic...Stereoscopic particle image velocimetry technology was employed to investigate the planar three-dimensional velocity field and the process of proppant entry into branch fractures in a fracture configuration of“vertical main fracture-vertical branch fracture”intersecting at a 90°angle.This study analyzed the effects of pumping rate,fracturing fluid viscosity,proppant particle size,and fracture width on the transport behavior of proppant into branch fractures.Based on the deflection behavior of proppant,the main fractures can be divided into five regions:pre-entry transition,pre-entry stabilization,deflection entry at the fracture mouth,rear absorption entry,and movement away from the fracture mouth.Proppant primarily deflects into the branch fracture at the fracture mouth,with a small portion drawn in from the rear of the intersection.Increasing the pumping rate,reducing the proppant particle size,and widening the branch fracture are conducive to promoting proppant deflection into the branch.With increasing fracturing fluid viscosity,the ability of proppant to enter the branch fracture first improves and then declines,indicating that excessively high viscosity is unfavorable for proppant entry into the branch.During field operations,a high pumping rate and micro-to small-sized proppant can be used in the early stage to ensure effective placement in the branch fractures,followed by medium-to large-sized proppant to ensure adequate placement in the main fracture and enhance the overall conductivity of the fracture network.展开更多
In this paper a new mechanica1 medel indicating the mechanical behaviour of main floor in longwall mining is proposed. In the medel the unfractured rnain floor is considered as an elasto plastic plate, and the combina...In this paper a new mechanica1 medel indicating the mechanical behaviour of main floor in longwall mining is proposed. In the medel the unfractured rnain floor is considered as an elasto plastic plate, and the combination of fractured blocks as a voussoir beam. Using the plastic hmit theory of plates, th limit load acting on rnain floor and the position of its largest deformation are gotten. The stability conditions for the key blocks of the voussoir beam are analysed by "S-R" stability theory. The results of the theoretical analysis are important for the study on the water inrush from seam floor.展开更多
Based on the phenomena that the deformation gap was observed before the great Tangshang earthquake, this paper discusses the strain gap according to test and theory. The (strain) patterns were recorded photographicall...Based on the phenomena that the deformation gap was observed before the great Tangshang earthquake, this paper discusses the strain gap according to test and theory. The (strain) patterns were recorded photographically by real-time holographic interferometry and shadow optical method of caustics, as soon as the loading process started. In the meantime, the AE (acoustic emission) signals were recorded by a micro crack information storage-analysis sys-tem. According to damage theory and location of micro fracture, we have studied the stain gap and gained: a) It is necessary that strain gap appears under the condition of linear elasticity theory, and its situation is relatively stable, corresponding to stress concentration. b) Micro fractures, which appear initially at area of high stress, occur rarely at the strain gap, and their locations are finally in the zone between the stress concentration area and the strain gap, which indicate the clusters or groups. However, the major macro fracture (final rupture) started from the shadow areas, and then grew quickly towards the strain gaps, which resulted in failure of sample.展开更多
Post-fracturing evaluation by using limited data is of great significance to continuous improvement of the fracturing programs.In this paper,a fracturing curve was divided into two stages(i.e.,prepad fluid injection a...Post-fracturing evaluation by using limited data is of great significance to continuous improvement of the fracturing programs.In this paper,a fracturing curve was divided into two stages(i.e.,prepad fluid injection and main fracturing)so as to further understand the parameters of reservoirs and artificial fractures.The brittleness and plasticity of formations were qualitatively identified by use of the statistics of formation fracture frequency,and average pressure dropping range and rate during the prepad fluid injection.The composite brittleness index was quantitatively calculated by using the energy zones in the process of fracturing.It is shown from the large-scale true triaxial physical simulation results that the complexity of fractures is reflected by the pressure fluctuation frequency and amplitude in the main fracturing curve,and combined with the brittleness and plasticity of formations,the fracture morphology far away from the well can be diagnosed.Well P,a shale gas well in SE Chongqing,was taken as an example for post-fracturing evaluation.It is shown that the shale beds are of stronger heterogeneity along the extension directions of horizontal wells,and with GR 260 API as the dividing line between brittleness and plasticity in this area,complex fracture systems tend to form in brittleness-prone formations.In Well P,half of the fractures are single fractures,so it is necessary to carry out fine subsection and turnaround fracturing so as to improve development effects.This paper provides a theoretical basis for improving the fracturing well design and increasing the effective stimulated volume in this area.展开更多
基金Supported by Joint Funds of the National Natural Science Foundation of China(U23B6004).
文摘Stereoscopic particle image velocimetry technology was employed to investigate the planar three-dimensional velocity field and the process of proppant entry into branch fractures in a fracture configuration of“vertical main fracture-vertical branch fracture”intersecting at a 90°angle.This study analyzed the effects of pumping rate,fracturing fluid viscosity,proppant particle size,and fracture width on the transport behavior of proppant into branch fractures.Based on the deflection behavior of proppant,the main fractures can be divided into five regions:pre-entry transition,pre-entry stabilization,deflection entry at the fracture mouth,rear absorption entry,and movement away from the fracture mouth.Proppant primarily deflects into the branch fracture at the fracture mouth,with a small portion drawn in from the rear of the intersection.Increasing the pumping rate,reducing the proppant particle size,and widening the branch fracture are conducive to promoting proppant deflection into the branch.With increasing fracturing fluid viscosity,the ability of proppant to enter the branch fracture first improves and then declines,indicating that excessively high viscosity is unfavorable for proppant entry into the branch.During field operations,a high pumping rate and micro-to small-sized proppant can be used in the early stage to ensure effective placement in the branch fractures,followed by medium-to large-sized proppant to ensure adequate placement in the main fracture and enhance the overall conductivity of the fracture network.
文摘In this paper a new mechanica1 medel indicating the mechanical behaviour of main floor in longwall mining is proposed. In the medel the unfractured rnain floor is considered as an elasto plastic plate, and the combination of fractured blocks as a voussoir beam. Using the plastic hmit theory of plates, th limit load acting on rnain floor and the position of its largest deformation are gotten. The stability conditions for the key blocks of the voussoir beam are analysed by "S-R" stability theory. The results of the theoretical analysis are important for the study on the water inrush from seam floor.
基金The Dual Project of China Seismological Bureau (9691309020301) the Specialized Funds for National Key Basic Study (G1998040704) the project for the MOST under contract (2001BA601B02) and Youth Funds for applied basic study of the Science and Technolo
文摘Based on the phenomena that the deformation gap was observed before the great Tangshang earthquake, this paper discusses the strain gap according to test and theory. The (strain) patterns were recorded photographically by real-time holographic interferometry and shadow optical method of caustics, as soon as the loading process started. In the meantime, the AE (acoustic emission) signals were recorded by a micro crack information storage-analysis sys-tem. According to damage theory and location of micro fracture, we have studied the stain gap and gained: a) It is necessary that strain gap appears under the condition of linear elasticity theory, and its situation is relatively stable, corresponding to stress concentration. b) Micro fractures, which appear initially at area of high stress, occur rarely at the strain gap, and their locations are finally in the zone between the stress concentration area and the strain gap, which indicate the clusters or groups. However, the major macro fracture (final rupture) started from the shadow areas, and then grew quickly towards the strain gaps, which resulted in failure of sample.
基金Project supported by the National Natural Science Funds“Mechanism of dynamic stochastic fracture control and theory of waterless fracturing for shale formations”(Grant No.51490653)the Sinopec S&T Researches“Optimal stimulation technology for shale gas formations in Fuling Block”(Grant No.P14091)the National Major S&T Projects“Demonstration of shale gas exploration and development under normal pressure in Pengshui region”(Grant No.2016ZX05061)。
文摘Post-fracturing evaluation by using limited data is of great significance to continuous improvement of the fracturing programs.In this paper,a fracturing curve was divided into two stages(i.e.,prepad fluid injection and main fracturing)so as to further understand the parameters of reservoirs and artificial fractures.The brittleness and plasticity of formations were qualitatively identified by use of the statistics of formation fracture frequency,and average pressure dropping range and rate during the prepad fluid injection.The composite brittleness index was quantitatively calculated by using the energy zones in the process of fracturing.It is shown from the large-scale true triaxial physical simulation results that the complexity of fractures is reflected by the pressure fluctuation frequency and amplitude in the main fracturing curve,and combined with the brittleness and plasticity of formations,the fracture morphology far away from the well can be diagnosed.Well P,a shale gas well in SE Chongqing,was taken as an example for post-fracturing evaluation.It is shown that the shale beds are of stronger heterogeneity along the extension directions of horizontal wells,and with GR 260 API as the dividing line between brittleness and plasticity in this area,complex fracture systems tend to form in brittleness-prone formations.In Well P,half of the fractures are single fractures,so it is necessary to carry out fine subsection and turnaround fracturing so as to improve development effects.This paper provides a theoretical basis for improving the fracturing well design and increasing the effective stimulated volume in this area.