With the advent of Computer Algebra System (CAS) such as Mathematica [1], challenging symbolic longhand calcula-tions can effectively be performed free of error and at ease. Mathematica’s integrated features allow th...With the advent of Computer Algebra System (CAS) such as Mathematica [1], challenging symbolic longhand calcula-tions can effectively be performed free of error and at ease. Mathematica’s integrated features allow the investigator to combine the needed symbolic, numeric and graphic modules all in one interactive environment. This assists the author to focus on interpreting the output rather than exerting the efforts of relating the scattered separate modules. In this note the author, utilizing these three features, explores the magneto-static field and its associated vector potential of a steady looping current. In particular by deploying the numeric features of Mathematica the exact value of the vector potential of the looping current conducive to its 3D graph is presented.展开更多
The anisotropy of magnetostatic surface wave (MSSW) propagating in finite width YIG /dielectric/metal layered structure is analyzed. This problem is solved by finding the rigorous solution of each layer from Maxwell...The anisotropy of magnetostatic surface wave (MSSW) propagating in finite width YIG /dielectric/metal layered structure is analyzed. This problem is solved by finding the rigorous solution of each layer from Maxwell equation and the appropriate transmission Green's function matrix G. From the relationship of Green's function matrixes of dielectric layer and ferrite layer, the dispersion equation is obtained. The MSSW filter is designed to verify the dispersion characteristics. The experiment results are in good agreement with the calculating data from the model.展开更多
文摘With the advent of Computer Algebra System (CAS) such as Mathematica [1], challenging symbolic longhand calcula-tions can effectively be performed free of error and at ease. Mathematica’s integrated features allow the investigator to combine the needed symbolic, numeric and graphic modules all in one interactive environment. This assists the author to focus on interpreting the output rather than exerting the efforts of relating the scattered separate modules. In this note the author, utilizing these three features, explores the magneto-static field and its associated vector potential of a steady looping current. In particular by deploying the numeric features of Mathematica the exact value of the vector potential of the looping current conducive to its 3D graph is presented.
基金supported by the National Science Foundation of China(19934003)the State Key Project of Fundamental Research ofChina(001CB610604)the Nature Science Foundation of the Anhui Higher Education Institutions of China(2006KJ266B,ZD2007003-1)
基金This work was supported by the National Basic Research Program of China (973) under Grant No. 2007CB31407the International S&T Cooperation Program of China under Grant No. 2006DFA53410.
文摘The anisotropy of magnetostatic surface wave (MSSW) propagating in finite width YIG /dielectric/metal layered structure is analyzed. This problem is solved by finding the rigorous solution of each layer from Maxwell equation and the appropriate transmission Green's function matrix G. From the relationship of Green's function matrixes of dielectric layer and ferrite layer, the dispersion equation is obtained. The MSSW filter is designed to verify the dispersion characteristics. The experiment results are in good agreement with the calculating data from the model.