AIM: To evaluate the spatial distribution of cerebral abnormalities in cirrhotic subjects with and without hepatic encephalopathy (HE) found with magnetization transfer imaging (MTI).METHODS: Nineteen cirrhotic patien...AIM: To evaluate the spatial distribution of cerebral abnormalities in cirrhotic subjects with and without hepatic encephalopathy (HE) found with magnetization transfer imaging (MTI).METHODS: Nineteen cirrhotic patients graded from neurologically normal to HE grade 2 and 18 healthy control subjects underwent magnetic resonance imaging. They gave institutional-review-board-approved written consent. Magnetization transfer ratio (MTR) maps were generated from MTI. We tested for significant differences compared to the control group using statistical non-parametric mapping (SnPM) for a voxelbased evaluation.RESULTS: The MTR of grey and white matter was lower in subjects with more severe HE. Changes were found in patients with cirrhosis without neurological defi cits in the basal ganglia and bilateral white matter. The loss in magnetization transfer increased in severity and spatial extent in patients with overt HE. Patients with HE grade 2 showed an MTR decrease in white and grey matter: the maximum loss of magnetization transfer effect was located in the basal ganglia [SnPM (pseudo-)t = 17.98, P = 0.0001].CONCLUSION: The distribution of MTR changes in HE points to an early involvement of basal ganglia and white matter in HE.展开更多
Background:Patients with schizophrenia(SCZ)and major depressive disorder(MDD)share significant clinical overlap,although it remains unknown to what extent this overlap reflects shared neural profiles.To identify the s...Background:Patients with schizophrenia(SCZ)and major depressive disorder(MDD)share significant clinical overlap,although it remains unknown to what extent this overlap reflects shared neural profiles.To identify the shared and specific abnormalities in SCZ and MDD,we performed a whole-brain voxel-based meta-analysis using magnetization transfer imaging,a technique that characterizes the macromolecular structural integrity of brain tissue in terms of the magnetization transfer ratio(MTR).Methods:A systematic search based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was conducted in PubMed,EMBASE,International Scientific Index(ISI)Web of Science,and MEDLINE for relevant studies up to March 2022.Two researchers independently screened the articles.Rigorous scrutiny and data extraction were performed for the studies that met the inclusion criteria.Voxel-wise meta-analyses were conducted using anisotropic effect size-signed differential mapping with a unified template.Meta-regression was used to explore the potential effects of demographic and clinical characteristics.Results:A total of 15 studies with 17 datasets describing 365 SCZ patients,224 MDD patients,and 550 healthy controls(HCs)were identified.The conjunction analysis showed that both disorders shared higher MTR than HC in the left cerebellum(P=0.0006)and left fusiform gyrus(P=0.0004).Additionally,SCZ patients showed disorder-specific lower MTR in the anterior cingulate/paracingulate gyrus,right superior temporal gyrus,and right superior frontal gyrus,and higher MTR in the left thalamus,precuneus/cuneus,posterior cingulate gyrus,and paracentral lobule;and MDD patients showed higher MTR in the left middle occipital region.Meta-regression showed no statistical significance in either group.Conclusions:The results revealed a structural neural basis shared between SCZ and MDD patients,emphasizing the importance of shared neural substrates across psychopathology.Meanwhile,distinct disease-specific characteristics could have implications for future differential diagnosis and targeted treatment.展开更多
Importance:The process of brain development in children with developmental delay is not well known.Amide proton transfer-weighted(APTw)imaging is a novel molecular magnetic resonance imaging(MRI)technique that can non...Importance:The process of brain development in children with developmental delay is not well known.Amide proton transfer-weighted(APTw)imaging is a novel molecular magnetic resonance imaging(MRI)technique that can noninvasively detect cytosolic endogenous mobile proteins and peptides involved in the myelination process,and may be useful for providing insights into brain development.Objective:To assess the contribution of amide proton transfer-weighted(APTw)imaging and magnetization transfer(MT)imaging to the evaluation of children with developmental delay(DD).Methods:Fifty-one patients with DD were recruited to this study.The patients were divided into two groups according to the state of myelination assessed on conventional magnetic resonance imaging(MRI).Thirty patients(10 girls,20 boys;age range:1-8 months;median age:4 months)in group A showed delayed myelination on MRI,while 21 patients(3 girls,18 boys;age range:12-36months;median age:25months)in group B showed normal myelination on MRI.Fifty-one age-and sex-matched children with normal developmental quotient(DQ)and normal MRI appearance were recruited as normal controls.Three-slice APTw/MT axial imaging was performed at the level of the centrum semiovale,the basal ganglia and the pons.Quantitative data of the MT ratio(MTR)and APTw were analyzed for multiple brain regions.Independent-samplet-tests were used to compare differences in APTw and MTR signals between the two DD groups and normal controls.Analysis of Covariance was conducted to correct the statistical results.The level of statistical significance was set toP<0.05.Results:For group A,the MTR values were lower in all regions(P=0.004-0.033)compared with the normal controls,while the APTw values were higher in the pons,middle cerebellar peduncle,corpus callosum,frontal white matter,occipital white matter and centrum semiovale(P=0.004-0.040).For Group B,the MTR values were slightly reduced,and the APTw values were slightly increased compared with the normal controls,but the differences were not statistically significant(P>0.05).Interpretation:For DD patients showing signs of delayed myelination on MRI,MTR and APTw imaging can help to diagnose myelination delay by quantifying semi-solid macromolecules and cytosolic endogenous mobile proteins and peptides at a molecular level,providing a new method for comprehensive evaluation of DD.For DD patients with normal myelination on MRI,the clinical values of MTR and APTw imaging remain to be explored.展开更多
Magnetic radiation phenomena appear inevitably in the magnetic-resonance wireless power transfer (MR-WPT) system, and regarding this problem the magnetic-shielding scheme is applied to improve the electromagnetic pe...Magnetic radiation phenomena appear inevitably in the magnetic-resonance wireless power transfer (MR-WPT) system, and regarding this problem the magnetic-shielding scheme is applied to improve the electromagnetic performance in engineering. In this study, the shielding effectiveness of a two-coil MR-WPT system for different material shields is analyzed in theory using Moser's formula and Schelkunoff's formula. On this basis a candidate magnetic-shielding scheme with a double-layer structure is determined, which has better shielding effectiveness and coils coupling coefficient. Finally, some finite element simulation results validate the correctness of the theoretical analysis, and the shielding effectiveness with the double-layer shield in maximum is 30?dB larger than the one with the single-layer case.展开更多
We report on the production of large sodium Bose^Einstein condensates in a hybrid of magnetic quadrupole and optical dipole trap. With an optimized spin-flip Zeeman slower, 2 ~ 1010 sodium atoms are captured in the ma...We report on the production of large sodium Bose^Einstein condensates in a hybrid of magnetic quadrupole and optical dipole trap. With an optimized spin-flip Zeeman slower, 2 ~ 1010 sodium atoms are captured in the magneto-optical trap (MOT). A long distance magnetic transfer setup moves the cold atom over 46cm from the MOT chamber to the UHV science chamber, which provides great optical access and long conservative trap lifetime. After evaporative cooling in the hybrid trap, we produce nearly pure condensates of 1 ~ 107 atoms with lifetime of 80 s in the optical dipole trap.展开更多
Recent progresses in magnetic tunnel junctions with perpendicular magnetic anisotropy (PMA) are reviewed and summarized. At first, the concept and source of perpendicular magnetic anisotropy (PMA) are introduced. ...Recent progresses in magnetic tunnel junctions with perpendicular magnetic anisotropy (PMA) are reviewed and summarized. At first, the concept and source of perpendicular magnetic anisotropy (PMA) are introduced. Next, a historical overview of PMA materials as magnetic electrodes, such as the RE-TM alloys TbFeCo and GdFeCo, novel tetragonal manganese alloys Mn-Ga, L10-ordered (Co, Fe)/Pt alloy, multilayer film [Co, Fe, CoFe/Pt, Pd, Ni, AU]N, and ultra-thin magnetic metal/oxidized barrier is offered. The other part of the article focuses on the optimization and fabrication of CoFeB/MgO/CoFeB p-MTJs, which is thought to have high potential to meet the main demands for non-volatile magnetic random access memory.展开更多
The study of heat transfer is of significant importance in many biological and biomedical industry problems.This investigation comprises of the study of entropy generation analysis of the blood flow in the arteries wi...The study of heat transfer is of significant importance in many biological and biomedical industry problems.This investigation comprises of the study of entropy generation analysis of the blood flow in the arteries with permeable walls. The convection through the flow is studied with compliments to the entropy generation. Governing problem is formulized and solved for low Reynold's number and long wavelength approximations. Exact analytical solutions have been obtained and are analyzed graphically. It is seen that temperature for pure water is lower as compared to the copper water. It gains magnitude with an increase in the slip parameter.展开更多
Up to now, exact measurements of chromospheric magnetic fields have not been as successful as those done in the photosphere. We are currently engaging in diagnostics of chromospheric magnetic fields with the Mg b2 lin...Up to now, exact measurements of chromospheric magnetic fields have not been as successful as those done in the photosphere. We are currently engaging in diagnostics of chromospheric magnetic fields with the Mg b2 line by employing the Multi-Channel Solar Telescope at Huairou Solar Observing Station. Therefore, how to improve accuracy in the measurement is the main issue of our present study. To this end, we first study linear calibration coefficients for longitudinal and transverse components of chromospheric fields, which vary with wavelength, in the case of a weak field assumption. Then the polarization crosstalk introduced by instruments is analyzed in detail with two numerical simulation methods. Comparisons of the po- larization signals between cases with and without correction are presented. The result indicates that polarization accuracy is greatly improved after crosstalk correction.展开更多
Heat transfer coefficients were measured by immersed probes in co- and counter-current G-L-S magnetically stabilized fluidized beds (MSFBs) using air, water and nickel-alloy particles as the gas, liquid and solid ph...Heat transfer coefficients were measured by immersed probes in co- and counter-current G-L-S magnetically stabilized fluidized beds (MSFBs) using air, water and nickel-alloy particles as the gas, liquid and solid phases. Influences of major factors, including magnetic field intensity, superficial gas and liquid velocities, liquid viscosity and surface tension, on heat-transfer properties were studied experimentally, indicating that both co- and counter-current G-L-S MSFB can provide relatively uniform radial distribution of heat transfer coefficients under appropriate operation conditions, thus controlling operation temperature for highly exothermic multi-phase reaction systems. Two correlations were provided to estimate accurately heat transfer properties in both co- and counter-current G-L-S MSFB systems, with an average error of less than 10%.展开更多
The factors influencing dormancy release in lily bulbs strongly affect commercialization success, but the mechanism of dormancy release is still unclear. Magnetic resonance imaging (MRI) can detect changes in morpholo...The factors influencing dormancy release in lily bulbs strongly affect commercialization success, but the mechanism of dormancy release is still unclear. Magnetic resonance imaging (MRI) can detect changes in morphology and water status in a living plant bulb and aid in investigating release factors. To evaluate whether MRI could be used to detect intra-bulb metabolic changes during the dormant period in Oriental Lilies (Lilium 'Sorbonne'), a series of MRI and sugar concentration measurements were performed weekly on bulbs stored for 11 weeks at 4°C. The image quality of intra-bulb structure obtained using T 1-weighted imaging was superior to that obtained using T 2 -weighted imaging and had a higher signal-to-noise ratio (0.97±0.01). Magnetization transfer ratio values for the bud and basal plate declined during the first eight weeks of cold storage (P>0.05), and were well correlated with concentration of soluble sugar in the bud (R 2 =0.95) and basal plate (R 2 =0.93). Thus, MRI can serve as a valuable tool for observation and analysis of dynamic morphological and metabolic changes in vivo during dormancy release. This information is potentially useful as a guide in the improvement of horticultural product quality.展开更多
We review and summarize the applications of the Grad-Shafranov(GS) reconstruction technique to space plasma structures in the Earth's magnetosphere and in the interplanetary space. We organize our presentations fo...We review and summarize the applications of the Grad-Shafranov(GS) reconstruction technique to space plasma structures in the Earth's magnetosphere and in the interplanetary space. We organize our presentations following the branches of the "academic family tree" rooted on Prof. Bengt U. ? Sonnerup, the inventor of the GS method. Special attentions are paid to validations of the GS reconstruction results via(1) the direct validation by co-spatial in-situ measurements among multiple spacecraft, and(2) indirect validation by implications and interpretations of the physical connection between the structures reconstructed and other related processes. For the latter, the inter-comparison and interconnection between the large-scale magnetic flux ropes(i.e., Magnetic Clouds) in the solar wind and their solar source properties are presented. In addition, we also summarize various GS-type(or-like) reconstruction and an extension of the GS technique to toroidal geometry. In particular,we point to a possible advancement with added complexity of "helical symmetry" and mixed helicity, in the hope of stimulating interest in future development. We close by offering some thoughts on appreciating the scientific merit of GS reconstruction in general.展开更多
文摘AIM: To evaluate the spatial distribution of cerebral abnormalities in cirrhotic subjects with and without hepatic encephalopathy (HE) found with magnetization transfer imaging (MTI).METHODS: Nineteen cirrhotic patients graded from neurologically normal to HE grade 2 and 18 healthy control subjects underwent magnetic resonance imaging. They gave institutional-review-board-approved written consent. Magnetization transfer ratio (MTR) maps were generated from MTI. We tested for significant differences compared to the control group using statistical non-parametric mapping (SnPM) for a voxelbased evaluation.RESULTS: The MTR of grey and white matter was lower in subjects with more severe HE. Changes were found in patients with cirrhosis without neurological defi cits in the basal ganglia and bilateral white matter. The loss in magnetization transfer increased in severity and spatial extent in patients with overt HE. Patients with HE grade 2 showed an MTR decrease in white and grey matter: the maximum loss of magnetization transfer effect was located in the basal ganglia [SnPM (pseudo-)t = 17.98, P = 0.0001].CONCLUSION: The distribution of MTR changes in HE points to an early involvement of basal ganglia and white matter in HE.
基金National Key R&D Program of China(No.2022YFC2009904/2022YFC2009900)National Natural Science Foundation(Nos.81621003,81820108018,82027808,and 82001800)Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001)
文摘Background:Patients with schizophrenia(SCZ)and major depressive disorder(MDD)share significant clinical overlap,although it remains unknown to what extent this overlap reflects shared neural profiles.To identify the shared and specific abnormalities in SCZ and MDD,we performed a whole-brain voxel-based meta-analysis using magnetization transfer imaging,a technique that characterizes the macromolecular structural integrity of brain tissue in terms of the magnetization transfer ratio(MTR).Methods:A systematic search based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was conducted in PubMed,EMBASE,International Scientific Index(ISI)Web of Science,and MEDLINE for relevant studies up to March 2022.Two researchers independently screened the articles.Rigorous scrutiny and data extraction were performed for the studies that met the inclusion criteria.Voxel-wise meta-analyses were conducted using anisotropic effect size-signed differential mapping with a unified template.Meta-regression was used to explore the potential effects of demographic and clinical characteristics.Results:A total of 15 studies with 17 datasets describing 365 SCZ patients,224 MDD patients,and 550 healthy controls(HCs)were identified.The conjunction analysis showed that both disorders shared higher MTR than HC in the left cerebellum(P=0.0006)and left fusiform gyrus(P=0.0004).Additionally,SCZ patients showed disorder-specific lower MTR in the anterior cingulate/paracingulate gyrus,right superior temporal gyrus,and right superior frontal gyrus,and higher MTR in the left thalamus,precuneus/cuneus,posterior cingulate gyrus,and paracentral lobule;and MDD patients showed higher MTR in the left middle occipital region.Meta-regression showed no statistical significance in either group.Conclusions:The results revealed a structural neural basis shared between SCZ and MDD patients,emphasizing the importance of shared neural substrates across psychopathology.Meanwhile,distinct disease-specific characteristics could have implications for future differential diagnosis and targeted treatment.
文摘Importance:The process of brain development in children with developmental delay is not well known.Amide proton transfer-weighted(APTw)imaging is a novel molecular magnetic resonance imaging(MRI)technique that can noninvasively detect cytosolic endogenous mobile proteins and peptides involved in the myelination process,and may be useful for providing insights into brain development.Objective:To assess the contribution of amide proton transfer-weighted(APTw)imaging and magnetization transfer(MT)imaging to the evaluation of children with developmental delay(DD).Methods:Fifty-one patients with DD were recruited to this study.The patients were divided into two groups according to the state of myelination assessed on conventional magnetic resonance imaging(MRI).Thirty patients(10 girls,20 boys;age range:1-8 months;median age:4 months)in group A showed delayed myelination on MRI,while 21 patients(3 girls,18 boys;age range:12-36months;median age:25months)in group B showed normal myelination on MRI.Fifty-one age-and sex-matched children with normal developmental quotient(DQ)and normal MRI appearance were recruited as normal controls.Three-slice APTw/MT axial imaging was performed at the level of the centrum semiovale,the basal ganglia and the pons.Quantitative data of the MT ratio(MTR)and APTw were analyzed for multiple brain regions.Independent-samplet-tests were used to compare differences in APTw and MTR signals between the two DD groups and normal controls.Analysis of Covariance was conducted to correct the statistical results.The level of statistical significance was set toP<0.05.Results:For group A,the MTR values were lower in all regions(P=0.004-0.033)compared with the normal controls,while the APTw values were higher in the pons,middle cerebellar peduncle,corpus callosum,frontal white matter,occipital white matter and centrum semiovale(P=0.004-0.040).For Group B,the MTR values were slightly reduced,and the APTw values were slightly increased compared with the normal controls,but the differences were not statistically significant(P>0.05).Interpretation:For DD patients showing signs of delayed myelination on MRI,MTR and APTw imaging can help to diagnose myelination delay by quantifying semi-solid macromolecules and cytosolic endogenous mobile proteins and peptides at a molecular level,providing a new method for comprehensive evaluation of DD.For DD patients with normal myelination on MRI,the clinical values of MTR and APTw imaging remain to be explored.
基金Supported by the National Natural Science Foundation of China under Grant No 51377185
文摘Magnetic radiation phenomena appear inevitably in the magnetic-resonance wireless power transfer (MR-WPT) system, and regarding this problem the magnetic-shielding scheme is applied to improve the electromagnetic performance in engineering. In this study, the shielding effectiveness of a two-coil MR-WPT system for different material shields is analyzed in theory using Moser's formula and Schelkunoff's formula. On this basis a candidate magnetic-shielding scheme with a double-layer structure is determined, which has better shielding effectiveness and coils coupling coefficient. Finally, some finite element simulation results validate the correctness of the theoretical analysis, and the shielding effectiveness with the double-layer shield in maximum is 30?dB larger than the one with the single-layer case.
基金Supported by the National Basic Research Program of China under Grant No 2013CB922002the National Natural Science Foundation of China under Grant No 11474347
文摘We report on the production of large sodium Bose^Einstein condensates in a hybrid of magnetic quadrupole and optical dipole trap. With an optimized spin-flip Zeeman slower, 2 ~ 1010 sodium atoms are captured in the magneto-optical trap (MOT). A long distance magnetic transfer setup moves the cold atom over 46cm from the MOT chamber to the UHV science chamber, which provides great optical access and long conservative trap lifetime. After evaporative cooling in the hybrid trap, we produce nearly pure condensates of 1 ~ 107 atoms with lifetime of 80 s in the optical dipole trap.
基金supported by the State Key Project of Fundamental Research of Ministry of Science and Technology,China(Grant No.2010CB934400)the National Natural Science Foundation of China(Grant Nos.51229101 and 11374351)
文摘Recent progresses in magnetic tunnel junctions with perpendicular magnetic anisotropy (PMA) are reviewed and summarized. At first, the concept and source of perpendicular magnetic anisotropy (PMA) are introduced. Next, a historical overview of PMA materials as magnetic electrodes, such as the RE-TM alloys TbFeCo and GdFeCo, novel tetragonal manganese alloys Mn-Ga, L10-ordered (Co, Fe)/Pt alloy, multilayer film [Co, Fe, CoFe/Pt, Pd, Ni, AU]N, and ultra-thin magnetic metal/oxidized barrier is offered. The other part of the article focuses on the optimization and fabrication of CoFeB/MgO/CoFeB p-MTJs, which is thought to have high potential to meet the main demands for non-volatile magnetic random access memory.
文摘The study of heat transfer is of significant importance in many biological and biomedical industry problems.This investigation comprises of the study of entropy generation analysis of the blood flow in the arteries with permeable walls. The convection through the flow is studied with compliments to the entropy generation. Governing problem is formulized and solved for low Reynold's number and long wavelength approximations. Exact analytical solutions have been obtained and are analyzed graphically. It is seen that temperature for pure water is lower as compared to the copper water. It gains magnitude with an increase in the slip parameter.
基金Supported by the National Natural Science Foundation of China
文摘Up to now, exact measurements of chromospheric magnetic fields have not been as successful as those done in the photosphere. We are currently engaging in diagnostics of chromospheric magnetic fields with the Mg b2 line by employing the Multi-Channel Solar Telescope at Huairou Solar Observing Station. Therefore, how to improve accuracy in the measurement is the main issue of our present study. To this end, we first study linear calibration coefficients for longitudinal and transverse components of chromospheric fields, which vary with wavelength, in the case of a weak field assumption. Then the polarization crosstalk introduced by instruments is analyzed in detail with two numerical simulation methods. Comparisons of the po- larization signals between cases with and without correction are presented. The result indicates that polarization accuracy is greatly improved after crosstalk correction.
基金The authors are grateful for the financial support from 973 Program (2006CB202500)the NSFC (21076144)
文摘Heat transfer coefficients were measured by immersed probes in co- and counter-current G-L-S magnetically stabilized fluidized beds (MSFBs) using air, water and nickel-alloy particles as the gas, liquid and solid phases. Influences of major factors, including magnetic field intensity, superficial gas and liquid velocities, liquid viscosity and surface tension, on heat-transfer properties were studied experimentally, indicating that both co- and counter-current G-L-S MSFB can provide relatively uniform radial distribution of heat transfer coefficients under appropriate operation conditions, thus controlling operation temperature for highly exothermic multi-phase reaction systems. Two correlations were provided to estimate accurately heat transfer properties in both co- and counter-current G-L-S MSFB systems, with an average error of less than 10%.
基金supported by the Special Fund for Agro-scientific Research in the Public Interest (Grant No. 200903020)
文摘The factors influencing dormancy release in lily bulbs strongly affect commercialization success, but the mechanism of dormancy release is still unclear. Magnetic resonance imaging (MRI) can detect changes in morphology and water status in a living plant bulb and aid in investigating release factors. To evaluate whether MRI could be used to detect intra-bulb metabolic changes during the dormant period in Oriental Lilies (Lilium 'Sorbonne'), a series of MRI and sugar concentration measurements were performed weekly on bulbs stored for 11 weeks at 4°C. The image quality of intra-bulb structure obtained using T 1-weighted imaging was superior to that obtained using T 2 -weighted imaging and had a higher signal-to-noise ratio (0.97±0.01). Magnetization transfer ratio values for the bud and basal plate declined during the first eight weeks of cold storage (P>0.05), and were well correlated with concentration of soluble sugar in the bud (R 2 =0.95) and basal plate (R 2 =0.93). Thus, MRI can serve as a valuable tool for observation and analysis of dynamic morphological and metabolic changes in vivo during dormancy release. This information is potentially useful as a guide in the improvement of horticultural product quality.
基金supported by National Aeronautics and Space Administration (NASA) and National Science Foundation (NSF) (Grants Nos. AGS-1062050, NNG04GF47G, NNG06GD41G, NNX12AF97G, NNX12AH50G, NNH13ZDA001N, and NNX14AF41G)
文摘We review and summarize the applications of the Grad-Shafranov(GS) reconstruction technique to space plasma structures in the Earth's magnetosphere and in the interplanetary space. We organize our presentations following the branches of the "academic family tree" rooted on Prof. Bengt U. ? Sonnerup, the inventor of the GS method. Special attentions are paid to validations of the GS reconstruction results via(1) the direct validation by co-spatial in-situ measurements among multiple spacecraft, and(2) indirect validation by implications and interpretations of the physical connection between the structures reconstructed and other related processes. For the latter, the inter-comparison and interconnection between the large-scale magnetic flux ropes(i.e., Magnetic Clouds) in the solar wind and their solar source properties are presented. In addition, we also summarize various GS-type(or-like) reconstruction and an extension of the GS technique to toroidal geometry. In particular,we point to a possible advancement with added complexity of "helical symmetry" and mixed helicity, in the hope of stimulating interest in future development. We close by offering some thoughts on appreciating the scientific merit of GS reconstruction in general.