A feasible criterion was established to determine the lower size limit of raw coal(d_(pRm))for efficient beneficiation in the air-fluidized bed with magnetite particles.The feasibility of using small magnetite particl...A feasible criterion was established to determine the lower size limit of raw coal(d_(pRm))for efficient beneficiation in the air-fluidized bed with magnetite particles.The feasibility of using small magnetite particles to accommodate the fine raw coal was demonstrated from the experimental perspective.The minimum size for the magnetite particles to be fluidized smoothly was clarified as 47.1μm,which corresponded to the border between Geldart-B and-A groups.Since the gangue and coal components in the raw coal were crushed into the same size,d_(pRm)depended on the greater one between d_(pGm)(minimum size required for the gangue particles to sink towards the bottom)and d_(pCm)(minimum size required for the coal particles to float towards the top).dpcm was determined as 259μm by supposing that provided the gangue particles accumulated in the lower half bed,they could be potentially extracted from the bottom.On the other hand,it was observed that the coal particles could always accumulate in the upper half bed.Under such circumstances,dpcm was revealed as 9.8μm since finer coal particles would be blown out by air before the 47.1μm sized magnetite particles became fluidized.Eventually,dpRm was clarified as 259μm,agreeing with the common view that raw coal coarser than 6 mm could be effectively beneficiated in the air-fluidized bed with magnetite particles.Additionally,the difficulty in beneficiating the fine raw coal was revealed to arise more from the remixing of sorted gangue particles than that of separated coal particles.展开更多
In this contribution the influence of chemically synthesized magnetite particles coated by sodium oleate and PEG (MPEG), and magnetosomes (MS) was gradually tested on the process of phagocytosis and the metabolic ...In this contribution the influence of chemically synthesized magnetite particles coated by sodium oleate and PEG (MPEG), and magnetosomes (MS) was gradually tested on the process of phagocytosis and the metabolic activity (lysozyme and peroxidase activity) in leukocyte. Lysozyme activity is oxygen-independent liquidation mechanisms of engulfed microorganism, peroxidase activity is oxygen-dependent one. The both tested samples MS and MPEG lysed leukocyte cells during incubation. MPEG with concentration 10 and 20 μg/mL lysed almost all leukocytes and their cell viability was in the 14 ± 0.05% range. On the other hand, MS begin to influence leukocytes activity at the concentration of 1 μg/mL and this influence grows with increasing concentration up to 20 μg/mL. MS are more suitable for biological applications than MPEG which are more aggressive material than MS and their using is unavailable for these types of the test mainly for the concentration 10 - 20 μg/mL.展开更多
Information concerns endocytosis and autophagic effects of magnetite particles is crucial for understanding the particle-cell interactions. In this work, we investigated the effects of bovine serum proteins on the end...Information concerns endocytosis and autophagic effects of magnetite particles is crucial for understanding the particle-cell interactions. In this work, we investigated the effects of bovine serum proteins on the endocytosis of magnetite spherical particles(MSPs). Autophagic effects of MSPs in breast cancer cells were studied. Light scattering based flow cytometry and microscopy were used for evaluating the uptake potential of MSPs by cells and the cellular autophagosome accumulation. Results showed bovine serum proteins significantly reduced the endocytosis of MSPs by decreasing their adsorption to cell membranes. Additionally, serum proteins had influences on the endocytic mechanisms of MSPs.Autophagosome accumulation could be caused by the internalized MSPs rather than the particles associated with cell membrane. Above fundamental findings promote our understandings upon the interactions of MSPs with cells. Light scattering based methods were proved to be simple and effective.The present work may promote their application in studies upon endocytosis of metallic particles in the future.展开更多
基金supported by Shandong Provincial Natural Science Foundation(ZR2023MB038)Youth Innovation Team Program of Shandong Higher Education Institution(2022KJ156)。
文摘A feasible criterion was established to determine the lower size limit of raw coal(d_(pRm))for efficient beneficiation in the air-fluidized bed with magnetite particles.The feasibility of using small magnetite particles to accommodate the fine raw coal was demonstrated from the experimental perspective.The minimum size for the magnetite particles to be fluidized smoothly was clarified as 47.1μm,which corresponded to the border between Geldart-B and-A groups.Since the gangue and coal components in the raw coal were crushed into the same size,d_(pRm)depended on the greater one between d_(pGm)(minimum size required for the gangue particles to sink towards the bottom)and d_(pCm)(minimum size required for the coal particles to float towards the top).dpcm was determined as 259μm by supposing that provided the gangue particles accumulated in the lower half bed,they could be potentially extracted from the bottom.On the other hand,it was observed that the coal particles could always accumulate in the upper half bed.Under such circumstances,dpcm was revealed as 9.8μm since finer coal particles would be blown out by air before the 47.1μm sized magnetite particles became fluidized.Eventually,dpRm was clarified as 259μm,agreeing with the common view that raw coal coarser than 6 mm could be effectively beneficiated in the air-fluidized bed with magnetite particles.Additionally,the difficulty in beneficiating the fine raw coal was revealed to arise more from the remixing of sorted gangue particles than that of separated coal particles.
文摘In this contribution the influence of chemically synthesized magnetite particles coated by sodium oleate and PEG (MPEG), and magnetosomes (MS) was gradually tested on the process of phagocytosis and the metabolic activity (lysozyme and peroxidase activity) in leukocyte. Lysozyme activity is oxygen-independent liquidation mechanisms of engulfed microorganism, peroxidase activity is oxygen-dependent one. The both tested samples MS and MPEG lysed leukocyte cells during incubation. MPEG with concentration 10 and 20 μg/mL lysed almost all leukocytes and their cell viability was in the 14 ± 0.05% range. On the other hand, MS begin to influence leukocytes activity at the concentration of 1 μg/mL and this influence grows with increasing concentration up to 20 μg/mL. MS are more suitable for biological applications than MPEG which are more aggressive material than MS and their using is unavailable for these types of the test mainly for the concentration 10 - 20 μg/mL.
基金the support from the University of MichiganThe National Natural Science Foundation of China (Nos. 61527806)+4 种基金National Key Research and Development Program of China (No. 2017YFA0205301)Natural Science Foundation of jiangsu Province(No. BK20141397)National Key Program for Developing Basic Research(No. 2014CB744501)Research Fund for the Doctoral Program of Higher Education of China(No.20120092120042)CMA-L'Oreal China Skin Grant 2015 (No. S2015121421) are also acknowledged for the financial support
文摘Information concerns endocytosis and autophagic effects of magnetite particles is crucial for understanding the particle-cell interactions. In this work, we investigated the effects of bovine serum proteins on the endocytosis of magnetite spherical particles(MSPs). Autophagic effects of MSPs in breast cancer cells were studied. Light scattering based flow cytometry and microscopy were used for evaluating the uptake potential of MSPs by cells and the cellular autophagosome accumulation. Results showed bovine serum proteins significantly reduced the endocytosis of MSPs by decreasing their adsorption to cell membranes. Additionally, serum proteins had influences on the endocytic mechanisms of MSPs.Autophagosome accumulation could be caused by the internalized MSPs rather than the particles associated with cell membrane. Above fundamental findings promote our understandings upon the interactions of MSPs with cells. Light scattering based methods were proved to be simple and effective.The present work may promote their application in studies upon endocytosis of metallic particles in the future.