期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Magnetic-structure coupling dynamic model of a ferromagnetic plate parallel moving in air-gap magnetic field 被引量:1
1
作者 Yuda Hu Tianxiao Cao Mengxue Xie 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第10期145-155,共11页
Aiming at the air-gap magnetic field excited by wall armatures,Laplace’s partial differential equation of air-gap magnetic potential is achieved by means of the electromagnetic field theory.According to the magnetic ... Aiming at the air-gap magnetic field excited by wall armatures,Laplace’s partial differential equation of air-gap magnetic potential is achieved by means of the electromagnetic field theory.According to the magnetic boundary conditions and the method of separation of variables,the magnetic potential of the air-gap magnetic field is obtained.Based on the magnetization force model and Lorentz force of ferromagnetic thin-walled structures,and introducing the electromagnetic constitutive relations and boundary conditions,the calculation model of electromagnetic force of the soft ferromagnetic thin plate moving in air-gap magnetic field is established.Considering geometric nonlinearity,expressions of strain energy and kinetic energy of the elastic thin plate and the work of forces are given,respectively.The magnetic-structure coupling nonlinear vibration equations of ferromagnetic thin plate parallel moving in the air-gap magnetic field excited by armatures are obtained by using the Hamilton principle,which can be of the characterization of the system dynamics model with electro-magneto-velocity-mechanical interaction.Through numerical examples,primary resonance characteristics of the strip thin plate under the action of air-gap magnetic force are obtained.The results show that the two stable amplitude values will increase as amplitude of magnetic potential increases and thickness of air-gap decreases,and the amplitude’s multi-valued region will change due to the varieties of magnetic potential,air-gap and velocity.The model established in this paper is a theoretical reference for investigation on the multi-field coupling dynamic behaviors of structures moving in complex electromagnetic fields. 展开更多
关键词 Ferromagnetic thin plate magnetic-structure coupling dynamics Air-gap magnetic field In-plane motion Magnetic potential equation
原文传递
Experimental study on coupled caloric effect driven by dual fields in metamagnetic alloy ErCo_(2)
2
作者 Liming Wu Bingjie Wang +11 位作者 Fengxia Hu Zhaojun Mo Houbo Zhou Zhengying Tian Yangyang Fan Zhuo Yin Zibing Yu Jing Wang Yunzhong Chen Jirong Sun Tongyun Zhao Baogen Shen 《Journal of Rare Earths》 2025年第4期752-757,I0005,共7页
This study presents an experimental investigation of the coupled caloric effect driven by dual-fields in metamagnetic alloy ErCo_(2) with strong magneto-structural coupling.Magnetic measurements were conducted under d... This study presents an experimental investigation of the coupled caloric effect driven by dual-fields in metamagnetic alloy ErCo_(2) with strong magneto-structural coupling.Magnetic measurements were conducted under different pressures,revealing that the application of hydrostatic pressure stabilizes a small volume of paramagnetism(PM) phase,resulting in a shift of the phase transition temperature towards the low-temperature region.This shift is opposite to the temperature associated with the magnetic field-driven phase transition.As pressure increases,the metamagnetic transition in ErCo_(2) is suppressed,and the hysteresis disappears.However,the produced cross-coupling caloric effect compensates the decrease in entropy change caused by the disappearance of the metamagnetic transition.As a result,a reversible giant magnetocaloric effect of 46.2 J/(kg·K) without hysteresis is achieved at a pressure of 0.910 GPa.Moreover,we propose that the temperature span of ErCo_(2) can be significantly widened by optimizing the thermodynamic pathway of the magnetic and pressure fields,overcoming the defect of a narrow temperature range. 展开更多
关键词 Rare earths Magnetocaloric materials Coupled caloric effect Metamagnetic behavior Dual fields magnetic-structure coupling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部