By combining experimental α-decay energies and half-lives, the α-particle preformation factor for nuclei around neutron magic numbers N of 126, 152, and 162 were extracted using the two-potential approach. The nucle...By combining experimental α-decay energies and half-lives, the α-particle preformation factor for nuclei around neutron magic numbers N of 126, 152, and 162 were extracted using the two-potential approach. The nuclei around the shell closure were more tightly bound than adjacent nuclei. Additionally, based on the WS4 mass model (Wang et al., Phys. Lett.B 734, 215 (2014)), we extended the two-potential approach to predict the α-decay half-lives of nuclei around N values of178 and 184 with Z of 119 and 120. We believe that our findings will serve as guidelines for future experimental studies.展开更多
Ideas, solely related on the nuclear shell model, fail to give an interpretation of the experimental central role of 54Xe in the asymmetric fission of actinides. The same is true for the β-delayed fission of ...Ideas, solely related on the nuclear shell model, fail to give an interpretation of the experimental central role of 54Xe in the asymmetric fission of actinides. The same is true for the β-delayed fission of 180Tl to 80Kr and 100Ru. The representation of the natural isotopes, in the Z-Neutron Excess plane, suggests the importance of the of the Neutron Excess evolution mode in the fragments of the asymmetric actinide fission and in the fragments of the β-delayed fission of 180Tl. The evolution mode of the Neutron Excess, hinged at Kr and Xe, is directed by the 50 and 82 neutron magic numbers. The present isotope representation offers a frame for the interpretation of the post fission evaporation of neutrons, higher for the AL compared to the AH fragments, a tenet in nuclear fission. Further enlightened is the functional meaning of the 50 proton magic number, marking the start of the yield rise of the AH fragments in actinide fission.展开更多
In this paper, we present direct mass measurements of neutron-rich S6Kr projectile fragments conducted at the HIRFL-CSR facility in Lanzhou by employing the Isochronous Mass Spectrometry (IMS) method. The new mass e...In this paper, we present direct mass measurements of neutron-rich S6Kr projectile fragments conducted at the HIRFL-CSR facility in Lanzhou by employing the Isochronous Mass Spectrometry (IMS) method. The new mass excesses of ^52-54Sc nuclides are determined to be -40492(82), -38928(114), -34654(540) keV, which show a significant increase of binding energy compared to the reported ones in the Atomic Mass Evaluation 2012 (AME12). In particular, ^53Sc and ^54sc are more bound by 0.8 MeV and 1.0 MeV, respectively. The behavior of the two neutron separation energy with neutron numbers indicates a strong sub-shell closure at neutron number N=32 in Sc isotopes.展开更多
In the framework of Strutinsky's approach, we calculated the shell and the residual pairing correction energies for 5569 even-even nuclei in the range 72 ≤ Z ≤ 282 and 96≤N ≤ 540. Quasi-magic numbers and deformed...In the framework of Strutinsky's approach, we calculated the shell and the residual pairing correction energies for 5569 even-even nuclei in the range 72 ≤ Z ≤ 282 and 96≤N ≤ 540. Quasi-magic numbers and deformed islands of stability that reside in a range defined by Green's formula and the two-neutrons drip line are introduced. We present 36 quasi-magic proton and 53 quasi-magic neutron magic numbers that contribute to the formation of 133 deformed islands of stability along the N-Z space. The quasi-magic proton and neutron magic numbers volatile as the mass number increases and other magic numbers take over. Consequently, the deformed islands of stability fail to exhibit a pattern along the search space covered.展开更多
The metallic softness parameterαr 0 determines the structure of the cluster and governs the rule of magic numbers. Using molecular dynamic method, the stable structures and magic numbers are determined for the cluste...The metallic softness parameterαr 0 determines the structure of the cluster and governs the rule of magic numbers. Using molecular dynamic method, the stable structures and magic numbers are determined for the clusters consisting of 13 up to 147 atoms in medium range Morse potentials, which is suitable for most of metals. As the number of atoms constituting the cluster increases, the stable structures undergo transition from face-centered (FC) to edge-centered (EC) structures. The magic number take ones of FC series before transition and take ones of EC series after that. The transition point from FC to EC structures depends on the value of softness parameter.展开更多
The identification of highly abundant,“magic”spe-cies in the mass spectra of clusters have proven to be valuable in nanoscience,leading to the discovery of new stable species such as fullerenes and the elec-tronic s...The identification of highly abundant,“magic”spe-cies in the mass spectra of clusters have proven to be valuable in nanoscience,leading to the discovery of new stable species such as fullerenes and the elec-tronic shell structures of metallic clusters.展开更多
A molecular dynamics simulation study has been performed for a large systemconsisting of 100000 liquid metal Al atoms to investigate the formation and magic numbercharacteristics of the cluster configurations formed d...A molecular dynamics simulation study has been performed for a large systemconsisting of 100000 liquid metal Al atoms to investigate the formation and magic numbercharacteristics of the cluster configurations formed during the rapid solidification processes. Thecluster-type index method (CTIM) has been adopted to describe various types of clusterconfigurations. The results indicate that the icosahedral clusters (12 0 12 0) and theircombinations play the most important role in the rnicrostructure transitions during solidificationprocesses; for the cluster configurations of different levels formed by various combinations withdiffering numbers of basic clusters, their size distributions possess obvious magic number sequencewhich is in turn as 13(13), 19(21), 26-28(27), 32-33(32), 39-40, 43-44, 48..., (those in bracket arethe corresponding value in liquid state); the magic numbers correspond to the peak value positionsof the cluster numbers for corresponding level formed with various combinations by 1, 2, 3, 4, 5, 6,7, ...basic clusters, respectively. This magic number sequence is in good agreement with theexperimental results obtained by Harris et al. At the same time, this simulation study also gives ascientific and reasonable explanation to these experimental results.展开更多
Concentrated solar thermal power generation has been experimentally tested in advanced countries for a period of time.This paper demonstrates how this technology can be improved by using water molecules as a medium to...Concentrated solar thermal power generation has been experimentally tested in advanced countries for a period of time.This paper demonstrates how this technology can be improved by using water molecules as a medium to drive traditional generator sets for energy conversion,thereby simultaneously improving the energy conversion rate.Additionally,a novel contribution is made by incorporating a magic number 4 to enhance the focusing efficiency of Fresnel lenses,which drives improvements in power generation output and QE(Quantum Efficiency).展开更多
The isospin asymmetry and quadrupole deformation value of drip-line nuclei are investigated using the Weizsäcker-Skyrme nuclear mass formula.We observe that for heavy nuclei at the neutron drip line,the Coulomb e...The isospin asymmetry and quadrupole deformation value of drip-line nuclei are investigated using the Weizsäcker-Skyrme nuclear mass formula.We observe that for heavy nuclei at the neutron drip line,the Coulomb energy heightened by an aug-mented charge could not be mitigated completely by symmetry energy because of isospin asymmetry saturation but is resisted complementally by strong nuclear deformation.The positions of saltation for the difference in proton numbers between two neighboring nuclei at the neutron drip line,and the isospin asymmetry of the neutron drip-line nucleus as a function of the neutron number distinctly correspond to the known magic numbers,which can serve as a reference to verify the undeter-mined neutron magic number.Through fitting of the binding energy difference between mirror nuclei(BEDbMN),a set of Coulomb energy coefficients with greater accuracy is obtained.A high-precision description of the BEDbMN is useful for accurately determining the experimentally unknown mass of the nucleus close to the proton drip line if the mass of its mirror nucleus is measured experimentally.展开更多
An improved formula considering the deformation effect for the α-decay half-lives is proposed based on WKB barrier penetrability.Using the quadrupole deformation values of the daughter nuclei obtained from the WS4 an...An improved formula considering the deformation effect for the α-decay half-lives is proposed based on WKB barrier penetrability.Using the quadrupole deformation values of the daughter nuclei obtained from the WS4 and FRDM models in the improved formula,the root mean square deviation(RMSD)between the calculated results and experimental data decreased from 0.456 to 0.413 and 0.415,respectively.Although the improved formula did not significantly reduce the overall RMSD,it produced results that better matched the experimental values for nuclei with larger deformations.Additionally,eXtreme Gradient Boosting(XGBoost)models were employed to further reduce the deviations between the calculated α-decay half-lives and experimental data,with the corresponding RMSDs decreasing from 0.413 to 0.295 and from 0.415 to 0.302,respectively.Furthermore,the improved empirical formula and XGBoost models were used to predict the α-decay half-lives of nuclei with Z=117,118,119,and 120.The results suggest that N=184 is the magic number.展开更多
基金supported in part by the National Natural Science Foundation of China(Nos.12175100 and 11975132)Construct Program of the Key Discipline in Hunan Province,Research Foundation of Education Bureau of Hunan Province,China(Nos.21B0402,18A237 and 22A0305)+3 种基金Natural Science Foundation of Hunan Province,China(No.2018JJ2321)Innovation Group of Nuclear and Particle Physics in USC,Shandong Province Natural Science Foundation,China(No.ZR2022JQ04)Opening Project of Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment,University of South China(No.2019KFZ10)Hunan Provincial Innovation Foundation for Postgraduate(No.CX20230962).
文摘By combining experimental α-decay energies and half-lives, the α-particle preformation factor for nuclei around neutron magic numbers N of 126, 152, and 162 were extracted using the two-potential approach. The nuclei around the shell closure were more tightly bound than adjacent nuclei. Additionally, based on the WS4 mass model (Wang et al., Phys. Lett.B 734, 215 (2014)), we extended the two-potential approach to predict the α-decay half-lives of nuclei around N values of178 and 184 with Z of 119 and 120. We believe that our findings will serve as guidelines for future experimental studies.
文摘Ideas, solely related on the nuclear shell model, fail to give an interpretation of the experimental central role of 54Xe in the asymmetric fission of actinides. The same is true for the β-delayed fission of 180Tl to 80Kr and 100Ru. The representation of the natural isotopes, in the Z-Neutron Excess plane, suggests the importance of the of the Neutron Excess evolution mode in the fragments of the asymmetric actinide fission and in the fragments of the β-delayed fission of 180Tl. The evolution mode of the Neutron Excess, hinged at Kr and Xe, is directed by the 50 and 82 neutron magic numbers. The present isotope representation offers a frame for the interpretation of the post fission evaporation of neutrons, higher for the AL compared to the AH fragments, a tenet in nuclear fission. Further enlightened is the functional meaning of the 50 proton magic number, marking the start of the yield rise of the AH fragments in actinide fission.
基金Supported by 973 Program of China(2013CB834401)the NSFC(U1232208,U1432125,11205205,11035007)the Helmholtz-CAS Joint Research Group(HCJRG-108)
文摘In this paper, we present direct mass measurements of neutron-rich S6Kr projectile fragments conducted at the HIRFL-CSR facility in Lanzhou by employing the Isochronous Mass Spectrometry (IMS) method. The new mass excesses of ^52-54Sc nuclides are determined to be -40492(82), -38928(114), -34654(540) keV, which show a significant increase of binding energy compared to the reported ones in the Atomic Mass Evaluation 2012 (AME12). In particular, ^53Sc and ^54sc are more bound by 0.8 MeV and 1.0 MeV, respectively. The behavior of the two neutron separation energy with neutron numbers indicates a strong sub-shell closure at neutron number N=32 in Sc isotopes.
文摘In the framework of Strutinsky's approach, we calculated the shell and the residual pairing correction energies for 5569 even-even nuclei in the range 72 ≤ Z ≤ 282 and 96≤N ≤ 540. Quasi-magic numbers and deformed islands of stability that reside in a range defined by Green's formula and the two-neutrons drip line are introduced. We present 36 quasi-magic proton and 53 quasi-magic neutron magic numbers that contribute to the formation of 133 deformed islands of stability along the N-Z space. The quasi-magic proton and neutron magic numbers volatile as the mass number increases and other magic numbers take over. Consequently, the deformed islands of stability fail to exhibit a pattern along the search space covered.
基金Supported by the National Natural Science Foundation of China(196 740 42 198340 70 ) Science and Technology Program of Natio
文摘The metallic softness parameterαr 0 determines the structure of the cluster and governs the rule of magic numbers. Using molecular dynamic method, the stable structures and magic numbers are determined for the clusters consisting of 13 up to 147 atoms in medium range Morse potentials, which is suitable for most of metals. As the number of atoms constituting the cluster increases, the stable structures undergo transition from face-centered (FC) to edge-centered (EC) structures. The magic number take ones of FC series before transition and take ones of EC series after that. The transition point from FC to EC structures depends on the value of softness parameter.
基金The financial support for this work was provided by the National Natural Science Foundation of China(grant no.21722308 and 21802146)by Beijing Natural Science Foundation(2192064)+1 种基金by the National Project Development of Advanced Scientific Instruments Based on Deep Ultraviolet Laser Source(no.Y31M0112C1)by Key Research Program of Frontier Sciences(CAS,Grant QYZDBSSW-SLH024).
文摘The identification of highly abundant,“magic”spe-cies in the mass spectra of clusters have proven to be valuable in nanoscience,leading to the discovery of new stable species such as fullerenes and the elec-tronic shell structures of metallic clusters.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 50271026).
文摘A molecular dynamics simulation study has been performed for a large systemconsisting of 100000 liquid metal Al atoms to investigate the formation and magic numbercharacteristics of the cluster configurations formed during the rapid solidification processes. Thecluster-type index method (CTIM) has been adopted to describe various types of clusterconfigurations. The results indicate that the icosahedral clusters (12 0 12 0) and theircombinations play the most important role in the rnicrostructure transitions during solidificationprocesses; for the cluster configurations of different levels formed by various combinations withdiffering numbers of basic clusters, their size distributions possess obvious magic number sequencewhich is in turn as 13(13), 19(21), 26-28(27), 32-33(32), 39-40, 43-44, 48..., (those in bracket arethe corresponding value in liquid state); the magic numbers correspond to the peak value positionsof the cluster numbers for corresponding level formed with various combinations by 1, 2, 3, 4, 5, 6,7, ...basic clusters, respectively. This magic number sequence is in good agreement with theexperimental results obtained by Harris et al. At the same time, this simulation study also gives ascientific and reasonable explanation to these experimental results.
文摘Concentrated solar thermal power generation has been experimentally tested in advanced countries for a period of time.This paper demonstrates how this technology can be improved by using water molecules as a medium to drive traditional generator sets for energy conversion,thereby simultaneously improving the energy conversion rate.Additionally,a novel contribution is made by incorporating a magic number 4 to enhance the focusing efficiency of Fresnel lenses,which drives improvements in power generation output and QE(Quantum Efficiency).
基金supported by the Ministry of Science and Technology of China(No.2022YFE0103400)Natural Science Foundation of Guangxi Province(No.2021GXNSFAA196052)National Natural Science Foundation of China(No.11965004).
文摘The isospin asymmetry and quadrupole deformation value of drip-line nuclei are investigated using the Weizsäcker-Skyrme nuclear mass formula.We observe that for heavy nuclei at the neutron drip line,the Coulomb energy heightened by an aug-mented charge could not be mitigated completely by symmetry energy because of isospin asymmetry saturation but is resisted complementally by strong nuclear deformation.The positions of saltation for the difference in proton numbers between two neighboring nuclei at the neutron drip line,and the isospin asymmetry of the neutron drip-line nucleus as a function of the neutron number distinctly correspond to the known magic numbers,which can serve as a reference to verify the undeter-mined neutron magic number.Through fitting of the binding energy difference between mirror nuclei(BEDbMN),a set of Coulomb energy coefficients with greater accuracy is obtained.A high-precision description of the BEDbMN is useful for accurately determining the experimentally unknown mass of the nucleus close to the proton drip line if the mass of its mirror nucleus is measured experimentally.
基金supported by the Joint Funds for the Innovation of Science and Technology,Fujian province(Nos.2021Y9190 and 2021Y9210)National Natural Science Foundation of China(No.12475121)National Key R&D Program of China(Nos.2023YFA1606503 and 2024YFE0109804).
文摘An improved formula considering the deformation effect for the α-decay half-lives is proposed based on WKB barrier penetrability.Using the quadrupole deformation values of the daughter nuclei obtained from the WS4 and FRDM models in the improved formula,the root mean square deviation(RMSD)between the calculated results and experimental data decreased from 0.456 to 0.413 and 0.415,respectively.Although the improved formula did not significantly reduce the overall RMSD,it produced results that better matched the experimental values for nuclei with larger deformations.Additionally,eXtreme Gradient Boosting(XGBoost)models were employed to further reduce the deviations between the calculated α-decay half-lives and experimental data,with the corresponding RMSDs decreasing from 0.413 to 0.295 and from 0.415 to 0.302,respectively.Furthermore,the improved empirical formula and XGBoost models were used to predict the α-decay half-lives of nuclei with Z=117,118,119,and 120.The results suggest that N=184 is the magic number.