Dengue virus(DENV) is an arthropod-borne viral pathogen and a global health burden. Knowledge of the DENV-host interactions that mediate virus pathogenicity remains limited. Host lipid metabolism is hijacked by DENV f...Dengue virus(DENV) is an arthropod-borne viral pathogen and a global health burden. Knowledge of the DENV-host interactions that mediate virus pathogenicity remains limited. Host lipid metabolism is hijacked by DENV for virus replication in which lipid droplets(LDs) play a key role during the virus lifecycle. In this study, we reveal a novel role for phosphatase and tensin homolog deleted on chromosome 10(PTEN) in LDs-mediated DENV infection. We demonstrate that PTEN expression is downregulated upon DENV infection through post-transcriptional regulation and, in turn, PTEN overexpression enhances DENV replication. PTEN lipid phosphatase activity was found to decrease cellular LDs area and number through Akt/FoxO1/Maf1 signaling, which, together with autophagy, enhanced DENV replication and virus production. We therefore provide mechanistic insight into the interaction between lipid metabolism and the DENV replication cycle.展开更多
BACKGROUND Diabetic retinopathy(DR)is a major microvascular complication of diabetes mellitus,leading to significant visual impairment and blindness among adults.Current treatment options are limited,making it essenti...BACKGROUND Diabetic retinopathy(DR)is a major microvascular complication of diabetes mellitus,leading to significant visual impairment and blindness among adults.Current treatment options are limited,making it essential to explore novel therapeutic strategies.Curcumol,a sesquiterpenoid derived from traditional Chinese medicine,has shown anti-inflammatory and anti-cancer properties,but its potential role in DR remains unclear.AIM To investigate the therapeutic effects of curcumol on the progression of DR and to elucidate the underlying molecular mechanisms,particularly its impact on the fat mass and obesity-associated(FTO)protein and the long non-coding RNA(lncRNA)MAF transcription factor G antisense RNA 1(MAFG-AS1).METHODS A streptozotocin-induced mouse model of DR was established,followed by treatment with curcumol.Retinal damage and inflammation were evaluated through histological analysis and molecular assays.Human retinal vascular endothelial cells were exposed to high glucose conditions to simulate diabetic environments in vitro.Cell proliferation,migration,and inflammation markers were assessed in curcumoltreated cells.LncRNA microarray analysis identified key molecules regulated by curcumol,and further experiments were conducted to confirm the involvement of FTO and MAFG-AS1 in the progression of DR.RESULTS Curcumol treatment significantly reduced blood glucose levels and alleviated retinal damage in streptozotocininduced DR mouse models.In high-glucose-treated human retinal vascular endothelial cells,curcumol inhibited cell proliferation,migration,and inflammatory responses.LncRNA microarray analysis identified MAFG-AS1 as the most upregulated lncRNA following curcumol treatment.Mechanistically,FTO demethylated MAFG-AS1,stabilizing its expression.Rescue experiments demonstrated that the protective effects of curcumol against DR were mediated through the FTO/MAFG-AS1 signaling pathway.CONCLUSION Curcumol ameliorates the progression of DR by modulating the FTO/MAFG-AS1 axis,providing a novel therapeutic pathway for the treatment of DR.These findings suggest that curcumol-based therapies could offer a promising alternative for managing this debilitating complication of diabetes.展开更多
基金funded by the National Natural Science Foundation of China (81171564)the National Key Research and Development Program of China (2016YFC1200400)the National S&T Major Project for Infectious Diseases Control (2017ZX10304403)。
文摘Dengue virus(DENV) is an arthropod-borne viral pathogen and a global health burden. Knowledge of the DENV-host interactions that mediate virus pathogenicity remains limited. Host lipid metabolism is hijacked by DENV for virus replication in which lipid droplets(LDs) play a key role during the virus lifecycle. In this study, we reveal a novel role for phosphatase and tensin homolog deleted on chromosome 10(PTEN) in LDs-mediated DENV infection. We demonstrate that PTEN expression is downregulated upon DENV infection through post-transcriptional regulation and, in turn, PTEN overexpression enhances DENV replication. PTEN lipid phosphatase activity was found to decrease cellular LDs area and number through Akt/FoxO1/Maf1 signaling, which, together with autophagy, enhanced DENV replication and virus production. We therefore provide mechanistic insight into the interaction between lipid metabolism and the DENV replication cycle.
文摘BACKGROUND Diabetic retinopathy(DR)is a major microvascular complication of diabetes mellitus,leading to significant visual impairment and blindness among adults.Current treatment options are limited,making it essential to explore novel therapeutic strategies.Curcumol,a sesquiterpenoid derived from traditional Chinese medicine,has shown anti-inflammatory and anti-cancer properties,but its potential role in DR remains unclear.AIM To investigate the therapeutic effects of curcumol on the progression of DR and to elucidate the underlying molecular mechanisms,particularly its impact on the fat mass and obesity-associated(FTO)protein and the long non-coding RNA(lncRNA)MAF transcription factor G antisense RNA 1(MAFG-AS1).METHODS A streptozotocin-induced mouse model of DR was established,followed by treatment with curcumol.Retinal damage and inflammation were evaluated through histological analysis and molecular assays.Human retinal vascular endothelial cells were exposed to high glucose conditions to simulate diabetic environments in vitro.Cell proliferation,migration,and inflammation markers were assessed in curcumoltreated cells.LncRNA microarray analysis identified key molecules regulated by curcumol,and further experiments were conducted to confirm the involvement of FTO and MAFG-AS1 in the progression of DR.RESULTS Curcumol treatment significantly reduced blood glucose levels and alleviated retinal damage in streptozotocininduced DR mouse models.In high-glucose-treated human retinal vascular endothelial cells,curcumol inhibited cell proliferation,migration,and inflammatory responses.LncRNA microarray analysis identified MAFG-AS1 as the most upregulated lncRNA following curcumol treatment.Mechanistically,FTO demethylated MAFG-AS1,stabilizing its expression.Rescue experiments demonstrated that the protective effects of curcumol against DR were mediated through the FTO/MAFG-AS1 signaling pathway.CONCLUSION Curcumol ameliorates the progression of DR by modulating the FTO/MAFG-AS1 axis,providing a novel therapeutic pathway for the treatment of DR.These findings suggest that curcumol-based therapies could offer a promising alternative for managing this debilitating complication of diabetes.