期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Enhanced photocatalytic performance of Bi_(4)O_(5)Br_(2)with threedimensionally ordered macroporous structure for phenol removal 被引量:3
1
作者 Kunfeng Zhang Hongxia Chen +3 位作者 Wenbo Pei Hongxing Dai Junshan Li Yongfa Zhu 《Nano Research》 SCIE EI CSCD 2023年第7期8871-8881,共11页
Herein,a series of three-dimensionally ordered macroporous(3DOM)Bi_(4)O_(5)Br_(2)photocatalysts with different macropore sizes were successfully fabricated via a polymethyl methacrylate(PMMA)template method.The photoc... Herein,a series of three-dimensionally ordered macroporous(3DOM)Bi_(4)O_(5)Br_(2)photocatalysts with different macropore sizes were successfully fabricated via a polymethyl methacrylate(PMMA)template method.The photocatalytic activity for phenol degradation over 3DOM Bi_(4)O_(5)Br_(2)first increased and then decreased with the rise in macropore size.Specifically,3DOM Bi_(4)O_(5)Br_(2)-255(macropore diameter ca.170 nm)exhibits the best photocatalytic activity in the static system,which is about 4.5,7.3,and 11.9 times higher than those of bulk Bi_(4)O_(5)Br_(2),Bi_(2)WO_(6),and g-C_(3)N_(4),respectively.Meanwhile,high phenol conversion(75%)is also obtained over 3DOM Bi_(4)O_(5)Br_(2)-255 in the flow system under full spectrum irradiation.Furthermore,3DOM Bi_(4)O_(5)Br_(2)-255 also shows strong mineralization capacity owing to the downward shift of valance band position(0.15 V)as compared with Bi_(4)O_(5)Br_(2).Total organic carbon(TOC)removal rate over 3DOM Bi_(4)O_(5)Br_(2)-255(62%)is much higher than that of Bi_(4)O_(5)Br_(2)(17%).The enhancement in photocatalytic performance of 3DOM Bi_(4)O_(5)Br_(2)-255 is attributable to its better phenol adsorption,O_(2)activation,and charge separation and transfer abilities.This work combines the advantages of 3D structure and surface dangling bonds,providing new possibilities for designing highly efficient photocatalysts for pollutants removal. 展开更多
关键词 three-dimensionally ordered macroporous structure Bi_(4)O_(5)Br_(2) O_(2)activation PHOTOCATALYSIS degradation
原文传递
Synthesis and catalytic performance of macroporous La_(1-x)Ce_(x)CoO_(3)perovskite oxide catalysts with high oxygen mobility for catalytic combustion of soot 被引量:14
2
作者 Jiachen Sun Zhen Zhao +5 位作者 Yazhao Li Xuehua Yu Linlin Zhao Jianmei Li Yuechang Wei Jian Liu 《Journal of Rare Earths》 SCIE EI CAS CSCD 2020年第6期584-593,共10页
The disordered macroporous-mesoporous La_(1-x)Ce_(x)CoO_(3)catalysts were prepared by complexcombustion method with ethylene glycol as complexing agent at relatively low calcination temperature.The samples were charac... The disordered macroporous-mesoporous La_(1-x)Ce_(x)CoO_(3)catalysts were prepared by complexcombustion method with ethylene glycol as complexing agent at relatively low calcination temperature.The samples were characterized by means of X-ray diffraction,N_(2)adsorption-ndash;desorption,Xray photoelectron spectroscopy,transmission electron microscopy,hydrogen temperature-programmed reduction and soot temperature-programmed reduction,and so on.The results show that the use of complexing agent and relatively low calcination temperature increase the specific surface area of the catalyst and have abundant pore structure.The Ce ions introduced into lattice of LaCoO_(3)mainly exist in the form of tetravalent.At the same time,Ce ions enhance the redox performance of the catalyst and the mobility of active oxygen species,which enhances the catalytic activity of the catalyst for soot combustion.The results of activity test show that La0.9Ce0.1CoO3 catalyst exhibits the highest activity in the absence of NO and NO2,and its T10,T50 and T90 are 371,444,and 497℃,respectively.At the same time,a possible reaction mechanism is proposed in this study based on the turnover frequency(TOF)calculated by isothermal anaerobic titrations,XPS and XRD results. 展开更多
关键词 macroporous structure La_(1-x)Ce_(x)CoO_(3)perovskite oxide Reaction mechanism Soot combustion Rare earths
原文传递
Synergistically boosting the elementary reactions over multiheterogeneous ordered macroporous Mo2C/NC-Ru for highly efficient alkaline hydrogen evolution 被引量:7
3
作者 Kaixi Wang Shuo Wang +7 位作者 Kwan San Hui Haixing Gao Duc Anh Dinh Chengzong Yuan Chenyang Zha Zongping Shao Zikang Tang Kwun Nam Hui 《Carbon Energy》 SCIE CAS 2022年第5期856-866,共11页
Simultaneously enhancing the reaction kinetics,mass transport,and gas release during alkaline hydrogen evolution reaction(HER)is critical to minimizing the reaction polarization resistance,but remains a big challenge.... Simultaneously enhancing the reaction kinetics,mass transport,and gas release during alkaline hydrogen evolution reaction(HER)is critical to minimizing the reaction polarization resistance,but remains a big challenge.Through rational design of a hierarchical multiheterogeneous three-dimensionally(3D)ordered macroporous Mo_(2)C-embedded nitrogen-doped carbon with ultrafine Ru nanoclusters anchored on its surface(OMS Mo_(2)C/NC-Ru),we realize both electronic and morphologic engineering of the catalyst to maximize the electrocatalysis performance.The formed Ru-NC heterostructure shows regulative electronic states and optimized adsorption energy with the intermediate H*,and the Mo_(2)C-NC heterostructure accelerates the Volmer reaction due to the strong water dissociation ability as confirmed by theoretical calculations.Consequently,superior HER activity in alkaline solution with an extremely low overpotential of 15.5 mV at 10 mAcm^(−2)with the mass activity more than 17 times higher than that of the benchmark Pt/C,an ultrasmall Tafel slope of 22.7 mV dec−1,and excellent electrocatalytic durability were achieved,attributing to the enhanced mass transport and favorable gas release process endowed from the unique OMS Mo_(2)C/NC-Ru structure.By oxidizing OMS Mo_(2)C/NC-Ru into OMS MoO_(3)-RuO_(2)catalyst,it can also be applied as efficient oxygen evolution electrocatalyst,enabling the construction of a quasi-symmetric electrolyzer for overall water splitting.Such a device's performance surpassed the state-of-the-art Pt/C||RuO2 electrolyzer.This study provides instructive guidance for designing 3D-ordered macroporous multicomponent catalysts for efficient catalytic applications. 展开更多
关键词 HETEROstructure hydrogen evolution reaction molybdenum carbide ordered macroporous structure ruthenium nanoparticle synergistic effect
在线阅读 下载PDF
Ultrasmall NiS_(2)Nanocrystals Embedded in Ordered Macroporous Graphenic Carbon Matrix for Efficiently Pseudocapacitive Sodium Storage 被引量:4
4
作者 Zhaozhao Liu Jiang Wang +7 位作者 Ran Bi Pinyi Zhao Mengqian Wu Xinyu Liu Likun Yin Chengyang Wang Mingming Chen Kemeng Ji 《Transactions of Tianjin University》 EI CAS 2023年第2期89-100,共12页
Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance betw... Sodium-ion hybrid capacitor(SIHC)is one of the most promising alternatives for large-scale energy storage due to its high energy and power densities,natural abundance,and low cost.However,overcoming the imbalance between slow Na^(+)reaction kinetics of battery-type anodes and rapid ion adsorption/desorption of capacitive cathodes is a significant challenge.Here,we propose the high-rate-performance NiS_(2)@OMGC anode material composed of monodispersed NiS_(2) nanocrystals(8.8±1.7 nm in size)and N,S-co-doped graphenic carbon(GC).The NiS_(2)@OMGC material has a three-dimensionally ordered macroporous(3DOM)morphology,and numerous NiS_(2) nanocrystals are uniformly embedded in GC,forming a core-shell structure in the local area.Ultrafine NiS_(2) nanocrystals and their nano-microstructure demonstrate high pseudocapacitive Na-storage capability and thus excellent rate performance(355.7 mAh/g at 20.0 A/g).A SIHC device fabricated using NiS_(2)@OMGC and commercial activated carbon(AC)cathode exhibits ultrahigh energy densities(197.4 Wh/kg at 398.8 W/kg)and power densities(43.9 kW/kg at 41.3 Wh/kg),together with a long life span.This outcome exemplifies the rational architecture and composition design of this type of anode material.This strategy can be extended to the design and synthesis of a wide range of high-performance electrode materials for energy storage applications. 展开更多
关键词 Sodium-ion battery Sodium-ion hybrid capacitor Three-dimensionally ordered macroporous structure Graphenic carbon NiS_(2)nanocrystals
在线阅读 下载PDF
Morphology and activity relationships of macroporous CuO-ZnO-ZrO_2 catalysts for methanol synthesis from CO_2 hydrogenation 被引量:2
5
作者 Yu-Hao Wang Wen-Gui Gao +3 位作者 Hua Wang Yan-E Zheng Kong-Zhai Li Ru-Gui Ma 《Rare Metals》 SCIE EI CAS CSCD 2016年第10期790-796,共7页
A series of macroporous CuO-ZnO-ZrO2 (CZZ) catalysts with different Zn/Zr ratios were successfully prepared by template method and characterized by X-ray diffraction (XRD), N2 adsorption, reactive N2O adsorption, ... A series of macroporous CuO-ZnO-ZrO2 (CZZ) catalysts with different Zn/Zr ratios were successfully prepared by template method and characterized by X-ray diffraction (XRD), N2 adsorption, reactive N2O adsorption, scanning electron microscopy (SEM), H2 temperature-pro- grammed reduction (H2-TPR), and transmission electron microscopy (TEM). The activity of the catalysts was tested for methanol synthesis from CO2 hydrogenation. It is found that the increase in the Zn/Zr ratio could lead to the sintering of the catalysts, destroying the macroporous structure integrity. The macroporous CZZ catalysts own lower Zn/Zr ratio, exhibiting a better morphology and activity. For comparison, the conventional nonporous CZZ catalysts were also investigated. The results show that the CZZ catalysts with macroporous structure own smaller particles, higher CO2 conversion, and CH3OH yield. It reveals that the macroporous structure could inhibit the growth of the par- ticle size, and the special porous structure is favorable for diffusion and penetration of CO2, which could improve the catalytic activities. 展开更多
关键词 macroporous structure CuO-ZnO-ZrO2 catalysts CO2 hydrogenation METHANOL Activity
原文传递
Fabrication of Ordered Macroporous CdS and ZnS by Colloidal Crystal Template
6
作者 LingYunHAO XianMingLIU 《Chinese Chemical Letters》 SCIE CAS CSCD 2002年第2期181-182,共2页
Ordered macroporous semiconductors CdS and ZnS with regular arrays of spherical pores have been fabricated by poly (styrene-acrylic) (PSA) colloidal crystal template. It was found that the exact three-dimensional (3D... Ordered macroporous semiconductors CdS and ZnS with regular arrays of spherical pores have been fabricated by poly (styrene-acrylic) (PSA) colloidal crystal template. It was found that the exact three-dimensional (3D) structure of the template had been imprinted in the final material. 展开更多
关键词 CdS macroporous structure chemical synthesis transmission electron microscopy.
在线阅读 下载PDF
Mechanical characteristics of soil-rock mixtures containing macropore structure based on 3D modeling technology 被引量:3
7
作者 LIU Yong SUN Shao-rui +4 位作者 WEI Ji-hong SONG Jing-lei YU Yong-xiang HE Wei ZHANG Ji-xing 《Journal of Mountain Science》 SCIE CSCD 2020年第9期2224-2240,共17页
Soil-rock mixtures containing macropore(SRMCM)is a kind of geological material with special mechanical properties.Located in the project area of Lenggu hydropower station on the Yalong River,Sichuan Province,China,the... Soil-rock mixtures containing macropore(SRMCM)is a kind of geological material with special mechanical properties.Located in the project area of Lenggu hydropower station on the Yalong River,Sichuan Province,China,there is an extremely unstable Mahe talus slide with a total volume of nearly160 million cubic meters,which is mainly composed of SRMCM.The study on the mechanical properties of SRMCM is of great significance for the engineering construction and safe operation.In this paper,laboratory tests and discrete element numerical tests based on three-dimensional scanning technology were conducted to study the influence of stone content,stone size,and the angle of the macropore structure on shear characteristics of SRMCM.The failure mechanism of SRMCM was discussed from a microscopic perspective.This work explains the internal mechanism of the influence of stone content,stone size,and the angle of the macropore structure on the strength of SRMCM through the microscopic level of stone rotation,force chain distribution,and crack propagation.As the macropore structure that intersects with the preset shear plane at a large angle could act as a skeleton-like support to resist the shear force,the fracture of the weak cemented surface of soil and stone in the macropore structure is an important cause of SRMCM destruction. 展开更多
关键词 Soil rock mixtures Macropore structure Mechanical characteristics Discrete element method Shear band
原文传递
Effect of seepage-induced erosion on soil macropore structure
8
作者 HUANG Wen-bo HUANG Da +3 位作者 GAO Yi-kang LIU Yang LI Zhao MENG Qiu-jie 《Journal of Mountain Science》 SCIE CSCD 2023年第11期3402-3422,共21页
Internal erosion is one of the important factors causing geological disasters.The microstructure of soil can change with seepage erosion,resulting in changes in the hydraulic and mechanical properties of the soil.The ... Internal erosion is one of the important factors causing geological disasters.The microstructure of soil can change with seepage erosion,resulting in changes in the hydraulic and mechanical properties of the soil.The evolution of seepage erosion is investigated with X-ray computed tomography(CT)in this study.The change in macropore structure characteristics during the seepage erosion test is quantified and the influence of seepage erosion on soil deformation is analyzed.Moreover,a pore network model(PNM)is established for the specimens and the evolution of the connected pore size characteristics is assessed.The results show that the macropore structure is significantly affected by seepage erosion,especially in terms of the porosity and pore geometry characteristics.The changes in macropore structure characteristics are most obvious in the lower part of the specimen.The influence of seepage erosion on the pore size distribution(PSD)and soil deformation is heterogeneous and closely dependent on the spatial location of the soil.Moreover,seepage erosion enhances macropore connectivity and has a directional impact on macropore orientation.These findings can provide a reference for the theoretical modeling and numerical simulation of the seepage erosion and improve the understanding of the seepage erosion evolution in engineering practice. 展开更多
关键词 Seepage erosion HETEROGENEITY Macropore structure Pore size distribution MICROstructure CT scanning
原文传递
Study of Sorption Properties of Anion Exchangers with Long-Chained Cross-Linking Agents for Tungsten Hydrometallurgy 被引量:2
9
作者 A.G.Kholmogorov O.N.Kononova +2 位作者 S.V.Kachin O.P.Kalyakina G.L.Pashkov 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2000年第3期241-246,共6页
The macroporous anion exchangers with long-chained cross-linking agents were investigated for the tungsten recovery from salt solutions.The physical-chemical characteristics of these sorbents were studied by means of ... The macroporous anion exchangers with long-chained cross-linking agents were investigated for the tungsten recovery from salt solutions.The physical-chemical characteristics of these sorbents were studied by means of sorption-desorption experiment aswell as electron and IR-spectroscopy.The anion exchangers on the basis of macroporous copolymers of methylacrylate and divinyl-ester of diethyleneglycol or tetravinyl-ester of pentaerythritol possess the exchange capacity to tungsten 2--5 times greater than the porous anion exchangers on the basis of styrene and divinylbenzene,therefore they can be used for selective tungsten recovery from comulex salt solutions. 展开更多
关键词 anion exchangers macroporous structure long-chained cross-linking agents tungsten recovery salt solution
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部