期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Review on high-temperature macroencapsulated phase change materials:Encapsulation strategy,thermal storage system,and optimization
1
作者 Yi Yang Xiaojie Guo +2 位作者 Meng Liu Hang Yang Deqiu Zou 《Journal of Energy Chemistry》 2025年第5期324-359,共36页
High-temperature phase change materials(PCMs)have attracted significant attention in the field of thermal energy storage due to their ability to store and release large amounts of heat within a small temperature fluct... High-temperature phase change materials(PCMs)have attracted significant attention in the field of thermal energy storage due to their ability to store and release large amounts of heat within a small temperature fluctuation range.However,their practical application is limited due to problems such as leakage,corrosion,and volume changes at high temperatures.Recent research has shown that macroencapsulation technology holds promise in addressing these issues.This paper focuses on the macroencapsulation technology of high-temperature PCMs,starting with a review of the classification and development history of high-temperature macroencapsulatd PCMs.Four major encapsulation strategies,including electroplating method,solid/liquid filling method,sacrificial material method,and powder compaction into sphere method,are then summarized.The methods for effectively addressing issues such as corrosion,leakage,supercooling,and phase separation in PCMs are analyzed,along with approaches for improving the heat transfer performance,mechanical strength,and thermal cycling stability of macrocapsules.Subsequently,the structure and packing arrangement optimization of macrocapsules in thermal storage systems is discussed in detail.Finally,after comparing the performance of various encapsulation strategies and summarizing existing issues,the current technical challenges,improvement methods,and future development directions are proposed.More attention should be given to utilizing AI technology and reinforcement learning to reveal the multiphysics-coupled heat and mass transfer mechanisms in macrocapsule applications,as well as to optimize material selection and encapsulation parameters,thereby enhancing the overall efficiency of thermal storage systems. 展开更多
关键词 Phase change materials macroencapsulation Macrocapsules Thermal energy storage Encapsulation strategy
在线阅读 下载PDF
Investigating design principles of micropatterned encapsulation systems containing high-density microtissue arrays
2
作者 JIANG LiYang LIU JiaYing +2 位作者 WANG Kai GU Xi LUO Ying 《Science China(Life Sciences)》 SCIE CAS 2014年第2期221-231,共11页
Immunoisolation is an important strategy to protect transplanted cells from rejection by the host immune system.Recently,microfabrication techniques have been used to create hydrogel membranes to encapsulate microtiss... Immunoisolation is an important strategy to protect transplanted cells from rejection by the host immune system.Recently,microfabrication techniques have been used to create hydrogel membranes to encapsulate microtissue in an arrayed organization.The method illustrates a new macroencapsulation paradigm that may allow transplantation of a large number of cells with microscale spatial control,while maintaining an encapsulation device that is easily maneuverable and remaining integrated following transplantation.This study aims to investigate the design principles that relate to the translational application of micropatterned encapsulation membranes,namely,the control over the transplantation density/quantity of arrayed microtissues and the fidelity of pre-formed microtissues to micropatterns.Agarose hydrogel membranes with microwell patterns were used as a model encapsulation system to exemplify these principles.Our results show that high-density micropatterns can be generated in hydrogel membranes,which can potentially maximize the percentage volume of cellular content and thereby the transplantation efficiency of the encapsulation device.Direct seeding of microtissues demonstrates that microwell structures can efficiently position and organize pre-formed microtissues,suggesting the capability of micropatterned devices for manipulation of cellular transplants at multicellular or tissue levels.Detailed theoretical analysis was performed to provide insights into the relationship between micropatterns and the transplantation capacity of membrane-based encapsulation.Our study lays the ground for developing new macroencapsulation systems with microscale cellular/tissue patterns for regenerative transplantation. 展开更多
关键词 HYDROGEL MICROPATTERN array multi-cellular spheroids macroencapsulation
暂未订购
上一页 1 下一页 到第
使用帮助 返回顶部