This paper proposes a heuristic algorithm, called list-based squeezing branch and bound algorithm, for solving a machine-fixed, machining-assembly flowshop scheduling problem to minimize makespan. The machine-fixed, m...This paper proposes a heuristic algorithm, called list-based squeezing branch and bound algorithm, for solving a machine-fixed, machining-assembly flowshop scheduling problem to minimize makespan. The machine-fixed, machining-assembly flowshop consists of some parallel two-machine flow lines at a machining stage and one robot at an assembly stage. Since an optimal schedule for this problem is not always a permutation schedule, the proposed algorithm first finds a promising permutation schedule, and then searches better non-permutation schedules near the promising permutation schedule in an enumerative manner by elaborating a branching procedure in a branch and bound algorithm. The results of numerical experiments show that the proposed algorithm can efficiently provide an optimal or a near-optimal schedule with high accuracy such as mean relative error being less than 0.2% and the maximum relative error being at most 3%.展开更多
Lot scheduling problem with idle time transfer between processes to minimize mean flow time is very important because to minimize mean flow time is to minimize work in process. But the problem is NP hard and no polyn...Lot scheduling problem with idle time transfer between processes to minimize mean flow time is very important because to minimize mean flow time is to minimize work in process. But the problem is NP hard and no polynomial algorithm exists to guarantee optimal solution. Based the analysis the mathematical structure of the problem, the paper presents a new heuristic algorithm. Computer simulation shows that the proposed heuristic algorithm performs well in terms of both quality of solution and execution speed.展开更多
文摘This paper proposes a heuristic algorithm, called list-based squeezing branch and bound algorithm, for solving a machine-fixed, machining-assembly flowshop scheduling problem to minimize makespan. The machine-fixed, machining-assembly flowshop consists of some parallel two-machine flow lines at a machining stage and one robot at an assembly stage. Since an optimal schedule for this problem is not always a permutation schedule, the proposed algorithm first finds a promising permutation schedule, and then searches better non-permutation schedules near the promising permutation schedule in an enumerative manner by elaborating a branching procedure in a branch and bound algorithm. The results of numerical experiments show that the proposed algorithm can efficiently provide an optimal or a near-optimal schedule with high accuracy such as mean relative error being less than 0.2% and the maximum relative error being at most 3%.
文摘Lot scheduling problem with idle time transfer between processes to minimize mean flow time is very important because to minimize mean flow time is to minimize work in process. But the problem is NP hard and no polynomial algorithm exists to guarantee optimal solution. Based the analysis the mathematical structure of the problem, the paper presents a new heuristic algorithm. Computer simulation shows that the proposed heuristic algorithm performs well in terms of both quality of solution and execution speed.