Low stiffness and positioning problems are difficulties and challenges in the precise machining of near-net-shaped blades.This paper aims to achieve high accuracy in manufacturing by fixture-and deformation-control in...Low stiffness and positioning problems are difficulties and challenges in the precise machining of near-net-shaped blades.This paper aims to achieve high accuracy in manufacturing by fixture-and deformation-control in the adaptive CNC machining process.Adaptive CNC machining technology is first analyzed,and new fixture-evaluation criteria and methods to evaluate the adaptive CNC machining process fixture design are built.Second,a machining fixture is designed and manufactured after analyzing its positioning scheme,clamping scheme,materials(PEEK-GF30),and structure characteristics.Finally,the designed fixture is analyzed by FEA and experimentally verified by a cutting experiment.The results show that the deformation of the blade is an overall rigid-body displacement,the main deformation of the blade-fixture system occurs on the four clamping heads,and this fixture can effectively protect the blade from local deformation.The proposed clamping-sequence method reliably and effectively controls the local maximum deformation of the blade.The system stiffness is increased by 20 Hz,with each clamping force increased by 200 N.Both high-and low-frequency displacement in roughing milling or finishing milling are acceptable relative to the accuracy demand of blade machining.This fixture and an adaptive CNC machining process can achieve high accuracy in blade manufacturing.展开更多
Recently, with the rapid growth of information technology, many studies have been performed to implement Web-based manufacturing system. Such technologies are expected to meet the need of many manufacturing industries...Recently, with the rapid growth of information technology, many studies have been performed to implement Web-based manufacturing system. Such technologies are expected to meet the need of many manufacturing industries who want to adopt E-manufacturing system for the construction of globalization, agility, and digitalization to cope with the rapid changing market requirements. In this research, a real-time Web-based machine tool and machining process monitoring system is developed as the first step for implementing E-manufacturing system. In this system, the current variations of the main spindle and feeding motors are measured using hall sensors. And the relationship between the cutting force and the spindle motor RMS (Root Mean Square) current at various spindle rotational speeds is obtained. Thermocouples are used to measure temperature variations of important heat sources of a machine tool. Also, a rule-based expert system is applied in order to decide the machining process and machine tool are in normal conditions. Finally, the effectiveness of the developed system is verified through a series of experiments.展开更多
Combining information entropy and wavelet analysis with neural network,an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error(EESE)and w...Combining information entropy and wavelet analysis with neural network,an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error(EESE)and wavelet neural network(WNN).Extended entropy square error function is defined and its availability is proved theoretically.Replacing the mean square error criterion of BP algorithm with the EESE criterion,the proposed system is then applied to the on-line control of the cutting force with variable cutting parameters by searching adaptively wavelet base function and self adjusting scaling parameter,translating parameter of the wavelet and neural network weights.Simulation results show that the designed system is of fast response,non-overshoot and it is more effective than the conventional adaptive control of machining process based on the neural network.The suggested algorithm can adaptively adjust the feed rate on-line till achieving a constant cutting force approaching the reference force in varied cutting conditions,thus improving the machining efficiency and protecting the tool.展开更多
Product variation reduction is critical to improve process efficiency and product quality, especially for multistage machining process(MMP). However, due to the variation accumulation and propagation, it becomes qui...Product variation reduction is critical to improve process efficiency and product quality, especially for multistage machining process(MMP). However, due to the variation accumulation and propagation, it becomes quite difficult to predict and reduce product variation for MMP. While the method of statistical process control can be used to control product quality, it is used mainly to monitor the process change rather than to analyze the cause of product variation. In this paper, based on a differential description of the contact kinematics of locators and part surfaces, and the geometric constraints equation defined by the locating scheme, an improved analytical variation propagation model for MMP is presented. In which the influence of both locator position and machining error on part quality is considered while, in traditional model, it usually focuses on datum error and fixture error. Coordinate transformation theory is used to reflect the generation and transmission laws of error in the establishment of the model. The concept of deviation matrix is heavily applied to establish an explicit mapping between the geometric deviation of part and the process error sources. In each machining stage, the part deviation is formulized as three separated components corresponding to three different kinds of error sources, which can be further applied to fault identification and design optimization for complicated machining process. An example part for MMP is given out to validate the effectiveness of the methodology. The experiment results show that the model prediction and the actual measurement match well. This paper provides a method to predict part deviation under the influence of fixture error, datum error and machining error, and it enriches the way of quality prediction for MMP.展开更多
Automated manufacturing system is characterized by flexibility. It aims at producing a variety of products with virtually no time loses to change over from one part to the next. In this paper, the Machining Process Si...Automated manufacturing system is characterized by flexibility. It aims at producing a variety of products with virtually no time loses to change over from one part to the next. In this paper, the Machining Process Simulator GMPS is introduced, which can be used as a supported environment for machining process. It can be executed off-line or on-line in manufacturing systems in order to predict the collisions of tool with machined workpieces, fixtures or pallets. First, the functional model of GMPS is described, then adopted critical techniques in the simulator are introduced. Finally, an application of GMPS in CIMS ERC of China is presented.展开更多
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that a...As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that at least one machine is not eligible for at least one job.PBPMSP and scheduling problems with machine eligibility are frequently considered;however,PBPMSP with machine eligibility is seldom explored.This study investigates PBPMSP with machine eligibility in fabric dyeing and presents a novel shuffled frog-leaping algorithm with competition(CSFLA)to minimize makespan.In CSFLA,the initial population is produced in a heuristic and random way,and the competitive search of memeplexes comprises two phases.Competition between any two memeplexes is done in the first phase,then iteration times are adjusted based on competition,and search strategies are adjusted adaptively based on the evolution quality of memeplexes in the second phase.An adaptive population shuffling is given.Computational experiments are conducted on 100 instances.The computational results showed that the new strategies of CSFLA are effective and that CSFLA has promising advantages in solving the considered PBPMSP.展开更多
Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing ...Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.展开更多
Integration is a key component of CIMS and concurrent engineering is an important step in realizing CIMSprocess integration. Concurrent engineering is itself dependent on an effective machining process simulator that ...Integration is a key component of CIMS and concurrent engineering is an important step in realizing CIMSprocess integration. Concurrent engineering is itself dependent on an effective machining process simulator that verifies the machining process. A machining process simulator for concurrent engineering CMPS was developed at CIMSERC to meet the need for an effective simulator. This paper introduces the CMPS structure. key techniques. including geometry model construction and kinematics. NC code translation. collision and interference checks, material removal simulation. machining animation. etc. The model uses the solid Ray-representation method and the Voxelsplus B-representation algorithm. The Ray-representation method simplifies the Boolean operation process and improves the material removal simulation speed. The Voxels plus B-representation algorithm quickly detects collisionand interference problems. Finally. CMPS is applied to an actual NC milling process as an example.展开更多
For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control mac...For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control machining error, the method of integrating multivariate statistical process control (MSPC) and stream of variations (SoV) is proposed. Firstly, machining error is modeled by multi-operation approaches for part machining process. SoV is adopted to establish the mathematic model of the relationship between the error of upstream operations and the error of downstream operations. Here error sources not only include the influence of upstream operations but also include many of other error sources. The standard model and the predicted model about SoV are built respectively by whether the operation is done or not to satisfy different requests during part machining process. Secondly, the method of one-step ahead forecast error (OSFE) is used to eliminate autocorrelativity of the sample data from the SoV model, and the T2 control chart in MSPC is built to realize machining error detection according to the data characteristics of the above error model, which can judge whether the operation is out of control or not. If it is, then feedback is sent to the operations. The error model is modified by adjusting the operation out of control, and continually it is used to monitor operations. Finally, a machining instance containing two operations demonstrates the effectiveness of the machining error control method presented in this paper.展开更多
Because of several advantages, such as no tool wear, independence on the mechanical properties of the material, and high machining efficiency, electrochemical machining(ECM) has become a viable method for machining co...Because of several advantages, such as no tool wear, independence on the mechanical properties of the material, and high machining efficiency, electrochemical machining(ECM) has become a viable method for machining components in numerous industrial applications, particularly in the manufacture of typical aero-engine components with complex structures fabricated from materials that are difficult to cut. This paper highlights the current developments, new trends, and technological advances of key factors of ECM, such as electrochemical dissolution characteristics of novel difficult to cut materials which are often used in aero-engine, numerical simulation of electrochemical process, design for the complex profile and structure of cathode tool, flow field simulation and design for uniform electrolyte flow, and innovation of electrochemical machining or hybrid methods which reflect the state of the art in academic and industrial research on electrochemical machining in aero-engine manufacturing.展开更多
A new deposition method is described using micro electrical discharge machining (EDM) to deposit tool electrode material on workpiece in air. The basic principles of micro electrical discharge deposition (EDD) are...A new deposition method is described using micro electrical discharge machining (EDM) to deposit tool electrode material on workpiece in air. The basic principles of micro electrical discharge deposition (EDD) are analyzed and the realized conditions are predicted. With an ordinary EDM shaping machine, brass as the electrode, high-speed steel as the workpiece, a lot of experiments are carried out on micro EDD systematically and thoroughly. The effects of major processing parameters, such as the discharge current, discharge duration, pulse interval and working medium, are obtained, As a result, a micro cylinder with 0.19 mm in diameter and 7.35 mm in height is deposited. By exchanging the polarities of the electrode and workpiece the micro cylinder can be removed selectively. So the reversible machining of deposition and removal is achieved, which breaks through the constraint of traditional EDM. Measurements show that the deposited material is compact and close to workpiece base, whose components depend on the tool electrode, material.展开更多
The technology in modern society is very useful.China has a lot of new advanced technology.Let me introduce some to you.The first one is Artificial Intelligence(AI).China has many AI companies,such as Baidu,Alibaba an...The technology in modern society is very useful.China has a lot of new advanced technology.Let me introduce some to you.The first one is Artificial Intelligence(AI).China has many AI companies,such as Baidu,Alibaba and Tencent.They have made many things such as machine learning,natural language processing and computer vision.展开更多
Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principle...Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principles of the model were presented to guarantee the correctness and efficiency for process transformation.As a case study,the EPEM descriptions of Web Services Business Process Execution Language(WS-BPEL) were represented and a Process Virtual Machine(PVM)-OncePVM was implemented in compliance with the EPEM.展开更多
The objective of this work was to investigate nucleate pool boiling heat transfer performance and mechanism of R134a and R142b on a twisted tube with machine processed porous surface (T-MPPS tube) as well as to dete...The objective of this work was to investigate nucleate pool boiling heat transfer performance and mechanism of R134a and R142b on a twisted tube with machine processed porous surface (T-MPPS tube) as well as to determine its potential application to flooded refrigerant evaporators. In the experimental range, the boiling heat transfer coefficients of R134a on a T-MPPS tube were 1.8-2.0 times larger than those of R134a on a plain tube. In addition, the developed experimental correlations verified that the predictions of the heat transfer coefficients of boiling R134a and R142bon a T-MPPS tube at the experimental conditions were considerably accurate.展开更多
Malicious software programs usually bypass the detection of anti-virus software by hiding themselves among apparently legitimate programs.In this work,we propose Windows Virtual Machine Introspection(WVMI)to accurat...Malicious software programs usually bypass the detection of anti-virus software by hiding themselves among apparently legitimate programs.In this work,we propose Windows Virtual Machine Introspection(WVMI)to accurately detect those hidden processes by analyzing memory data.WVMI dumps in-memory data of the target Windows operating systems from hypervisor and retrieves EPROCESS structures’address of process linked list first,and then generates Data Type Confidence Table(DTCT).Next,it traverses the memory and identifies the similarities between the nodes in process linked list and the corresponding segments in the memory by utilizing DTCT.Finally,it locates the segments of Windows’EPROCESS and identifies the hidden processes by further comparison.Through extensive experiments,our experiment shows that the WVMI detects the hidden process with high identification rate,and it is independent of different versions of Windows operating system.展开更多
The prediction of magnitude (M) of reservoir induced earthquake is an important task in earthquake engineering. In this article, we employ a Support Vector Machine (SVM) and Gaussian Process Regression (GPR) for...The prediction of magnitude (M) of reservoir induced earthquake is an important task in earthquake engineering. In this article, we employ a Support Vector Machine (SVM) and Gaussian Process Regression (GPR) for prediction of reservoir induced earthquake M based on reservoir parameters. Comprehensive parameter (E) and maximum reservoir depth] (H) are considered as inputs to the SVM and GPR. We give an equation for determination oil reservoir induced earthquake M. The developed SVM and GPR have been compared with] the Artificial Neural Network (ANN) method. The results show that the developed SVM and] GPR are efficient tools for prediction of reservoir induced earthquake M. /展开更多
Sustainable production depends on the optimization of manufacturing processes.The assessment of carbon emissions in manufacturing is crucial for achieving sustainability.However,a comprehensive systematic framework to...Sustainable production depends on the optimization of manufacturing processes.The assessment of carbon emissions in manufacturing is crucial for achieving sustainability.However,a comprehensive systematic framework to reflect the carbon emission regularity of manufacturing processes is currently lacking.This study focuses on the modeling and evaluation of carbon emissions by considering machining processes and multiple factors.First,carbon emission models for machining processes,such as turning,milling,and drilling,are systematically summarized by considering power consumption.Second,the influence of system parameters on carbon emissions is analyzed.Results show that cutting depth exerts a substantial effect on carbon emissions,and material removal rate has minimal influence.Last,the emission reduction mechanism and performance of novel sustainable machining processes are examined to contribute to carbon emission reduction.This study helps in systematically understanding carbon emissions in manufacturing processes,providing support for the further development of sustainable manufacturing.展开更多
This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed...This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed,placed in a sandbox,and then the sandbox is positioned on a BPM formoulding.The complexity of the scheduling problem increases due to the consideration of BPM capacity and sandbox volume.To minimize the makespan,a new cooperated imperialist competitive algorithm(CICA)is introduced.In CICA,the number of empires is not a parameter,and four empires aremaintained throughout the search process.Two types of assimilations are achieved:The strongest and weakest empires cooperate in their assimilation,while the remaining two empires,having a close normalization total cost,combine in their assimilation.A new form of imperialist competition is proposed to prevent insufficient competition,and the unique features of the problem are effectively utilized.Computational experiments are conducted across several instances,and a significant amount of experimental results show that the newstrategies of CICAare effective,indicating promising advantages for the considered BPMscheduling problems.展开更多
Considering the deficiency in milling process parameters selection, based on the modelling of dynamic milling force and the deduction of chatter stability limits, the chatter stability lobes simulation program for mil...Considering the deficiency in milling process parameters selection, based on the modelling of dynamic milling force and the deduction of chatter stability limits, the chatter stability lobes simulation program for milling is developed with MAT- LAB. The simulation optimization application software of dynamics was designed using engineering simulation software Visio Basic. The chatter stability lobes for milling, which can be used as an instruction guide for the selection of process parameters, are simulated with frequency response functions (FRFs) gained by hammer test. The validation and accuracy of the simulation algorithm are verified by experiments. The simulation method has been used in a factory with an excellent application effect.展开更多
基金supported in part by Xi’an Aero-Engine(Group)Ltd.National Key Scientific Instrument and Equipment Development Project(2016YFF0101900)+1 种基金National Natural Science Foundation of China(Grant 51575310)Beijing Municipal Natural Science Foundation(Grant 3162014)。
文摘Low stiffness and positioning problems are difficulties and challenges in the precise machining of near-net-shaped blades.This paper aims to achieve high accuracy in manufacturing by fixture-and deformation-control in the adaptive CNC machining process.Adaptive CNC machining technology is first analyzed,and new fixture-evaluation criteria and methods to evaluate the adaptive CNC machining process fixture design are built.Second,a machining fixture is designed and manufactured after analyzing its positioning scheme,clamping scheme,materials(PEEK-GF30),and structure characteristics.Finally,the designed fixture is analyzed by FEA and experimentally verified by a cutting experiment.The results show that the deformation of the blade is an overall rigid-body displacement,the main deformation of the blade-fixture system occurs on the four clamping heads,and this fixture can effectively protect the blade from local deformation.The proposed clamping-sequence method reliably and effectively controls the local maximum deformation of the blade.The system stiffness is increased by 20 Hz,with each clamping force increased by 200 N.Both high-and low-frequency displacement in roughing milling or finishing milling are acceptable relative to the accuracy demand of blade machining.This fixture and an adaptive CNC machining process can achieve high accuracy in blade manufacturing.
基金Project (No. KRF-2005-202-D00046) supported by the Korea Re-search Foundation
文摘Recently, with the rapid growth of information technology, many studies have been performed to implement Web-based manufacturing system. Such technologies are expected to meet the need of many manufacturing industries who want to adopt E-manufacturing system for the construction of globalization, agility, and digitalization to cope with the rapid changing market requirements. In this research, a real-time Web-based machine tool and machining process monitoring system is developed as the first step for implementing E-manufacturing system. In this system, the current variations of the main spindle and feeding motors are measured using hall sensors. And the relationship between the cutting force and the spindle motor RMS (Root Mean Square) current at various spindle rotational speeds is obtained. Thermocouples are used to measure temperature variations of important heat sources of a machine tool. Also, a rule-based expert system is applied in order to decide the machining process and machine tool are in normal conditions. Finally, the effectiveness of the developed system is verified through a series of experiments.
基金Sponsored by the Natural Science Foundation of Guangdong Province(Grant No.06025546)the National Natural Science Foundation of China(Grant No.50305005).
文摘Combining information entropy and wavelet analysis with neural network,an adaptive control system and an adaptive control algorithm are presented for machining process based on extended entropy square error(EESE)and wavelet neural network(WNN).Extended entropy square error function is defined and its availability is proved theoretically.Replacing the mean square error criterion of BP algorithm with the EESE criterion,the proposed system is then applied to the on-line control of the cutting force with variable cutting parameters by searching adaptively wavelet base function and self adjusting scaling parameter,translating parameter of the wavelet and neural network weights.Simulation results show that the designed system is of fast response,non-overshoot and it is more effective than the conventional adaptive control of machining process based on the neural network.The suggested algorithm can adaptively adjust the feed rate on-line till achieving a constant cutting force approaching the reference force in varied cutting conditions,thus improving the machining efficiency and protecting the tool.
基金Supported by National Natural Science Foundation of China(Grant Nos.51205286,51275348)
文摘Product variation reduction is critical to improve process efficiency and product quality, especially for multistage machining process(MMP). However, due to the variation accumulation and propagation, it becomes quite difficult to predict and reduce product variation for MMP. While the method of statistical process control can be used to control product quality, it is used mainly to monitor the process change rather than to analyze the cause of product variation. In this paper, based on a differential description of the contact kinematics of locators and part surfaces, and the geometric constraints equation defined by the locating scheme, an improved analytical variation propagation model for MMP is presented. In which the influence of both locator position and machining error on part quality is considered while, in traditional model, it usually focuses on datum error and fixture error. Coordinate transformation theory is used to reflect the generation and transmission laws of error in the establishment of the model. The concept of deviation matrix is heavily applied to establish an explicit mapping between the geometric deviation of part and the process error sources. In each machining stage, the part deviation is formulized as three separated components corresponding to three different kinds of error sources, which can be further applied to fault identification and design optimization for complicated machining process. An example part for MMP is given out to validate the effectiveness of the methodology. The experiment results show that the model prediction and the actual measurement match well. This paper provides a method to predict part deviation under the influence of fixture error, datum error and machining error, and it enriches the way of quality prediction for MMP.
文摘Automated manufacturing system is characterized by flexibility. It aims at producing a variety of products with virtually no time loses to change over from one part to the next. In this paper, the Machining Process Simulator GMPS is introduced, which can be used as a supported environment for machining process. It can be executed off-line or on-line in manufacturing systems in order to predict the collisions of tool with machined workpieces, fixtures or pallets. First, the functional model of GMPS is described, then adopted critical techniques in the simulator are introduced. Finally, an application of GMPS in CIMS ERC of China is presented.
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
基金supported by the National Natural Science Foundation of China(Grant Number 61573264).
文摘As a complicated optimization problem,parallel batch processing machines scheduling problem(PBPMSP)exists in many real-life manufacturing industries such as textiles and semiconductors.Machine eligibility means that at least one machine is not eligible for at least one job.PBPMSP and scheduling problems with machine eligibility are frequently considered;however,PBPMSP with machine eligibility is seldom explored.This study investigates PBPMSP with machine eligibility in fabric dyeing and presents a novel shuffled frog-leaping algorithm with competition(CSFLA)to minimize makespan.In CSFLA,the initial population is produced in a heuristic and random way,and the competitive search of memeplexes comprises two phases.Competition between any two memeplexes is done in the first phase,then iteration times are adjusted based on competition,and search strategies are adjusted adaptively based on the evolution quality of memeplexes in the second phase.An adaptive population shuffling is given.Computational experiments are conducted on 100 instances.The computational results showed that the new strategies of CSFLA are effective and that CSFLA has promising advantages in solving the considered PBPMSP.
文摘Fabric dyeing is a critical production process in the clothing industry and heavily relies on batch processing machines(BPM).In this study,the parallel BPM scheduling problem with machine eligibility in fabric dyeing is considered,and an adaptive cooperated shuffled frog-leaping algorithm(ACSFLA)is proposed to minimize makespan and total tardiness simultaneously.ACSFLA determines the search times for each memeplex based on its quality,with more searches in high-quality memeplexes.An adaptive cooperated and diversified search mechanism is applied,dynamically adjusting search strategies for each memeplex based on their dominance relationships and quality.During the cooperated search,ACSFLA uses a segmented and dynamic targeted search approach,while in non-cooperated scenarios,the search focuses on local search around superior solutions to improve efficiency.Furthermore,ACSFLA employs adaptive population division and partial population shuffling strategies.Through these strategies,memeplexes with low evolutionary potential are selected for reconstruction in the next generation,while thosewithhighevolutionarypotential are retained to continue their evolution.Toevaluate the performance of ACSFLA,comparative experiments were conducted using ACSFLA,SFLA,ASFLA,MOABC,and NSGA-CC in 90 instances.The computational results reveal that ACSFLA outperforms the other algorithms in 78 of the 90 test cases,highlighting its advantages in solving the parallel BPM scheduling problem with machine eligibility.
文摘Integration is a key component of CIMS and concurrent engineering is an important step in realizing CIMSprocess integration. Concurrent engineering is itself dependent on an effective machining process simulator that verifies the machining process. A machining process simulator for concurrent engineering CMPS was developed at CIMSERC to meet the need for an effective simulator. This paper introduces the CMPS structure. key techniques. including geometry model construction and kinematics. NC code translation. collision and interference checks, material removal simulation. machining animation. etc. The model uses the solid Ray-representation method and the Voxelsplus B-representation algorithm. The Ray-representation method simplifies the Boolean operation process and improves the material removal simulation speed. The Voxels plus B-representation algorithm quickly detects collisionand interference problems. Finally. CMPS is applied to an actual NC milling process as an example.
基金National Natural Science Foundation of China (70931004)
文摘For aircraft manufacturing industries, the analyses and prediction of part machining error during machining process are very important to control and improve part machining quality. In order to effectively control machining error, the method of integrating multivariate statistical process control (MSPC) and stream of variations (SoV) is proposed. Firstly, machining error is modeled by multi-operation approaches for part machining process. SoV is adopted to establish the mathematic model of the relationship between the error of upstream operations and the error of downstream operations. Here error sources not only include the influence of upstream operations but also include many of other error sources. The standard model and the predicted model about SoV are built respectively by whether the operation is done or not to satisfy different requests during part machining process. Secondly, the method of one-step ahead forecast error (OSFE) is used to eliminate autocorrelativity of the sample data from the SoV model, and the T2 control chart in MSPC is built to realize machining error detection according to the data characteristics of the above error model, which can judge whether the operation is out of control or not. If it is, then feedback is sent to the operations. The error model is modified by adjusting the operation out of control, and continually it is used to monitor operations. Finally, a machining instance containing two operations demonstrates the effectiveness of the machining error control method presented in this paper.
基金sponsored by the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province of China (No. BK20170031)the Fundamental Research Funds for the Central Universities of China (No. NE2014104)。
文摘Because of several advantages, such as no tool wear, independence on the mechanical properties of the material, and high machining efficiency, electrochemical machining(ECM) has become a viable method for machining components in numerous industrial applications, particularly in the manufacture of typical aero-engine components with complex structures fabricated from materials that are difficult to cut. This paper highlights the current developments, new trends, and technological advances of key factors of ECM, such as electrochemical dissolution characteristics of novel difficult to cut materials which are often used in aero-engine, numerical simulation of electrochemical process, design for the complex profile and structure of cathode tool, flow field simulation and design for uniform electrolyte flow, and innovation of electrochemical machining or hybrid methods which reflect the state of the art in academic and industrial research on electrochemical machining in aero-engine manufacturing.
基金This project is supported by National Natural Science Foundation of China (No.50275038).
文摘A new deposition method is described using micro electrical discharge machining (EDM) to deposit tool electrode material on workpiece in air. The basic principles of micro electrical discharge deposition (EDD) are analyzed and the realized conditions are predicted. With an ordinary EDM shaping machine, brass as the electrode, high-speed steel as the workpiece, a lot of experiments are carried out on micro EDD systematically and thoroughly. The effects of major processing parameters, such as the discharge current, discharge duration, pulse interval and working medium, are obtained, As a result, a micro cylinder with 0.19 mm in diameter and 7.35 mm in height is deposited. By exchanging the polarities of the electrode and workpiece the micro cylinder can be removed selectively. So the reversible machining of deposition and removal is achieved, which breaks through the constraint of traditional EDM. Measurements show that the deposited material is compact and close to workpiece base, whose components depend on the tool electrode, material.
文摘The technology in modern society is very useful.China has a lot of new advanced technology.Let me introduce some to you.The first one is Artificial Intelligence(AI).China has many AI companies,such as Baidu,Alibaba and Tencent.They have made many things such as machine learning,natural language processing and computer vision.
文摘Current orchestration and choreography process engines only serve with dedicate process languages.To solve these problems,an Event-driven Process Execution Model(EPEM) was developed.Formalization and mapping principles of the model were presented to guarantee the correctness and efficiency for process transformation.As a case study,the EPEM descriptions of Web Services Business Process Execution Language(WS-BPEL) were represented and a Process Virtual Machine(PVM)-OncePVM was implemented in compliance with the EPEM.
基金the Guangdong Provincial Scientific and Technological Development Program (2004B10201008)
文摘The objective of this work was to investigate nucleate pool boiling heat transfer performance and mechanism of R134a and R142b on a twisted tube with machine processed porous surface (T-MPPS tube) as well as to determine its potential application to flooded refrigerant evaporators. In the experimental range, the boiling heat transfer coefficients of R134a on a T-MPPS tube were 1.8-2.0 times larger than those of R134a on a plain tube. In addition, the developed experimental correlations verified that the predictions of the heat transfer coefficients of boiling R134a and R142bon a T-MPPS tube at the experimental conditions were considerably accurate.
基金Supported by the National Natural Science Foundation of China(61170026)
文摘Malicious software programs usually bypass the detection of anti-virus software by hiding themselves among apparently legitimate programs.In this work,we propose Windows Virtual Machine Introspection(WVMI)to accurately detect those hidden processes by analyzing memory data.WVMI dumps in-memory data of the target Windows operating systems from hypervisor and retrieves EPROCESS structures’address of process linked list first,and then generates Data Type Confidence Table(DTCT).Next,it traverses the memory and identifies the similarities between the nodes in process linked list and the corresponding segments in the memory by utilizing DTCT.Finally,it locates the segments of Windows’EPROCESS and identifies the hidden processes by further comparison.Through extensive experiments,our experiment shows that the WVMI detects the hidden process with high identification rate,and it is independent of different versions of Windows operating system.
文摘The prediction of magnitude (M) of reservoir induced earthquake is an important task in earthquake engineering. In this article, we employ a Support Vector Machine (SVM) and Gaussian Process Regression (GPR) for prediction of reservoir induced earthquake M based on reservoir parameters. Comprehensive parameter (E) and maximum reservoir depth] (H) are considered as inputs to the SVM and GPR. We give an equation for determination oil reservoir induced earthquake M. The developed SVM and GPR have been compared with] the Artificial Neural Network (ANN) method. The results show that the developed SVM and] GPR are efficient tools for prediction of reservoir induced earthquake M. /
基金financially supported by the following organizations:the National Natural Science Foundation of China(Grant Nos.52475469,52375447)the Shandong Provincial Natural ScienceFoundation,China(GrantNosZ.R2024ME255 and ZR2024QE100)the Special Fund of Taishan Scholars Project,China(Grant No.tsqn202211179).
文摘Sustainable production depends on the optimization of manufacturing processes.The assessment of carbon emissions in manufacturing is crucial for achieving sustainability.However,a comprehensive systematic framework to reflect the carbon emission regularity of manufacturing processes is currently lacking.This study focuses on the modeling and evaluation of carbon emissions by considering machining processes and multiple factors.First,carbon emission models for machining processes,such as turning,milling,and drilling,are systematically summarized by considering power consumption.Second,the influence of system parameters on carbon emissions is analyzed.Results show that cutting depth exerts a substantial effect on carbon emissions,and material removal rate has minimal influence.Last,the emission reduction mechanism and performance of novel sustainable machining processes are examined to contribute to carbon emission reduction.This study helps in systematically understanding carbon emissions in manufacturing processes,providing support for the further development of sustainable manufacturing.
基金the National Natural Science Foundation of China(Grant Number 61573264).
文摘This study focuses on the scheduling problem of unrelated parallel batch processing machines(BPM)with release times,a scenario derived from the moulding process in a foundry.In this process,a batch is initially formed,placed in a sandbox,and then the sandbox is positioned on a BPM formoulding.The complexity of the scheduling problem increases due to the consideration of BPM capacity and sandbox volume.To minimize the makespan,a new cooperated imperialist competitive algorithm(CICA)is introduced.In CICA,the number of empires is not a parameter,and four empires aremaintained throughout the search process.Two types of assimilations are achieved:The strongest and weakest empires cooperate in their assimilation,while the remaining two empires,having a close normalization total cost,combine in their assimilation.A new form of imperialist competition is proposed to prevent insufficient competition,and the unique features of the problem are effectively utilized.Computational experiments are conducted across several instances,and a significant amount of experimental results show that the newstrategies of CICAare effective,indicating promising advantages for the considered BPMscheduling problems.
基金Tianjin Municipal Association of Higher Vocational&Technical Education Projects(No.XIV412)
文摘Considering the deficiency in milling process parameters selection, based on the modelling of dynamic milling force and the deduction of chatter stability limits, the chatter stability lobes simulation program for milling is developed with MAT- LAB. The simulation optimization application software of dynamics was designed using engineering simulation software Visio Basic. The chatter stability lobes for milling, which can be used as an instruction guide for the selection of process parameters, are simulated with frequency response functions (FRFs) gained by hammer test. The validation and accuracy of the simulation algorithm are verified by experiments. The simulation method has been used in a factory with an excellent application effect.