期刊文献+
共找到6,641篇文章
< 1 2 250 >
每页显示 20 50 100
Clastic facies classification using machine learning-based algorithms: A case study from Rawat Basin, Sudan
1
作者 Anas Mohamed Abaker Babai Olugbenga Ajayi Ehinola +1 位作者 Omer.I.M.Fadul Abul Gebbayin Mohammed Abdalla Elsharif Ibrahim 《Energy Geoscience》 2025年第1期7-23,共17页
Machine learning techniques and a dataset of five wells from the Rawat oilfield in Sudan containing 93,925 samples per feature(seven well logs and one facies log) were used to classify four facies. Data preprocessing ... Machine learning techniques and a dataset of five wells from the Rawat oilfield in Sudan containing 93,925 samples per feature(seven well logs and one facies log) were used to classify four facies. Data preprocessing and preparation involve two processes: data cleaning and feature scaling. Several machine learning algorithms, including Linear Regression(LR), Decision Tree(DT), Support Vector Machine(SVM),Random Forest(RF), and Gradient Boosting(GB) for classification, were tested using different iterations and various combinations of features and parameters. The support vector radial kernel training model achieved an accuracy of 72.49% without grid search and 64.02% with grid search, while the blind-well test scores were 71.01% and 69.67%, respectively. The Decision Tree(DT) Hyperparameter Optimization model showed an accuracy of 64.15% for training and 67.45% for testing. In comparison, the Decision Tree coupled with grid search yielded better results, with a training score of 69.91% and a testing score of67.89%. The model's validation was carried out using the blind well validation approach, which achieved an accuracy of 69.81%. Three algorithms were used to generate the gradient-boosting model. During training, the Gradient Boosting classifier achieved an accuracy score of 71.57%, and during testing, it achieved 69.89%. The Grid Search model achieved a higher accuracy score of 72.14% during testing. The Extreme Gradient Boosting model had the lowest accuracy score, with only 66.13% for training and66.12% for testing. For validation, the Gradient Boosting(GB) classifier model achieved an accuracy score of 75.41% on the blind well test, while the Gradient Boosting with Grid Search achieved an accuracy score of 71.36%. The Enhanced Random Forest and Random Forest with Bagging algorithms were the most effective, with validation accuracies of 78.30% and 79.18%, respectively. However, the Random Forest and Random Forest with Grid Search models displayed significant variance between their training and testing scores, indicating the potential for overfitting. Random Forest(RF) and Gradient Boosting(GB) are highly effective for facies classification because they handle complex relationships and provide high predictive accuracy. The choice between the two depends on specific project requirements, including interpretability, computational resources, and data nature. 展开更多
关键词 machine learning Facies classification Gradient Boosting(GB) support vector Classifier(SVC) Random Forest(RF) Decision Tree(DT)
在线阅读 下载PDF
Prediction of Solar Irradiation Using Quantum Support Vector Machine Learning Algorithm
2
作者 Makhamisa Senekane Benedict Molibeli Taele 《Smart Grid and Renewable Energy》 2016年第12期293-301,共9页
Classical machine learning, which is at the intersection of artificial intelligence and statistics, investigates and formulates algorithms which can be used to discover patterns in the given data and also make some fo... Classical machine learning, which is at the intersection of artificial intelligence and statistics, investigates and formulates algorithms which can be used to discover patterns in the given data and also make some forecasts based on the given data. Classical machine learning has its quantum part, which is known as quantum machine learning (QML). QML, which is a field of quantum computing, uses some of the quantum mechanical principles and concepts which include superposition, entanglement and quantum adiabatic theorem to assess the data and make some forecasts based on the data. At the present moment, research in QML has taken two main approaches. The first approach involves implementing the computationally expensive subroutines of classical machine learning algorithms on a quantum computer. The second approach concerns using classical machine learning algorithms on a quantum information, to speed up performance of the algorithms. The work presented in this manuscript proposes a quantum support vector algorithm that can be used to forecast solar irradiation. The novelty of this work is in using quantum mechanical principles for application in machine learning. Python programming language was used to simulate the performance of the proposed algorithm on a classical computer. Simulation results that were obtained show the usefulness of this algorithm for predicting solar irradiation. 展开更多
关键词 QUANTUM Quantum machine learning machine learning support vector machine Quantum support vector machine ENERGY Solar Irradiation
在线阅读 下载PDF
Analysing Effectiveness of Sentiments in Social Media Data Using Machine Learning Techniques
3
作者 Thambusamy Velmurugan Mohandas Archana Ajith Singh Nongmaithem 《Journal of Computer and Communications》 2025年第1期136-151,共16页
Every second, a large volume of useful data is created in social media about the various kind of online purchases and in another forms of reviews. Particularly, purchased products review data is enormously growing in ... Every second, a large volume of useful data is created in social media about the various kind of online purchases and in another forms of reviews. Particularly, purchased products review data is enormously growing in different database repositories every day. Most of the review data are useful to new customers for theier further purchases as well as existing companies to view customers feedback about various products. Data Mining and Machine Leaning techniques are familiar to analyse such kind of data to visualise and know the potential use of the purchased items through online. The customers are making quality of products through their sentiments about the purchased items from different online companies. In this research work, it is analysed sentiments of Headphone review data, which is collected from online repositories. For the analysis of Headphone review data, some of the Machine Learning techniques like Support Vector Machines, Naive Bayes, Decision Trees and Random Forest Algorithms and a Hybrid method are applied to find the quality via the customers’ sentiments. The accuracy and performance of the taken algorithms are also analysed based on the three types of sentiments such as positive, negative and neutral. 展开更多
关键词 support vector machine Random Forest algorithm Naive Bayes algorithm machine learning Techniques Decision Tree algorithm
在线阅读 下载PDF
Forecasting Flowering and Maturity Times of Barley Using Six Machine Learning Algorithms 被引量:1
4
作者 Mingyuan Cheng Mingchu Zhang 《Journal of Agricultural Science and Technology(B)》 2019年第6期373-391,共19页
Interior Alaska has a short growing season of 110 d.The knowledge of timings of crop flowering and maturity will provide the information for the agricultural decision making.In this study,six machine learning algorith... Interior Alaska has a short growing season of 110 d.The knowledge of timings of crop flowering and maturity will provide the information for the agricultural decision making.In this study,six machine learning algorithms,namely Linear Discriminant Analysis(LDA),Support Vector Machines(SVMs),k-nearest neighbor(kNN),Naïve Bayes(NB),Recursive Partitioning and Regression Trees(RPART),and Random Forest(RF),were selected to forecast the timings of barley flowering and maturity based on the Alaska Crop Datasets and climate data from 1991 to 2016 in Fairbanks,Alaska.Among 32 models fit to forecast flowering time,two from LDA,12 from SVMs,four from NB,three from RF outperformed models from other algorithms with the highest accuracy.Models from kNN performed worst to forecast flowering time.Among 32 models fit to forecast maturity time,two models from LDA outperformed the models from other algorithms.Models from kNN and RPART performed worst to forecast maturity time.Models from machine learning methods also provided a variable importance explanation.In this study,four out of six algorithms gave the same variable importance order.Sowing date was the most important variable to forecast flowering but less important variable to forecast maturity.The daily maximum temperature may be more important than daily minimum temperature to fit flowering models while daily minimum temperature may be more important than daily maximum temperature to fit maturity models.The results indicate that models from machine learning provide a promising technique in forecasting the timings of flowering and maturity of barley. 展开更多
关键词 machine learning flowering and maturity Linear Discriminant Analysis support vector machines k-nearest neighbor Naïve Bayes recursive partitioning regression trees Random Forest
在线阅读 下载PDF
Machine learning of pyrite geochemistry reconstructs the multi-stage history of mineral deposits 被引量:1
5
作者 Pengpeng Yu Yuan Liu +5 位作者 Hanyu Wang Xi Chen Yi Zheng Wei Cao Yiqu Xiong Hongxiang Shan 《Geoscience Frontiers》 2025年第3期81-93,共13页
The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limite... The application of machine learning for pyrite discrimination establishes a robust foundation for constructing the ore-forming history of multi-stage deposits;however,published models face challenges related to limited,imbalanced datasets and oversampling.In this study,the dataset was expanded to approximately 500 samples for each type,including 508 sedimentary,573 orogenic gold,548 sedimentary exhalative(SEDEX)deposits,and 364 volcanogenic massive sulfides(VMS)pyrites,utilizing random forest(RF)and support vector machine(SVM)methodologies to enhance the reliability of the classifier models.The RF classifier achieved an overall accuracy of 99.8%,and the SVM classifier attained an overall accuracy of 100%.The model was evaluated by a five-fold cross-validation approach with 93.8%accuracy for the RF and 94.9%for the SVM classifier.These results demonstrate the strong feasibility of pyrite classification,supported by a relatively large,balanced dataset and high accuracy rates.The classifier was employed to reveal the genesis of the controversial Keketale Pb-Zn deposit in NW China,which has been inconclusive among SEDEX,VMS,or a SEDEX-VMS transition.Petrographic investigations indicated that the deposit comprises early fine-grained layered pyrite(Py1)and late recrystallized pyrite(Py2).The majority voting classified Py1 as the VMS type,with an accuracy of RF and SVM being 72.2%and 75%,respectively,and confirmed Py2 as an orogenic type with 74.3% and 77.1%accuracy,respectively.The new findings indicated that the Keketale deposit originated from a submarine VMS mineralization system,followed by late orogenic-type overprinting of metamorphism and deformation,which is consistent with the geological and geochemical observations.This study further emphasizes the advantages of Machine learning(ML)methods in accurately and directly discriminating the deposit types and reconstructing the formation history of multi-stage deposits. 展开更多
关键词 machine learning Random forest support vector machine PYRITE Multi-stage genesis Keketale deposit
在线阅读 下载PDF
Machine Learning Techniques in Predicting Hot Deformation Behavior of Metallic Materials
6
作者 Petr Opela Josef Walek Jaromír Kopecek 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期713-732,共20页
In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot al... In engineering practice,it is often necessary to determine functional relationships between dependent and independent variables.These relationships can be highly nonlinear,and classical regression approaches cannot always provide sufficiently reliable solutions.Nevertheless,Machine Learning(ML)techniques,which offer advanced regression tools to address complicated engineering issues,have been developed and widely explored.This study investigates the selected ML techniques to evaluate their suitability for application in the hot deformation behavior of metallic materials.The ML-based regression methods of Artificial Neural Networks(ANNs),Support Vector Machine(SVM),Decision Tree Regression(DTR),and Gaussian Process Regression(GPR)are applied to mathematically describe hot flow stress curve datasets acquired experimentally for a medium-carbon steel.Although the GPR method has not been used for such a regression task before,the results showed that its performance is the most favorable and practically unrivaled;neither the ANN method nor the other studied ML techniques provide such precise results of the solved regression analysis. 展开更多
关键词 machine learning Gaussian process regression artificial neural networks support vector machine hot deformation behavior
在线阅读 下载PDF
Machine Learning Algorithms and Their Application to Ore Reserve Estimation of Sparse and Imprecise Data 被引量:2
7
作者 Sridhar Dutta Sukumar Bandopadhyay +1 位作者 Rajive Ganguli Debasmita Misra 《Journal of Intelligent Learning Systems and Applications》 2010年第2期86-96,共11页
Traditional geostatistical estimation techniques have been used predominantly by the mining industry for ore reserve estimation. Determination of mineral reserve has posed considerable challenge to mining engineers du... Traditional geostatistical estimation techniques have been used predominantly by the mining industry for ore reserve estimation. Determination of mineral reserve has posed considerable challenge to mining engineers due to the geological complexities of ore body formation. Extensive research over the years has resulted in the development of several state-of-the-art methods for predictive spatial mapping, which could be used for ore reserve estimation;and recent advances in the use of machine learning algorithms (MLA) have provided a new approach for solving the prob-lem of ore reserve estimation. The focus of the present study was on the use of two MLA for estimating ore reserve: namely, neural networks (NN) and support vector machines (SVM). Application of MLA and the various issues involved with using them for reserve estimation have been elaborated with the help of a complex drill-hole dataset that exhibits the typical properties of sparseness and impreciseness that might be associated with a mining dataset. To investigate the accuracy and applicability of MLA for ore reserve estimation, the generalization ability of NN and SVM was compared with the geostatistical ordinary kriging (OK) method. 展开更多
关键词 machine learning algorithmS Neural Networks support vector machine GENETIC algorithmS Supervised
暂未订购
Utilizing Machine Learning and SHAP Values for Improved and Transparent Energy Usage Predictions
8
作者 Faisal Ghazi Beshaw Thamir Hassan Atyia +2 位作者 Mohd Fadzli Mohd Salleh Mohamad Khairi Ishak Abdul Sattar Din 《Computers, Materials & Continua》 2025年第5期3553-3583,共31页
The significance of precise energy usage forecasts has been highlighted by the increasing need for sustainability and energy efficiency across a range of industries.In order to improve the precision and openness of en... The significance of precise energy usage forecasts has been highlighted by the increasing need for sustainability and energy efficiency across a range of industries.In order to improve the precision and openness of energy consumption projections,this study investigates the combination of machine learning(ML)methods with Shapley additive explanations(SHAP)values.The study evaluates three distinct models:the first is a Linear Regressor,the second is a Support Vector Regressor,and the third is a Decision Tree Regressor,which was scaled up to a Random Forest Regressor/Additions made were the third one which was Regressor which was extended to a Random Forest Regressor.These models were deployed with the use of Shareable,Plot-interpretable Explainable Artificial Intelligence techniques,to improve trust in the AI.The findings suggest that our developedmodels are superior to the conventional models discussed in prior studies;with high Mean Absolute Error(MAE)and Root Mean Squared Error(RMSE)values being close to perfection.In detail,the Random Forest Regressor shows the MAE of 0.001 for predicting the house prices whereas the SVR gives 0.21 of MAE and 0.24 RMSE.Such outcomes reflect the possibility of optimizing the use of the promoted advanced AI models with the use of Explainable AI for more accurate prediction of energy consumption and at the same time for the models’decision-making procedures’explanation.In addition to increasing prediction accuracy,this strategy gives stakeholders comprehensible insights,which facilitates improved decision-making and fosters confidence in AI-powered energy solutions.The outcomes show how well ML and SHAP work together to enhance prediction performance and guarantee transparency in energy usage projections. 展开更多
关键词 Renewable energy consumption machine learning explainable AI random forest support vector machine decision trees forecasting energy modeling
在线阅读 下载PDF
Deep Learning and Machine Learning Architectures for Dementia Detection from Speech in Women
9
作者 Ahlem Walha Amel Ksibi +5 位作者 Mohammed Zakariah Manel Ayadi Tagrid Alshalali Oumaima Saidani Leila Jamel Nouf Abdullah Almujally 《Computer Modeling in Engineering & Sciences》 2025年第3期2959-3001,共43页
Dementia is a neurological disorder that affects the brain and its functioning,and women experience its effects more than men do.Preventive care often requires non-invasive and rapid tests,yet conventional diagnostic ... Dementia is a neurological disorder that affects the brain and its functioning,and women experience its effects more than men do.Preventive care often requires non-invasive and rapid tests,yet conventional diagnostic techniques are time-consuming and invasive.One of the most effective ways to diagnose dementia is by analyzing a patient’s speech,which is cheap and does not require surgery.This research aims to determine the effectiveness of deep learning(DL)and machine learning(ML)structures in diagnosing dementia based on women’s speech patterns.The study analyzes data drawn from the Pitt Corpus,which contains 298 dementia files and 238 control files from the Dementia Bank database.Deep learning models and SVM classifiers were used to analyze the available audio samples in the dataset.Our methodology used two methods:a DL-ML model and a single DL model for the classification of diabetics and a single DL model.The deep learning model achieved an astronomic level of accuracy of 99.99%with an F1 score of 0.9998,Precision of 0.9997,and recall of 0.9998.The proposed DL-ML fusion model was equally impressive,with an accuracy of 99.99%,F1 score of 0.9995,Precision of 0.9998,and recall of 0.9997.Also,the study reveals how to apply deep learning and machine learning models for dementia detection from speech with high accuracy and low computational complexity.This research work,therefore,concludes by showing the possibility of using speech-based dementia detection as a possibly helpful early diagnosis mode.For even further enhanced model performance and better generalization,future studies may explore real-time applications and the inclusion of other components of speech. 展开更多
关键词 Dementia detection in women Alzheimer’s disease deep learning machine learning support vector machine voting classifier
在线阅读 下载PDF
Enhancing Convective Wind Prediction:Two Machine Learning Approach with Multi-Regime Flow Analysis and Adaptive Model Integration
10
作者 ZHANG Hua-long WU Zhi-fang +3 位作者 XIAO Liu-si LUO Cong HAN Pu-cheng HU Rong 《Journal of Tropical Meteorology》 2025年第4期379-395,共17页
This study explores the initiation mechanisms of convective wind events,emphasizing their variability across different atmospheric circulation patterns.Historically,the inadequate feature categorization within multi-f... This study explores the initiation mechanisms of convective wind events,emphasizing their variability across different atmospheric circulation patterns.Historically,the inadequate feature categorization within multi-faceted forecast models has led to suboptimal forecast efficacy,particularly for events in dynamically weak forcing conditions during the warm season.To improve the prediction accuracy of convective wind events,this research introduces a novel approach that combines machine learning techniques to identify varying meteorological flow regimes.Convective winds(CWs)are defined as wind speeds reaching or exceeding 17.2 m s^(-1)and severe convective winds(SCWs)as speeds surpassing 24.5 m s^(-1).This study examines the spatial and temporal distribution of CW and SCW events from 2013 to 2021 and their circulation dynamics associated with three primary flow regimes:cold air advection,warm air advection,and quasibarotropic conditions.Key circulation features are used as input variables to construct an effective weather system pattern recognition model.This model employs an Adaptive Boosting(AdaBoost)algorithm combined with Random Under-Sampling(RUS)to address the class imbalance issue,achieving a recognition accuracy of 90.9%.Furthermore,utilizing factor analysis and Support Vector Machine(SVM)techniques,three specialized and independent probabilistic prediction models are developed based on the variance in predictor distributions across different flow regimes.By integrating the type of identification model with these prediction models,an enhanced comprehensive model is constructed.This advanced model autonomously identifies flow types and accordingly selects the most appropriate prediction model.Over a three-year validation period,this improved model outperformed the initially unclassified model in terms of prediction accuracy.Notably,for CWs and SCWs,the maximum Peirce Skill Score(PSS)increased from 0.530 and 0.702 to 0.628 and 0.726,respectively,and the corresponding maximum Threat Score(TS)improved from 0.087 and 0.024 to 0.120 and 0.026.These improvements were significant across all samples,with the cold air advection type showing the greatest enhancement due to the significant spatial variability of each factor.Additionally,the model improved forecast precision by prioritizing thermal factors,which played a key role in modulating false alarm rates in warm air advection and quasi-barotropic flow regimes.The results confirm the critical contribution of circulation feature recognition and segmented modeling to enhancing the adaptability and predictive accuracy of weather forecast models. 展开更多
关键词 convective winds probabilistic forecast regime flow recognition machine learning support vector machine
在线阅读 下载PDF
Machine learning-based models for prediction of in-hospital mortality in patients with dengue shock syndrome
11
作者 Luan Thanh Vo Thien Vu +2 位作者 Thach Ngoc Pham Tung Huu Trinh Thanh Tat Nguyen 《World Journal of Methodology》 2025年第3期89-99,共11页
BACKGROUND Severe dengue children with critical complications have been attributed to high mortality rates,varying from approximately 1%to over 20%.To date,there is a lack of data on machine-learning-based algorithms ... BACKGROUND Severe dengue children with critical complications have been attributed to high mortality rates,varying from approximately 1%to over 20%.To date,there is a lack of data on machine-learning-based algorithms for predicting the risk of inhospital mortality in children with dengue shock syndrome(DSS).AIM To develop machine-learning models to estimate the risk of death in hospitalized children with DSS.METHODS This single-center retrospective study was conducted at tertiary Children’s Hospital No.2 in Viet Nam,between 2013 and 2022.The primary outcome was the in-hospital mortality rate in children with DSS admitted to the pediatric intensive care unit(PICU).Nine significant features were predetermined for further analysis using machine learning models.An oversampling method was used to enhance the model performance.Supervised models,including logistic regression,Naïve Bayes,Random Forest(RF),K-nearest neighbors,Decision Tree and Extreme Gradient Boosting(XGBoost),were employed to develop predictive models.The Shapley Additive Explanation was used to determine the degree of contribution of the features.RESULTS In total,1278 PICU-admitted children with complete data were included in the analysis.The median patient age was 8.1 years(interquartile range:5.4-10.7).Thirty-nine patients(3%)died.The RF and XGboost models demonstrated the highest performance.The Shapley Addictive Explanations model revealed that the most important predictive features included younger age,female patients,presence of underlying diseases,severe transaminitis,severe bleeding,low platelet counts requiring platelet transfusion,elevated levels of international normalized ratio,blood lactate and serum creatinine,large volume of resuscitation fluid and a high vasoactive inotropic score(>30).CONCLUSION We developed robust machine learning-based models to estimate the risk of death in hospitalized children with DSS.The study findings are applicable to the design of management schemes to enhance survival outcomes of patients with DSS. 展开更多
关键词 Dengue shock syndrome Dengue mortality machine learning Supervised models Logistic regression Random forest K-nearest neighbors support vector machine Extreme Gradient Boost Shapley addictive explanations
暂未订购
Design of Low-Resistance Composite Electrolytes for Solid-State Batteries Based on Machine Learning
12
作者 Yu Xiong Zizhang Lin +3 位作者 Jinxing Li Zijian Li Ao Cheng Xin Zhang 《Acta Mechanica Solida Sinica》 2025年第3期549-557,共9页
Determining the optimal ceramic content of the ceramics-in-polymer composite electrolytes and the appropriate stack pressure can effectively improve the interfacial contact of solid-state batteries(SSBs).Based on the ... Determining the optimal ceramic content of the ceramics-in-polymer composite electrolytes and the appropriate stack pressure can effectively improve the interfacial contact of solid-state batteries(SSBs).Based on the contact mechanics model and constructed by the conjugate gradient method,continuous convolution,and fast Fourier transform,this paper analyzes and compares the interfacial contact responses involving the polymers commonly used in SSBs,which provides the original training data for machine learning.A support vector regression model is established to predict the relationship between the content of ceramics and the interfacial resistance.The Bayesian optimization and K-fold cross-validation are introduced to find the optimal combination of hyperparameters,which accelerates the training process and improves the model’s accuracy.We found the relationship between the content of ceramics,the stack pressure,and the interfacial resistance.The results can be taken as a reference for the design of the low-resistance composite electrolytes for solid-state batteries. 展开更多
关键词 Solid-state batteries Composite electrolyte design Stack pressure machine learning support vector regression
原文传递
Predicting floor heave risk in road tunnels with machine learning
13
作者 Xuefeng Ou Ye Zhou +5 位作者 Yong Kong Tongming Qu Shiquan Xu Wei Liao Cong Tang Xuemin Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6428-6438,共11页
Floor heave is a common defect in mountainous tunnels.It is critical but challenging to predict the risk of floor heave,as traditional methods often fail to characterize this phenomenon effectively.This study proposes... Floor heave is a common defect in mountainous tunnels.It is critical but challenging to predict the risk of floor heave,as traditional methods often fail to characterize this phenomenon effectively.This study proposes a data-driven approach utilizing a support vector machine(SVM)optimized by the sparrow search algorithm(SSA)to address the issue.The model was developed and validated using a dataset collected from 100 tunnels.Shapley value analysis was conducted to identify the key features influencing floor heave defects.Moreover,a committee-based uncertainty quantification method is presented to evaluate the reliability of each prediction.The results show that:(1)Data feature engineering and SSA play pivotal roles in expediting the convergence of the SVM model.(2)Groundwater and high in situ stress are key factors contributing to tunnel floor heave.(3)In comparison to backpropagation(BP)neural networks,the SSA-SVM demonstrates superior robustness in handling imperfect and limited data.(4)The committee-based uncertainty quantification method is proven effective to evaluate the trustworthiness of each prediction.This data-driven surrogate model offers an effective strategy for understanding the factors that impact tunnel floor defects and accurately predicting tunnel floor heave deformation. 展开更多
关键词 Floor heave support vector machine(SVM) Sparrow search algorithm(SSA) Shapley value Uncertainty quantification
在线阅读 下载PDF
Comparison of Different Machine Learning Algorithms for the Prediction of Coronary Artery Disease
14
作者 Imran Chowdhury Dipto Tanzila Islam +1 位作者 H M Mostafizur Rahman Md Ashiqur Rahman 《Journal of Data Analysis and Information Processing》 2020年第2期41-68,共28页
Coronary Artery Disease (CAD) is the leading cause of mortality worldwide. It is a complex heart disease that is associated with numerous risk factors and a variety of Symptoms. During the past decade, Coronary Artery... Coronary Artery Disease (CAD) is the leading cause of mortality worldwide. It is a complex heart disease that is associated with numerous risk factors and a variety of Symptoms. During the past decade, Coronary Artery Disease (CAD) has undergone a remarkable evolution. The purpose of this research is to build a prototype system using different Machine Learning Algorithms (models) and compare their performance to identify a suitable model. This paper explores three most commonly used Machine Learning Algorithms named as Logistic Regression, Support Vector Machine and Artificial Neural Network. To conduct this research, a clinical dataset has been used. To evaluate the performance, different evaluation methods have been used such as Confusion Matrix, Stratified K-fold Cross Validation, Accuracy, AUC and ROC. To validate the results, the accuracy and AUC scores have been validated using the K-Fold Cross-validation technique. The dataset contains class imbalance, so the SMOTE Algorithm has been used to balance the dataset and the performance analysis has been carried out on both sets of data. The results show that accuracy scores of all the models have been increased while training the balanced dataset. Overall, Artificial Neural Network has the highest accuracy whereas Logistic Regression has the least accurate among the trained Algorithms. 展开更多
关键词 CORONARY ARTERY Disease machine learning LOGISTIC Regression support vector machine Artificial Neural Network
暂未订购
Predicting Credit Card Transaction Fraud Using Machine Learning Algorithms
15
作者 Jiaxin Gao Zirui Zhou +2 位作者 Jiangshan Ai Bingxin Xia Stephen Coggeshall 《Journal of Intelligent Learning Systems and Applications》 2019年第3期33-63,共31页
Credit card fraud is a wide-ranging issue for financial institutions, involving theft and fraud committed using a payment card. In this paper, we explore the application of linear and nonlinear statistical modeling an... Credit card fraud is a wide-ranging issue for financial institutions, involving theft and fraud committed using a payment card. In this paper, we explore the application of linear and nonlinear statistical modeling and machine learning models on real credit card transaction data. The models built are supervised fraud models that attempt to identify which transactions are most likely fraudulent. We discuss the processes of data exploration, data cleaning, variable creation, feature selection, model algorithms, and results. Five different supervised models are explored and compared including logistic regression, neural networks, random forest, boosted tree and support vector machines. The boosted tree model shows the best fraud detection result (FDR = 49.83%) for this particular data set. The resulting model can be utilized in a credit card fraud detection system. A similar model development process can be performed in related business domains such as insurance and telecommunications, to avoid or detect fraudulent activity. 展开更多
关键词 CREDIT CARD FRAUD machine learning algorithms LOGISTIC Regression Neural Networks Random FOREST Boosted TREE support vector machines
在线阅读 下载PDF
Feature Extraction of Stored-grain Insects Based on Ant Colony Optimization and Support Vector Machine Algorithm 被引量:1
16
作者 胡玉霞 张红涛 +1 位作者 罗康 张恒源 《Agricultural Science & Technology》 CAS 2012年第2期457-459,共3页
[Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored... [Objective] The aim was to study the feature extraction of stored-grain insects based on ant colony optimization and support vector machine algorithm, and to explore the feasibility of the feature extraction of stored-grain insects. [Method] Through the analysis of feature extraction in the image recognition of the stored-grain insects, the recognition accuracy of the cross-validation training model in support vector machine (SVM) algorithm was taken as an important factor of the evaluation principle of feature extraction of stored-grain insects. The ant colony optimization (ACO) algorithm was applied to the automatic feature extraction of stored-grain insects. [Result] The algorithm extracted the optimal feature subspace of seven features from the 17 morphological features, including area and perimeter. The ninety image samples of the stored-grain insects were automatically recognized by the optimized SVM classifier, and the recognition accuracy was over 95%. [Conclusion] The experiment shows that the application of ant colony optimization to the feature extraction of grain insects is practical and feasible. 展开更多
关键词 Stored-grain insects Ant colony optimization algorithm support vector machine Feature extraction RECOGNITION
在线阅读 下载PDF
Incremental support vector machine algorithm based on multi-kernel learning 被引量:7
17
作者 Zhiyu Li Junfeng Zhang Shousong Hu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期702-706,共5页
A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set l... A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set learning problem can be solved effectively. Furthermore, different punishments are adopted in allusion to the training subset and the acquired support vectors, which may help to improve the performance of SVM. Simulation results indicate that the proposed algorithm can not only solve the model selection problem in SVM incremental learning, but also improve the classification or prediction precision. 展开更多
关键词 support vector machine (SVM) incremental learning multiple kernel learning (MKL).
在线阅读 下载PDF
Comprehensive study comparing different machine learning methods in computed tomography imaging
18
作者 Mustafa Erdem Sağsöz 《Artificial Intelligence in Medical Imaging》 2025年第1期1-3,共3页
The article written by Zhao et al,which was recently accepted for publication,introduces an innovative method that combines deep learning-based feature extraction with a radiomics nomogram to create a noninvasive proc... The article written by Zhao et al,which was recently accepted for publication,introduces an innovative method that combines deep learning-based feature extraction with a radiomics nomogram to create a noninvasive procedure for determining perineural invasion status in patients with rectal cancer.This method is an artificial intelligence application in which researchers segment their own datasets,derive features and analyze their weights.It was found that the support vector machine was the most effective model in the arterial and venous phases.A support vector machine is a machine learning algorithm based on a vector space that finds a decision boundary between the two classes furthest from any point in the training data. 展开更多
关键词 Deep learning Perineural invasion Radiomics Rectal cancer Stacking nomogram support vector machines
暂未订购
A Hierarchical Clustering and Fixed-Layer Local Learning Based Support Vector Machine Algorithm for Large Scale Classification Problems 被引量:1
19
作者 吴广潮 肖法镇 +4 位作者 奚建清 杨晓伟 何丽芳 吕浩然 刘小兰 《Journal of Donghua University(English Edition)》 EI CAS 2012年第1期46-50,共5页
It is a challenging topic to develop an efficient algorithm for large scale classification problems in many applications of machine learning. In this paper, a hierarchical clustering and fixed- layer local learning (... It is a challenging topic to develop an efficient algorithm for large scale classification problems in many applications of machine learning. In this paper, a hierarchical clustering and fixed- layer local learning (HCFLL) based support vector machine(SVM) algorithm is proposed to deal with this problem. Firstly, HCFLL hierarchically dusters a given dataset into a modified clustering feature tree based on the ideas of unsupervised clustering and supervised clustering. Then it locally trains SVM on each labeled subtree at a fixed-layer of the tree. The experimental results show that compared with the existing popular algorithms such as core vector machine and decision.tree support vector machine, HCFLL can significantly improve the training and testing speeds with comparable testing accuracy. 展开更多
关键词 hierarchical clustering local learning large scale classification support vector rnachine( SVM
在线阅读 下载PDF
Fuzzy least squares support vector machine soft measurement model based on adaptive mutative scale chaos immune algorithm 被引量:8
20
作者 王涛生 左红艳 《Journal of Central South University》 SCIE EI CAS 2014年第2期593-599,共7页
In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong cou... In order to enhance measuring precision of the real complex electromechanical system,complex industrial system and complex ecological & management system with characteristics of multi-variable,non-liner,strong coupling and large time-delay,in terms of the fuzzy character of this real complex system,a fuzzy least squares support vector machine(FLS-SVM) soft measurement model was established and its parameters were optimized by using adaptive mutative scale chaos immune algorithm.The simulation results reveal that fuzzy least squares support vector machines soft measurement model is of better approximation accuracy and robustness.And application results show that the relative errors of the soft measurement model are less than 3.34%. 展开更多
关键词 CHAOS immune algorithm FUZZY support vector machine
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部