期刊文献+
共找到9,695篇文章
< 1 2 250 >
每页显示 20 50 100
A New Pb-Free Machinable Austenitic Stainless Steel 被引量:2
1
作者 WU Di LI Zhuang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2010年第1期59-63,共5页
The machinability tests were conducted by using various process parameters on a CA6164 lathe with a dynamometer. The metallurgical properties, machinability and mechanical properties of the developed alloy were compar... The machinability tests were conducted by using various process parameters on a CA6164 lathe with a dynamometer. The metallurgical properties, machinability and mechanical properties of the developed alloy were compared with those of an austenite stainless steel 1Cr18Ni9Ti. The results show that the machinability of the austenitic stainless steels with free cutting additives is much better than that of 1Cr18Ni9Ti. This is attributed to the existence of machinable additives. The inclusions might be composed of MnS. Sulfur and copper addition contributes to the improvement of the machinability of austenitic stainless steel. Bismuth is an important factor to improve the machinability of austenitic stainless steel, and it has a distinct advantage over lead. The mechanical properties of the free cutting austenitic stainless steel are similar to those of 1Cr18Ni9Ti. A new Pb-free austenitic stainless steel with high machinability as well as satisfactory mechanical properties has been developed. 展开更多
关键词 Pb-free machinable austenitic stainless steel machinable additive BISMUTH MACHINABILITY mechanical property
原文传递
Layered Machinable and Electrically Conductive Ti_2AlC and Ti_3AlC_2 Ceramics:a Review 被引量:44
2
作者 X.H. Wang Y.C. Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2010年第5期385-416,共32页
Ti2AlC and Ti3AlC2 are the most light-weight and oxidation resistant layered ternary carbides belonging to the MAX phases.This review highlights recent achievements on the processing,microstructure,physical,mechanical... Ti2AlC and Ti3AlC2 are the most light-weight and oxidation resistant layered ternary carbides belonging to the MAX phases.This review highlights recent achievements on the processing,microstructure,physical,mechanical and chemical properties of these two machinable and electrically conductive carbides.Ti2AlC and Ti3AlC2 display superior properties such as fracture toughness,electrical and thermal conductivities,and oxidation resistance over their binary counterpart.This paper provides a comprehensive overview of the processing-microstructure-property correlations of these two carbides.Potential fields of applications for Ti2AlC and Ti3AlC2 are surveyed.In addition,we point out methods for further improving their properties in some specific applications through appropriate structural design and modification. 展开更多
关键词 MAX phases TI2ALC TI3ALC2 machinable ceramics
原文传递
Analysis of Machinable Structures and Their Wettability of Rotary Ultrasonic Texturing Method 被引量:7
3
作者 XU Shaolin SHIMADA Keita +1 位作者 MIZUTANI Masayoshi KURIYAGAWA Tsunemoto 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第6期1187-1192,共6页
Tailored surface textures at the micro- or nanoscale dimensions are widely used to get required functional performances. Rotary ultrasonic texturing (RUT) technique has been proved to be capable of fabricating perio... Tailored surface textures at the micro- or nanoscale dimensions are widely used to get required functional performances. Rotary ultrasonic texturing (RUT) technique has been proved to be capable of fabricating periodic micro- and nanostructures. In the present study, diamond tools with geometrically defined cutting edges were designed for fabricating different types of tailored surface textures using the RUT method. Surface generation mechanisms and machinable structures of the RUT process are analyzed and simulated with a 3D-CAD program. Textured surfaces generated by using a triangular pyramid cutting tip are constructed. Different textural patterns from several micrometers to several tens of micrometers with few burrs were successfully fabricated, which proved that tools with a proper two-rake-face design are capable of removing cutting chips efficiently along a sinusoidal cutting locus in the RUT process. Technical applications of the textured surfaces are also discussed. Wetting properties of textured aluminum surfaces were evaluated by combining the test of surface roughness features. The results show that the real surface area of the textured aluminum surfaces almost doubled by comparing with that of a flat surface, and anisotropic wetting properties were obtained due to the obvious directional textural features. 展开更多
关键词 rotary ultrasonic texturing geometrically defined cutting edges surface generation mechanisms machinable structures wetting properties
在线阅读 下载PDF
Influence of Surface Carburization of Machinable Ceramics on Its Pulsed Flashover Characteristics in Vacuum
4
作者 郑楠 黄学增 +1 位作者 穆海宝 张冠军 《Plasma Science and Technology》 SCIE EI CAS CSCD 2011年第6期656-660,共5页
For pulsed power devices, surface flashover phenomena across solid insulators greatly restrict their overall performance. In recent decades, much attention has been paid on enhancing the surface electric withstanding ... For pulsed power devices, surface flashover phenomena across solid insulators greatly restrict their overall performance. In recent decades, much attention has been paid on enhancing the surface electric withstanding strength of insulators, and it is found that surface treatment of material is useful to improve the surface flashover voltage. The carburization treatment is employed to modify the surface components of newly-developed machinable ceramics (MC) materials. A series of MC samples with different glucose solution concentration (0%, 10%, 20%, 30% and 40%) are prepared by chemical reactions for surface carburization modification, and their surface fiashover characteristics are investigated under pulsed voltage in vacuum. It is found that the surface carburization treatment greatly modifies the surface resistivity of MCs and hence the flashover behaviors. Based on the reduction of surface resistivity and the secondary electron emission avalanche (SEEA) theory, the adjustment of flashover withstanding ability can be reasonably explained. 展开更多
关键词 machinable ceramics VACUUM surface carburization secondary electron emission FLASHOVER
在线阅读 下载PDF
RESEARCH ON A NEW TYPE OF MACHINABLE BIOACTIVE GLASS-CERAMICS
5
作者 岳文海 陈仝 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1990年第1期51-58,共8页
A new type of machinable bioactive glass-ceramics for bone substitution has been developed in the glass system SiO_2-MgO-K_2O-F^--CaO-P_2O_5, which contains Mg- muscovite [K_2Mg_5 (Si_8O_(20)) F_4] and fluorapatite as... A new type of machinable bioactive glass-ceramics for bone substitution has been developed in the glass system SiO_2-MgO-K_2O-F^--CaO-P_2O_5, which contains Mg- muscovite [K_2Mg_5 (Si_8O_(20)) F_4] and fluorapatite as the two main crystal phases. The phase separation and the crystallization of the glass have been studied. A series of tests have showed that the material is good at mechanical property and bioactivity. Espe- cially, by analysing the structure of the interface layer between the material and the bone of animal with scanning electron microscope, electron probe, etc., it has been found that the new bone hydroxya- patite is formed on the surface of the material so that the material is connected firmly with the bone. 展开更多
关键词 RESEARCH ON A NEW TYPE OF machinable BIOACTIVE GLASS-CERAMICS BONE
在线阅读 下载PDF
Predictive Modelling of Etching Process of Machinable Glass Ceramics, Boron Nitride, and Silicon Carbide
6
作者 Huey Tze Ting Khaled Abou-El-Hossein Han Bing Chua 《Materials Sciences and Applications》 2011年第11期1601-1621,共21页
The present paper discusses the development of the first and second order model for predicting the chemical etching variables, namely, etching rate, surface roughness and accuracy of advanced ceramics. The first and s... The present paper discusses the development of the first and second order model for predicting the chemical etching variables, namely, etching rate, surface roughness and accuracy of advanced ceramics. The first and second order etching rate, surface roughness and accuracy equations were developed using the Response Surface Method (RSM). The etching variables included etching temperature, etching duration, solution and solution concentration. The predictive models’ analyses were supported with the aid of the statistical software package – Design Expert (DE 7). The effects of the individual etching variables and interaction between these variables were also investigated. The study showed that predictive models successfully predicted the etching rate, surface roughness and accuracy readings recorded experimentally with 95% confident interval. The results obtained from the predictive models were also compared with Multilayer Perceptron Artificial Neural Network (ANN). Chemical Etching variables predictive by ANN were in good agreement with those with those obtained by RSM. This observation indicated the potential of ANN in predicting chemical etching variables thus eliminating the need for exhaustive chemical etching in optimization. 展开更多
关键词 Chemical Etching machinable Glass Ceramic BORON NITRIDE Silicon CARBIDE RSM ANN
暂未订购
Preparation of Machinable Y-TZP/LaPO_4 Composite Ceramics by Liquid Precursor Infiltration 被引量:2
7
作者 周振君 杨正方 +1 位作者 袁启明 李秀华 《Journal of Rare Earths》 SCIE EI CAS CSCD 2002年第3期197-203,共7页
A machinable Y TZP/LaPO 4 composite ceramic was prepared by infiltrating LaPO 4 liquid precursor into Y TZP porous ceramic. Sintered Y TZP ceramic preformed with 35% (volume fraction) open pore volume was made by... A machinable Y TZP/LaPO 4 composite ceramic was prepared by infiltrating LaPO 4 liquid precursor into Y TZP porous ceramic. Sintered Y TZP ceramic preformed with 35% (volume fraction) open pore volume was made by adding graphite (30%, volume fraction). The Y TZP/LaPO 4 composite ceramics containing different LaPO 4 contents were obtained by infiltration and pyrolysis cycles. The machinability and mechanical properties of materials were investigated. The results show that the machinable Y TZP/LaPO 4 composite ceramics containing 2 3% to 7.5% (volume fraction) LaPO 4 has good machinability as well as outstanding mechanical properties. 展开更多
关键词 rare earths lanthanum phosphate zirconia MACHINABILITY liquid precursor infiltration mechanical property
在线阅读 下载PDF
Preparation of Machinable Bioactive Glass-ceramics by Sol-gel Method
8
作者 宁青菊 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2005年第B12期70-73,共4页
The purpose of this research was to prepare machinable bioactive glass-ceramics by sol-gel method. A multi-component composite sol with great uniformity and stability was first prepared by a 2-step method. The compos... The purpose of this research was to prepare machinable bioactive glass-ceramics by sol-gel method. A multi-component composite sol with great uniformity and stability was first prepared by a 2-step method. The composite sol was then transformed into gel by aging under different temperatures. The gel was dried finally by super critically drying method and sintered to obtain the machinable bioactive glass-ceramics. Effect of thermal treatment on crystallization of the glass-ceramics was investigated by X-ray diffraction ( XRD ) analysis. Microstructure of the glass- ceramics was observed by Scanning Electron Microscopy (SEM) and the mechanism of machinability was discussed. Phlogopite and hydroxylapatite were identified as main crystal phases by XRD analysis under thermal treatment at 750℃ and 950℃ for 1.5 h separately. The relative bulk density could achieve 99% under 1050℃ for 4 h. Microstructure of the glass-ceramics showed that the randomly distributed phlogopite and hydroxylapatite phases were favorable to the machinability of the glass-ceramics. A mean bending strength of about 160- 180 MPa and a fracture toughness parameter KIC of aboat 2.1-2.3 were determined for the glass-ceramics. 展开更多
关键词 GLASS-CERAMICS bioactivity MACHINABILITY sol-gel method
在线阅读 下载PDF
JIMTOF2024展会报告(上)
9
作者 符祚钢 《世界制造技术与装备市场》 2025年第1期54-60,共7页
2024年日本机床展览会(JIMTOF2024)于2024年11月5~10日在东京Tokyo Big Sight举办,展出面积118540平方米。展会以“技术传承提供无限可能(Technologies passed down to the future offer unlimited possibilities)”为主题。
关键词 technologies passed down JIMTOF machine tool exhibition tokyo big sight unlimited possibilities
在线阅读 下载PDF
The Internet of Things under Federated Learning:A Review of the Latest Advances and Applications 被引量:1
10
作者 Jinlong Wang Zhenyu Liu +2 位作者 Xingtao Yang Min Li Zhihan Lyu 《Computers, Materials & Continua》 SCIE EI 2025年第1期1-39,共39页
With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices ge... With the rapid development of artificial intelligence,the Internet of Things(IoT)can deploy various machine learning algorithms for network and application management.In the IoT environment,many sensors and devices generatemassive data,but data security and privacy protection have become a serious challenge.Federated learning(FL)can achieve many intelligent IoT applications by training models on local devices and allowing AI training on distributed IoT devices without data sharing.This review aims to deeply explore the combination of FL and the IoT,and analyze the application of federated learning in the IoT from the aspects of security and privacy protection.In this paper,we first describe the potential advantages of FL and the challenges faced by current IoT systems in the fields of network burden and privacy security.Next,we focus on exploring and analyzing the advantages of the combination of FL on the Internet,including privacy security,attack detection,efficient communication of the IoT,and enhanced learning quality.We also list various application scenarios of FL on the IoT.Finally,we propose several open research challenges and possible solutions. 展开更多
关键词 Federated learning Internet of Things SENSORS machine learning privacy security
在线阅读 下载PDF
机器学习在智能反射面辅助的通信系统中的应用综述 被引量:2
11
作者 司鹏搏 李双缘 +1 位作者 刘畅 李萌 《北京工业大学学报》 CAS 北大核心 2025年第1期87-99,共13页
智能反射面(intelligent reflecting surfaces,IRS)可以通过大量低成本的无源反射元件巧妙地调整信号反射,从而动态改变无线信道,提高通信性能,目前已成为无线通信研究的焦点。然而,由于IRS的加入,整个通信系统变得更加复杂,系统的动态... 智能反射面(intelligent reflecting surfaces,IRS)可以通过大量低成本的无源反射元件巧妙地调整信号反射,从而动态改变无线信道,提高通信性能,目前已成为无线通信研究的焦点。然而,由于IRS的加入,整个通信系统变得更加复杂,系统的动态性也更高,使通信系统面临着许多新的挑战。机器学习(machine learning,ML)具有很强的数据处理与自适应能力,能够不断适应变化的环境和需求,可以很好地应对通信系统中的许多挑战。因此,使用ML解决IRS辅助的通信系统中的问题,已经成为当前研究的重点。基于此,对ML在IRS系统中的应用进行了系统性的概述,从IRS辅助的通信系统中存在的问题入手,分别从反射因子的设计与优化、信道处理与建模、资源分配和管理、安全性增强4个方面对ML在IRS系统中的应用进行阐述和分析,并讨论了将ML应用在IRS系统中的优势及未来的发展趋势与挑战。 展开更多
关键词 智能反射面(intelligent reflecting surfaces IRS) 无线通信 反射因子 信道 资源分配 通信安全 机器学习(machine learning ML)
在线阅读 下载PDF
Open TBM Tunnel Intelligent Construction Technology 被引量:2
12
作者 LIU Yongsheng CHEN Qiao +4 位作者 ZHANG Hepei LI Shu′ao LIN Chungang YIN Long LI Mengyu 《隧道建设(中英文)》 北大核心 2025年第4期816-833,I0025-I0042,共36页
To fully leverage the advantages of mechanization and informatization in tunnel boring machine(TBM)operations,the authors aim to promote the advancement of tunnel construction technology toward intelligent development... To fully leverage the advantages of mechanization and informatization in tunnel boring machine(TBM)operations,the authors aim to promote the advancement of tunnel construction technology toward intelligent development.This involved exploring the deep integration of next-generation artificial intelligence technologies,such as sensing technology,automatic control technology,big data technology,deep learning,and machine vision,with key operational processes,including TBM excavation,direction adjustment,step changes,inverted arch block assembly,material transportation,and operation status assurance.The results of this integration are summarized as follows.(1)TBM key excavation parameter prediction algorithm was developed with an accuracy rate exceeding 90%.The TBM intelligent step-change control algorithm,based on machine vision,achieved an image segmentation accuracy rate of 95%and gripper shoe positioning error of±5 mm.(2)An automatic positioning system for inverted arch blocks was developed,enabling real-time perception of the spatial position and deviation during the assembly process.The system maintains an elevation positioning deviation within±3 mm and a horizontal positioning deviation within±10 mm,reducing the number of surveyors in each work team.(3)A TBM intelligent rail transportation system that achieves real-time human-machine positioning,automatic switch opening and closing,automatic obstacle avoidance,intelligent transportation planning,and integrated scheduling and command was designed.Each locomotive formation reduces one shunter and improves comprehensive transportation efficiency by more than 20%.(4)Intelligent analysis and prediction algorithms were developed to monitor and predict the trends of the hydraulic and gear oil parameters in real time,enhancing the proactive maintenance and system reliability. 展开更多
关键词 TUNNEL open TBM intelligent construction deep learning machine vision
在线阅读 下载PDF
Joint Estimation of SOH and RUL for Lithium-Ion Batteries Based on Improved Twin Support Vector Machineh 被引量:1
13
作者 Liyao Yang Hongyan Ma +1 位作者 Yingda Zhang Wei He 《Energy Engineering》 EI 2025年第1期243-264,共22页
Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex int... Accurately estimating the State of Health(SOH)and Remaining Useful Life(RUL)of lithium-ion batteries(LIBs)is crucial for the continuous and stable operation of battery management systems.However,due to the complex internal chemical systems of LIBs and the nonlinear degradation of their performance,direct measurement of SOH and RUL is challenging.To address these issues,the Twin Support Vector Machine(TWSVM)method is proposed to predict SOH and RUL.Initially,the constant current charging time of the lithium battery is extracted as a health indicator(HI),decomposed using Variational Modal Decomposition(VMD),and feature correlations are computed using Importance of Random Forest Features(RF)to maximize the extraction of critical factors influencing battery performance degradation.Furthermore,to enhance the global search capability of the Convolution Optimization Algorithm(COA),improvements are made using Good Point Set theory and the Differential Evolution method.The Improved Convolution Optimization Algorithm(ICOA)is employed to optimize TWSVM parameters for constructing SOH and RUL prediction models.Finally,the proposed models are validated using NASA and CALCE lithium-ion battery datasets.Experimental results demonstrate that the proposed models achieve an RMSE not exceeding 0.007 and an MAPE not exceeding 0.0082 for SOH and RUL prediction,with a relative error in RUL prediction within the range of[-1.8%,2%].Compared to other models,the proposed model not only exhibits superior fitting capability but also demonstrates robust performance. 展开更多
关键词 State of health remaining useful life variational modal decomposition random forest twin support vector machine convolutional optimization algorithm
在线阅读 下载PDF
Urban tree species classification based on multispectral airborne LiDAR 被引量:1
14
作者 HU Pei-Lun CHEN Yu-Wei +3 位作者 Mohammad Imangholiloo Markus Holopainen WANG Yi-Cheng Juha Hyyppä 《红外与毫米波学报》 北大核心 2025年第2期211-216,共6页
Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services... Urban tree species provide various essential ecosystem services in cities,such as regulating urban temperatures,reducing noise,capturing carbon,and mitigating the urban heat island effect.The quality of these services is influenced by species diversity,tree health,and the distribution and the composition of trees.Traditionally,data on urban trees has been collected through field surveys and manual interpretation of remote sensing images.In this study,we evaluated the effectiveness of multispectral airborne laser scanning(ALS)data in classifying 24 common urban roadside tree species in Espoo,Finland.Tree crown structure information,intensity features,and spectral data were used for classification.Eight different machine learning algorithms were tested,with the extra trees(ET)algorithm performing the best,achieving an overall accuracy of 71.7%using multispectral LiDAR data.This result highlights that integrating structural and spectral information within a single framework can improve the classification accuracy.Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy. 展开更多
关键词 multispectral airborne LiDAR machine learning tree species classification
在线阅读 下载PDF
Structural Topology Design for Electromagnetic Performance Enhancement of Permanent-Magnet Machines 被引量:2
15
作者 Pengjie Xiang Liang Yan +3 位作者 Xiaoshuai Liu Xinghua He Nannan Du Han Wang 《Chinese Journal of Mechanical Engineering》 2025年第1期411-432,共22页
Permanent-magnet(PM)machines are the important driving components of various mechanical equipment and industrial applications,such as robot joints,aerospace equipment,electric vehicles,actuators,wind generators and el... Permanent-magnet(PM)machines are the important driving components of various mechanical equipment and industrial applications,such as robot joints,aerospace equipment,electric vehicles,actuators,wind generators and electric traction systems.The PM machines are usually expected to have high torque/power density,low torque ripple,reduced rotor mass,a large constant power speed range or strong anti-magnetization capability to match different requirements of industrial applications.The structural topology of the electric machines,including stator/rotor arrangements and magnet patterns of rotor,is one major concern to improve their electromagnetic performance.However,systematic reviews of structural topology are seldom found in literature.Therefore,the objective of this paper is to summarize the stator/rotor arrangements and magnet patterns of the permanent-magnet brushless machines,in depth.Specifically,the stator/rotor arrangements of the PM machines including radial-flux,axialflux and emerging hybrid axial-radial flux configurations are presented,and pros and cons of these topologies are discussed regarding their electromagnetic performance.The magnet patterns including various surface-mounted and interior magnet patterns,such as parallel magnetization pole pattern,Halbach arrays,spoke-type designs and their variants are summarized,and the characteristics of those magnet patterns in terms of flux-focusing effect,magnetic self-shielding effect,torque ripple,reluctance torque,magnet utilization ratio,and anti-demagnetization capability are compared.This paper can provide guidance and suggestion for the structure selection and design of PM brushless machines for high-performance industrial applications. 展开更多
关键词 Actuators Robot joint Electric-vehicle motor Permanent-magnet machines Axial-flux PM machine Dualrotor machine Magnet patterns Torque density Torque ripple Power density
在线阅读 下载PDF
Ultrasonic vibration-assisted cutting of titanium alloys:A state-of-the-art review 被引量:3
16
作者 Ahmar KHAN Xin WANG +7 位作者 Biao ZHAO Wenfeng DING Muhammad JAMIL Aqib Mashood KHAN Syed Hammad ALI Sadam HUSSAIN Jiong ZHANG Raj DAS 《Chinese Journal of Aeronautics》 2025年第1期3-42,共40页
The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and med... The remarkable ability of titanium alloys to preserve their superior physical and chemical characteristics when subjected to extreme conditions significantly enhances their importance in the aerospace,military,and medical sectors.However,conventional machining of titanium alloys leads to elevated tool wear,development of surface defects,and reduced machining efficiency due to their low heat conductivity,and chemical affinity.These issues can be somewhat counteracted by integrating ultrasonic vibration in the conventional machining of titanium alloys and also enhance sustainability.This review article offers a holistic evaluation of the influence of ultrasonic vibration-assisted milling and turning on cutting forces,temperature,tool wear,and surface integrity,encompassing surface morphology,surface roughness,surface residual stress,surface hardness,and surface tribological properties during titanium alloys machining.Furthermore,it investigates the sustainability aspect that has not been previously examined.Studies on the performance of ultrasonic-assisted cutting revealed several advantages,including decreased cutting forces and cutting temperature,improved tool life,and a better-machined surface during machining.Consequently,the sustainability factor is improved due to minimized energy consumption and residual waste.In conclusion,the key challenges and future prospects in the ultrasonic-assisted cutting of titanium alloys are also discussed.This review article provides beneficial knowledge for manufactur-ers and researchers regarding ultrasonic vibration-assisted cutting of titanium alloy and will play an important role in achieving sustainability in the industry. 展开更多
关键词 Ultrasonic vibration-assisted cutting Titanium alloys Material removal mechanism MACHINABILITY SUSTAINABILITY
原文传递
Streamlined photonic reservoir computer with augmented memory capabilities 被引量:3
17
作者 Changdi Zhou Yu Huang +5 位作者 Yigong Yang Deyu Cai Pei Zhou Kuenyao Lau Nianqiang Li Xiaofeng Li 《Opto-Electronic Advances》 2025年第1期45-57,共13页
Photonic platforms are gradually emerging as a promising option to encounter the ever-growing demand for artificial intelligence,among which photonic time-delay reservoir computing(TDRC)is widely anticipated.While suc... Photonic platforms are gradually emerging as a promising option to encounter the ever-growing demand for artificial intelligence,among which photonic time-delay reservoir computing(TDRC)is widely anticipated.While such a computing paradigm can only employ a single photonic device as the nonlinear node for data processing,the performance highly relies on the fading memory provided by the delay feedback loop(FL),which sets a restriction on the extensibility of physical implementation,especially for highly integrated chips.Here,we present a simplified photonic scheme for more flexible parameter configurations leveraging the designed quasi-convolution coding(QC),which completely gets rid of the dependence on FL.Unlike delay-based TDRC,encoded data in QC-based RC(QRC)enables temporal feature extraction,facilitating augmented memory capabilities.Thus,our proposed QRC is enabled to deal with time-related tasks or sequential data without the implementation of FL.Furthermore,we can implement this hardware with a low-power,easily integrable vertical-cavity surface-emitting laser for high-performance parallel processing.We illustrate the concept validation through simulation and experimental comparison of QRC and TDRC,wherein the simpler-structured QRC outperforms across various benchmark tasks.Our results may underscore an auspicious solution for the hardware implementation of deep neural networks. 展开更多
关键词 photonic reservoir computing machine learning vertical-cavity surface-emitting laser quasi-convolution coding augmented memory capabilities
在线阅读 下载PDF
Recent progress on artificial intelligence-enhanced multimodal sensors integrated devices and systems 被引量:2
18
作者 Haihua Wang Mingjian Zhou +5 位作者 Xiaolong Jia Hualong Wei Zhenjie Hu Wei Li Qiumeng Chen Lei Wang 《Journal of Semiconductors》 2025年第1期179-192,共14页
Multimodal sensor fusion can make full use of the advantages of various sensors,make up for the shortcomings of a single sensor,achieve information verification or information security through information redundancy,a... Multimodal sensor fusion can make full use of the advantages of various sensors,make up for the shortcomings of a single sensor,achieve information verification or information security through information redundancy,and improve the reliability and safety of the system.Artificial intelligence(AI),referring to the simulation of human intelligence in machines that are programmed to think and learn like humans,represents a pivotal frontier in modern scientific research.With the continuous development and promotion of AI technology in Sensor 4.0 age,multimodal sensor fusion is becoming more and more intelligent and automated,and is expected to go further in the future.With this context,this review article takes a comprehensive look at the recent progress on AI-enhanced multimodal sensors and their integrated devices and systems.Based on the concept and principle of sensor technologies and AI algorithms,the theoretical underpinnings,technological breakthroughs,and pragmatic applications of AI-enhanced multimodal sensors in various fields such as robotics,healthcare,and environmental monitoring are highlighted.Through a comparative study of the dual/tri-modal sensors with and without using AI technologies(especially machine learning and deep learning),AI-enhanced multimodal sensors highlight the potential of AI to improve sensor performance,data processing,and decision-making capabilities.Furthermore,the review analyzes the challenges and opportunities afforded by AI-enhanced multimodal sensors,and offers a prospective outlook on the forthcoming advancements. 展开更多
关键词 SENSOR multimodal sensors machine learning deep learning intelligent system
在线阅读 下载PDF
Performance evaluation of rock fragmentation prediction based on RF-BOA,AdaBoost-BOA,GBoost-BOA,and ERT-BOA hybrid models 被引量:2
19
作者 Junjie Zhao Diyuan Li +2 位作者 Jian Zhou Danial JArmaghani Aohui Zhou 《Deep Underground Science and Engineering》 2025年第1期3-17,共15页
Rock fragmentation is an important indicator for assessing the quality of blasting operations.However,accurate prediction of rock fragmentation after blasting is challenging due to the complicated blasting parameters ... Rock fragmentation is an important indicator for assessing the quality of blasting operations.However,accurate prediction of rock fragmentation after blasting is challenging due to the complicated blasting parameters and rock properties.For this reason,optimized by the Bayesian optimization algorithm(BOA),four hybrid machine learning models,including random forest,adaptive boosting,gradient boosting,and extremely randomized trees,were developed in this study.A total of 102 data sets with seven input parameters(spacing-to-burden ratio,hole depth-to-burden ratio,burden-to-hole diameter ratio,stemming length-to-burden ratio,powder factor,in situ block size,and elastic modulus)and one output parameter(rock fragment mean size,X_(50))were adopted to train and validate the predictive models.The root mean square error(RMSE),the mean absolute error(MAE),and the coefficient of determination(R^(2))were used as the evaluation metrics.The evaluation results demonstrated that the hybrid models showed superior performance than the standalone models.The hybrid model consisting of gradient boosting and BOA(GBoost-BOA)achieved the best prediction results compared with the other hybrid models,with the highest R^(2)value of 0.96 and the smallest values of RMSE and MAE of 0.03 and 0.02,respectively.Furthermore,sensitivity analysis was carried out to study the effects of input variables on rock fragmentation.In situ block size(XB),elastic modulus(E),and stemming length-to-burden ratio(T/B)were set as the main influencing factors.The proposed hybrid model provided a reliable prediction result and thus could be considered an alternative approach for rock fragment prediction in mining engineering. 展开更多
关键词 Bayesian optimization BLASTING machine learning rock fragmentation
原文传递
Recent advances in modelling structure-property correlations in high-entropy alloys 被引量:2
20
作者 Akash A.Deshmukh Raghavan Ranganathan 《Journal of Materials Science & Technology》 2025年第1期127-151,共25页
Since antiquity,humans have been involved in designing materials through alloying strategies to meet the ever-growing technological demands.In 2004,this endeavor witnessed a significant breakthrough with the discovery... Since antiquity,humans have been involved in designing materials through alloying strategies to meet the ever-growing technological demands.In 2004,this endeavor witnessed a significant breakthrough with the discovery of high-entropy alloys(HEAs)comprising multi-principal elements.Owing to the four“core-effects”,these alloys exhibit exceptional properties including better structural stability,high strength and ductility,improved fatigue/fracture toughness,high corrosion and oxidation resistance,superconductiv-ity,magnetic properties,and good thermal properties.Different synthesis routes have been designed and used to meet the properties of interest for particular applications with varying dimensions.How-ever,HEAs are providing new opportunities and challenges for computational modelling of the complex structure-property correlations and in predictions of phase stability necessary for optimum performance of the alloy.Several attempts have been made to understand these alloys by empirical and computa-tional models,and data-driven approaches to accelerate the materials discovery with a desired set of properties.The present review discusses advances and inferences from simulations and models spanning multiple length and time scales explaining a comprehensive set of structure-properties relations.Addi-tionally,the role of machine learning approaches is also reviewed,underscoring the transformative role of computational modelling in unravelling the multifaceted properties and applications of HEAs,and the scope for future efforts in this direction. 展开更多
关键词 High-entropy alloys DFT Molecular dynamics CALPHAD Machine learning Structure-property correlations
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部