The early electro weak regime as of 10-32 seconds after the big bang is where we could see the initial formation of gravitons, gravitinos and GW. What we intend to do is to look at if Mach’s principle, and a statemen...The early electro weak regime as of 10-32 seconds after the big bang is where we could see the initial formation of gravitons, gravitinos and GW. What we intend to do is to look at if Mach’s principle, and a statement of overall quantized energy state behavior of the universe can help us get hij , using initial conditions as initially presented by Mishra in 2012 we restate as . Mach’s principle was used by Mishra, and we use it to come up with conditions for a stable overall mass M contributing to GW generation/ entropy of the universe. The composition of M for gravitons would change over time from initial beginnings to the present day, but the final invariant graviton mass M we work with is a way to state initial and final numbers, N, of the constituent particles contributing to entropy of our universe. By the way of comparison this also is tied into Gravitinos, as super partners to Gravitons, as counted by N, initially, and dying out as up to the present day values. From the present, we have the Machian condition of setting, the present condition, as given by Mishra , with being the mass of a sub-system inside the universe, with N being the number of “particles”, and m being the net particle mass. We examine the consequences of Mach’s principle for the case of the mass M, contributing to GW and entropy with a case of , i.e. the total mass of the electro weak era is about the same as today’s mass, but if we look directly at the influence of SUSY physics super partners, in such a way that and there is then an equivalence between SUSY dominated early conditions and non-SUSY as equal to a constant value. i.e. if Machian physics held from early times, up to the present, it would have implications for explaining entropy, as given in, as to why it would be so much lower as of about and before the electro-weak regime than today. This leads to Equations (37)-(39) as hij values to be detected by appropriate GW detectors.展开更多
We present a Machian model of Quantum Cosmology with full dark matter and light speed expansion and rotation. During galaxy formation and evolution, fraction of dark matter transforms to visible matter with a relation...We present a Machian model of Quantum Cosmology with full dark matter and light speed expansion and rotation. During galaxy formation and evolution, fraction of dark matter transforms to visible matter with a relation of the form, m_vis = constant * (m_dark)<sup>2/3</sup>. Using this relation and replacing MOND’s “critical acceleration” with “current cosmic maximum angular acceleration”, galactic flat rotation speed range of (50 to 500) km/sec can be fitted well. Estimated flat rotation speeds of DD168, Milky Way and UGC12591 are 49.96 km/sec, 199.66 km/sec and 521.75 km/sec respectively. Based on these striking coincidences, it is possible to say that, MOND’s approach is implicitly connected with cosmological estimation of 95% invisible matter. With reference to SPARC data for flat rotation speeds and current cosmic maximum angular acceleration, galactic total mass can be estimated. Considering galactic total mass, galactic visible mass and dark mass can be estimated. Proceeding further, galactic working radii, angular velocity and visible matter density can be estimated. Estimated Milky Way’s effective radius is 293 kpc. Even though, this model is free from “big bang”, “inflation”, “dark energy”, “flatness” and “red shift” issues, at 2.722 K, estimated present Hubble parameter is 66.24 km/sec/Mpc, cosmic radius is 146.3 times of the Hubble radius, angular velocity is 146.3 times lower than the Hubble parameter and cosmic age is 146.3 times of the Hubble age. With future observations and advanced telescopes, it may be possible to see far distant galaxies and very old stars far beyond the current observable cosmic radius.展开更多
What is the physical nature of gravitinos? As asked before, this question was the template of how to introduce Machian Physics as a way to link gravitinos in the electro weak era and gravitons as of the present. What ...What is the physical nature of gravitinos? As asked before, this question was the template of how to introduce Machian Physics as a way to link gravitinos in the electro weak era and gravitons as of the present. What we wish to do now is to ask how a flaw in the Higgs equation as brought up by Comay shows a branch off from orthodox quantum physics, leading to, with the Machs principle application done earlier a way to embed the beginning of the universe as a semi classical superstructure of which Quantum Mechanics is a subset of. We argue that this will necessitate a review of the Higgs equation of state for reasons stated in the manuscript. We also finally review a proprosal for another form of mass formation mechanism as a replacement for the Higgs mass as introduced by Glinka and Beckwith, 2012, with commentary as to how suitable it may be to get a gravitino mass in fidelity to the Machian proposal introduced by Beckwith previously, to get linkage between electroweak era gravitinos and present day gravitons.展开更多
文摘The early electro weak regime as of 10-32 seconds after the big bang is where we could see the initial formation of gravitons, gravitinos and GW. What we intend to do is to look at if Mach’s principle, and a statement of overall quantized energy state behavior of the universe can help us get hij , using initial conditions as initially presented by Mishra in 2012 we restate as . Mach’s principle was used by Mishra, and we use it to come up with conditions for a stable overall mass M contributing to GW generation/ entropy of the universe. The composition of M for gravitons would change over time from initial beginnings to the present day, but the final invariant graviton mass M we work with is a way to state initial and final numbers, N, of the constituent particles contributing to entropy of our universe. By the way of comparison this also is tied into Gravitinos, as super partners to Gravitons, as counted by N, initially, and dying out as up to the present day values. From the present, we have the Machian condition of setting, the present condition, as given by Mishra , with being the mass of a sub-system inside the universe, with N being the number of “particles”, and m being the net particle mass. We examine the consequences of Mach’s principle for the case of the mass M, contributing to GW and entropy with a case of , i.e. the total mass of the electro weak era is about the same as today’s mass, but if we look directly at the influence of SUSY physics super partners, in such a way that and there is then an equivalence between SUSY dominated early conditions and non-SUSY as equal to a constant value. i.e. if Machian physics held from early times, up to the present, it would have implications for explaining entropy, as given in, as to why it would be so much lower as of about and before the electro-weak regime than today. This leads to Equations (37)-(39) as hij values to be detected by appropriate GW detectors.
文摘We present a Machian model of Quantum Cosmology with full dark matter and light speed expansion and rotation. During galaxy formation and evolution, fraction of dark matter transforms to visible matter with a relation of the form, m_vis = constant * (m_dark)<sup>2/3</sup>. Using this relation and replacing MOND’s “critical acceleration” with “current cosmic maximum angular acceleration”, galactic flat rotation speed range of (50 to 500) km/sec can be fitted well. Estimated flat rotation speeds of DD168, Milky Way and UGC12591 are 49.96 km/sec, 199.66 km/sec and 521.75 km/sec respectively. Based on these striking coincidences, it is possible to say that, MOND’s approach is implicitly connected with cosmological estimation of 95% invisible matter. With reference to SPARC data for flat rotation speeds and current cosmic maximum angular acceleration, galactic total mass can be estimated. Considering galactic total mass, galactic visible mass and dark mass can be estimated. Proceeding further, galactic working radii, angular velocity and visible matter density can be estimated. Estimated Milky Way’s effective radius is 293 kpc. Even though, this model is free from “big bang”, “inflation”, “dark energy”, “flatness” and “red shift” issues, at 2.722 K, estimated present Hubble parameter is 66.24 km/sec/Mpc, cosmic radius is 146.3 times of the Hubble radius, angular velocity is 146.3 times lower than the Hubble parameter and cosmic age is 146.3 times of the Hubble age. With future observations and advanced telescopes, it may be possible to see far distant galaxies and very old stars far beyond the current observable cosmic radius.
文摘What is the physical nature of gravitinos? As asked before, this question was the template of how to introduce Machian Physics as a way to link gravitinos in the electro weak era and gravitons as of the present. What we wish to do now is to ask how a flaw in the Higgs equation as brought up by Comay shows a branch off from orthodox quantum physics, leading to, with the Machs principle application done earlier a way to embed the beginning of the universe as a semi classical superstructure of which Quantum Mechanics is a subset of. We argue that this will necessitate a review of the Higgs equation of state for reasons stated in the manuscript. We also finally review a proprosal for another form of mass formation mechanism as a replacement for the Higgs mass as introduced by Glinka and Beckwith, 2012, with commentary as to how suitable it may be to get a gravitino mass in fidelity to the Machian proposal introduced by Beckwith previously, to get linkage between electroweak era gravitinos and present day gravitons.