期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Quadratic forms connected with Fourier coefficients of Maass cusp forms 被引量:1
1
作者 Liqun HU 《Frontiers of Mathematics in China》 SCIE CSCD 2015年第5期1101-1112,共12页
For the normalized Fourier coefficients of Maass cusp forms λ(n) and the normalized Fourier coefficients of holomorphic cusp forms a(n), we give the bound of
关键词 Circle method Fourier coefficients of maass cusp forms quadraticform exponential sum
原文传递
Bounds for Average toward the Resonance Barrier for GL(3)×GL(2)Automorphic Forms
2
作者 Huan Qin Yang Bo Ye 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第9期1667-1683,共17页
Let f be a fixed Maass form for SL_3(Z)with Fourier coefficients A_(f)(m,n).Let g be a Maass cusp form for SL_2(G)with Laplace eigenvalue(1/4)+k^(2) and Fourier coefficientλ_(g)(n),or a holomorphic cusp form of even ... Let f be a fixed Maass form for SL_3(Z)with Fourier coefficients A_(f)(m,n).Let g be a Maass cusp form for SL_2(G)with Laplace eigenvalue(1/4)+k^(2) and Fourier coefficientλ_(g)(n),or a holomorphic cusp form of even weight k.Denote by S_(X)(f×g,α,β)a smoothly weighted sum of A_(f)(1,n)λ_(g)(n)e(αn~β)for X 0 are fixed real numbers.The subject matter of the present paper is to prove non-trivial bounds for a sum of S_(X)(f×g,α,β)over g as k tends to∞with X.These bounds for average provide insight for the corresponding resonance barriers toward the Hypothesis S as proposed by Iwaniec,Luo,and Sarnak. 展开更多
关键词 maass cusp form holomorphic cusp form Hypothesis S resonance barrier Kuznetsov trace formula Petersson's formula Voronoi's summation formula
原文传递
On the first negative Hecke eigenvalue of an automorphic representation of GL_(2)(A_(Q)) 被引量:1
3
作者 Yuk-Kam Lau Ming Ho Ng +1 位作者 Hengcai Tang Yingnan Wang 《Science China Mathematics》 SCIE CSCD 2021年第11期2381-2394,共14页
Letπbe a self-dual irreducible cuspidal automorphic representation of GL_(2)(A_(Q))with trivial central character.Its Hecke eigenvalue λπ(n)is a real multiplicative function in n.We show that λπ(n)<0 for some ... Letπbe a self-dual irreducible cuspidal automorphic representation of GL_(2)(A_(Q))with trivial central character.Its Hecke eigenvalue λπ(n)is a real multiplicative function in n.We show that λπ(n)<0 for some n<<Q^(2/5)_(π),where Qπdenotes(a special value of)the analytic conductor.The value 2/5 is the first explicit exponent for Hecke-Maass newforms. 展开更多
关键词 automorphic representation Hecke eigenvalue maass cusp form sign change
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部