BACKGROUND Perioperative anesthesia management of obese patients presents significant challenges as traditional total body weight-based dosing fails to achieve optimal anesthetic effects due to altered pharmacokinetic...BACKGROUND Perioperative anesthesia management of obese patients presents significant challenges as traditional total body weight-based dosing fails to achieve optimal anesthetic effects due to altered pharmacokinetic characteristics including abnormal drug distribution and clearance.Rocuronium exhibits markedly different distribution patterns in obese patients,with conventional weight correction methods inadequately addressing individual muscle mass variations that critically influence drug distribution.AIM To investigate the quantitative relationship between skeletal muscle index(SMI)and rocuronium distribution volume in obese colorectal cancer patients,establish a population pharmacokinetic model,and develop individualized dosing strategies based on muscle mass.METHODS A retrospective cohort study was conducted,including 100 obese patients(body mass index≥30 kg/m^(2))who underwent elective radical colorectal cancer surgery at our hospital from June 2023 to January 2025.Skeletal muscle mass was measured using InBody 260 body composition analyzer and SMI was calculated to assess muscle mass,with male SMI<7.0 kg/m^(2) and female SMI<5.7 kg/m^(2)as diagnostic criteria for sarcopenia.Plasma rocuronium concentrations were detected by liquid chromatography-tandem mass spectrometry/mass spectrometry,and nonlinear mixed-effect modeling was used to establish population pharmacokinetic modeling.Stepwise regression was used to screen covariates,and dosing regimens were optimized through Monte Carlo simulation.The primary endpoint was targeted plasma concentration achievement rate,and the secondary endpoint was postoperative residual muscle relaxation incidence.RESULTS Among 100 patients,35(35.0%)had sarcopenia and 65(65.0%)did not.Patients in the sarcopenia group were older(64.1±9.8 years vs 54.2±10.9 years,P<0.001)and had significantly lower SMI(6.2±0.8 kg/m^(2)vs 8.4±1.2 kg/m^(2),P<0.001).SMI showed strong positive correlation with rocuronium steady-state distribution volume(r=0.718,P<0.001)and moderate negative correlation with clearance(r=-0.502,P<0.001).A two-compartment population pharmacokinetic model was successfully established,with SMI being the most important covariate affecting central compartment distribution volume(△OFV=-41.2,P<0.001).Model validation showed bootstrap successful convergence rate of 92.3%,and 92.1%of observed values fell within prediction intervals in predicted concentration versus predicted concentration.The SMI-based individualized dosing regimen improved target exposure achievement rate from 82.0%in traditional regimen to 93.5%(P=0.009),and reduced postoperative residual muscle relaxation incidence from 13.0%to 3.5%(P=0.018).The sarcopenia group showed the most significant improvement in achievement rate,from 71.4%to 93.8%(P=0.017).CONCLUSION SMI shows strong correlation with rocuronium distribution volume in obese colorectal cancer patients and is a key factor affecting drug distribution.SMI-based individualized dosing strategies can significantly improve target exposure achievement rate and reduce postoperative residual muscle relaxation incidence,providing scientific evidence for precision anesthesia management in obese patients.展开更多
The“longevity protein”SIRT5 could hold the key to delaying age-related muscle decline.A study led by researchers from the Institute of Zoology(IOZ)of the Chinese Academy of Sciences and Capital Medical University in...The“longevity protein”SIRT5 could hold the key to delaying age-related muscle decline.A study led by researchers from the Institute of Zoology(IOZ)of the Chinese Academy of Sciences and Capital Medical University in Beijing reveals that SIRT5 mitigates skeletal muscle aging by blocking pro-inflammatory pathways.Published in Nature Metabolism on March 14,2025,the work identifies SIRT5’s interaction with protein kinase TBK1 as critical to preserving muscle mass and function.展开更多
Systematic bone and muscle loss is a complex metabolic disease,which is frequently linked to gut dysfunction,yet its etiology and treatment remain elusive.While probiotics show promise in managing diseases through mic...Systematic bone and muscle loss is a complex metabolic disease,which is frequently linked to gut dysfunction,yet its etiology and treatment remain elusive.While probiotics show promise in managing diseases through microbiome modulation,their therapeutic impact on gut dysfunction-induced bone and muscle loss remains to be elucidated.Employing dextran sulfate sodium(DSS)-induced gut dysfunction model and wide-spectrum antibiotics(ABX)-treated mice model,our study revealed that gut dysfunction instigates muscle and bone loss,accompanied by microbial imbalances.Importantly,Bifidobacterium animalis subsp.lactis A6(B.lactis A6)administration significantly ameliorated muscle and bone loss by modulating gut microbiota composition and enhancing butyrate-producing bacteria.This intervention effectively restored depleted butyrate levels in serum,muscle,and bone tissues caused by gut dysfunction.Furthermore,butyrate supplementation mitigated musculoskeletal loss by repairing the damaged intestinal barrier and enriching beneficial butyrate-producing bacteria.Importantly,butyrate inhibited the NF-κB pathway activation,and reduced the secretion of corresponding inflammatory factors in T cells.Our study highlights the critical role of dysbiosis in gut dysfunction-induced musculoskeletal loss and underscores the therapeutic potential of B.lactis A6.These discoveries offer new microbiome directions for translational and clinical research,providing promising strategies for preventing and managing musculoskeletal diseases.展开更多
Objective:To evaluate the efficacy and safety of transcutaneous electrical acupoint stimulation(TEAS)for muscle atrophy in patients with immobilization after surgical fixation of foot and ankle fractures.Methods:This ...Objective:To evaluate the efficacy and safety of transcutaneous electrical acupoint stimulation(TEAS)for muscle atrophy in patients with immobilization after surgical fixation of foot and ankle fractures.Methods:This was a two-arm randomized controlled trial wherein 80 patients were recruited and divided into control(n=40)and intervention(n=40)groups.The control group received conventional orthopedic treatment,whereas the intervention group received TEAS and conventional treatment.The intervention group received TEAS 3 times a week for 30 min each time for 8 weeks.The primary out-comes were muscle thickness(MT)and cross-sectional area(CSA)of the rectus femoris and gastroc-nemius muscles,whereas the secondary outcome measure was echo intensity(EI).Data were collected before the fixation operations(baseline assessment)and 4 and 8 weeks after intervention.Results:Compared with baseline,the MT and CSA were reduced in both groups by the end of treatment,whereas EI increased in both groups.At week 4,the reduction in the rectus femoris CSA in the inter-vention group was significantly lower than that in the control group(P=0.02);however,the between-group differences in the MT and EI(all P>0.05)were not significant.No serious adverse events were observed in either group.Conclusion:Our study showed that TEAS can improve muscle atrophy by attenuating the decline in the muscle CSA.Because this was only a pilot trial,subsequent studies will need longer follow-ups and larger sample sizes.展开更多
1.Background When searching for the term“muscle power”on Google Scholar,about 3.7 million hits come up in 60 ms,and for the past 3 years,there were approximately 225 yearly peer-reviewed publications dealing with mu...1.Background When searching for the term“muscle power”on Google Scholar,about 3.7 million hits come up in 60 ms,and for the past 3 years,there were approximately 225 yearly peer-reviewed publications dealing with muscle power.Muscle power has been used to assess and predict athletic performance,to determine muscle rehabilitation following injury or disease,to measure functional decline as occurs in aging,and many other topics.展开更多
Sarcomerogenesis,the addition of serial sarcomeres in skeletal muscle myofibrils and fibres,is a natural occurrence during growth and maturation of animals,including humans.However,the detailed mechanisms that allow f...Sarcomerogenesis,the addition of serial sarcomeres in skeletal muscle myofibrils and fibres,is a natural occurrence during growth and maturation of animals,including humans.However,the detailed mechanisms that allow for sarcomerogenesis are not fully understood.In some diseases,such as cerebral palsy in children,sarcomerogenesis appears to be inhibited or at least reduced,1,2 often causing severe restrictions in muscle and joint function.展开更多
Background:Hamstring muscle strain injury(hamstring injury) due to excessive muscle strain is one of the most common injuries in sports.The relationships among hamstring muscle optimal lengths and hamstring flexibilit...Background:Hamstring muscle strain injury(hamstring injury) due to excessive muscle strain is one of the most common injuries in sports.The relationships among hamstring muscle optimal lengths and hamstring flexibility and strength were unknown,which limited our understanding of risk factors for hamstring injury.This study was aimed at examining the relationships among hamstring muscle optimal length and flexibility and strength.Methods:Hamstring flexibility and isokinetic strength data and three-dimensional kinematic data for hamstring isokinetic tests were collected for11 male and 10 female recreational athletes.The maximal hamstring muscle forces,optimal lengths,and muscle lengths in standing were determined for each participant.Results:Hamstring muscle optimal lengths were significantly correlated to hamstring flexibility score and gender,but not to hamstring strength.The greater the flexibility score,the longer the hamstring muscle optimal length.With the same flexibility score,females tend to have shorter hamstring optimal muscle lengths compared to males.Hamstring flexibility score and hamstring strength were not correlated.Hamstring muscle optimal lengths were longer than but not significantly correlated to corresponding hamstring muscle lengths in standing.Conclusion:Hamstring flexibility may affect hamstring muscle maximum strain in movements.With similar hamstring flexibility,hamstring muscle maximal strain in a given movement may be different between genders.Hamstring muscle lengths in standing should not be used as an approximation of their optimal lengths in calculation of hamstring muscle strain in musculoskeletal system modeling.展开更多
Skeletal muscle alterations(SMA)are increasingly recognized as both contributors and consequences of metabolic dysfunction-associated steatotic liver disease(MASLD),affecting disease progression and outcomes.Sarcopeni...Skeletal muscle alterations(SMA)are increasingly recognized as both contributors and consequences of metabolic dysfunction-associated steatotic liver disease(MASLD),affecting disease progression and outcomes.Sarcopenia is common in patients with MASLD,with a prevalence ranging from 20%to 40%depending on the population and diagnostic criteria used.In advanced stages,such as metabolic dysfunction-associated steatohepatitis and fibrosis,its prevalence is even higher.Sarcopenia exacerbates insulin resistance,systemic inflammation,and oxidative stress,all of which worsen MASLD.It is an independent risk factor for fibrosis progression and poor outcomes including mortality.Myosteatosis refers to the abnormal accumulation of fat within muscle tissue,leading to decreased muscle quality.Myosteatosis is prevalent(>30%)in patients with MASLD,especially those with obesity or type 2 diabetes,although this can vary with the imaging techniques used.It reduces muscle strength and metabolic efficiency,further contributing to insulin resistance and is usually associated with advanced liver disease,cardiovascular complications,and lower levels of physical activity.Altered muscle metabolism,which includes mitochondrial dysfunction and impaired amino acid metabolism,has been reported in metabolic syndromes,including MASLD,although its actual prevalence is unknown.Altered muscle metabolism limits glucose uptake and oxidation,worsening hyperglycemia and lipotoxicity.Reduced muscle perfusion and oxygenation due to endothelial dysfunction and systemic metabolic alterations are common in MASLD associated with comorbidities,such as obesity,hypertension,and atherosclerosis.It decrea-ses the muscle capacity for aerobic metabolism,leading to fatigue and reduced physical activity in patients with MASLD,aggravating metabolic dysfunction.Various SMA in MASLD worsen insulin resistance and hepatic fat accumulation,may accelerate progression to fibrosis and cirrhosis,and increase the risk of cardiovascular disease and mortality.Management strategies for SMA include resistance training,aerobic exercise,and nutritional support(e.g.,high-protein diets,vitamin D,and omega-3 fatty acids),which are essential for mitigating skeletal muscle loss and improving outcomes.However,pharmacological agents that target the muscle and liver(such as glucagon-like peptide-1 receptor agonists)show promise but have not yet been approved for the treatment of MASLD.展开更多
BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of cor...BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.展开更多
It is a pleasure to contribute a commentary on the very interesting review by Dr.Orcioli-Silva and colleagues1 on the simultaneous measurements of cerebral cortex and muscle tissue oxygenation during exercise in healt...It is a pleasure to contribute a commentary on the very interesting review by Dr.Orcioli-Silva and colleagues1 on the simultaneous measurements of cerebral cortex and muscle tissue oxygenation during exercise in healthy adults using near-infrared spectroscopy(NIRS).The first NIRS measurements of the cerebral cortex and muscle were performed on humans in 19772 and 1982,3 respectively.展开更多
1.Exercise enhances muscle function and insulin sensitivity Skeletal muscle plays a fundamental role in not only locomotion,but also systemic metabolism.In people with type 2 diabetes,skeletal muscle is a major site o...1.Exercise enhances muscle function and insulin sensitivity Skeletal muscle plays a fundamental role in not only locomotion,but also systemic metabolism.In people with type 2 diabetes,skeletal muscle is a major site of insulin resistance,with impaired insulin signaling and reduced glucose transport activity contributing to metabolic dysfunction.展开更多
BACKGROUND Poor musculoskeletal recovery following foot and ankle injury can result in chronic instability and persistent muscle weakness.Preliminary evidence has shown that blood flow restriction(BFR)rehabilitation c...BACKGROUND Poor musculoskeletal recovery following foot and ankle injury can result in chronic instability and persistent muscle weakness.Preliminary evidence has shown that blood flow restriction(BFR)rehabilitation can increase muscle strength and stability,helping to restore physical function and prevent repeated injury.AIM To determine whether BFR is more effective than traditional rehabilitation in improving muscle strength,size,and stability after foot and ankle injury.METHODS A systematic review and meta-analysis were performed.Articles were retrieved from MEDLINE,EMBASE,and CENTRAL databases.Included studies compared the effectiveness of BFR rehabilitation to traditional foot and ankle rehabilitation exercises.Eligible patients were those with a history of foot or ankle injury.Muscle strength,size,and dynamic balance were assessed by comparing impro vements in peak torque,cross-sectional area,and percent muscle activation.Methodological quality assessments were performed using the PEDro scale and Methodological Index for Non-Randomized Studies(MINORS).RESULTS Ten studies met the inclusion criteria.Five studies were of good to excellent quality according to the PEDro scale,and 5 studies were of moderate quality as per the MINORS criteria.Two studies compared the effect of BFR and non-BFR rehabilitation on muscle strength;the overall mean difference between the BRF and non-BFR groups was 0.09[95%CI:(0.05,0.12),P<0.0001].Two studies analyzed muscle activation following BFR and non-BFR rehabilitation;the overall mean difference between the BRF and non-BFR groups was 0.09[95%CI:(0.05,0.12),P<0.0001].Data on dynamic balance was synthesized from two studies;the mean difference between the BFR and control groups was 1.23[95%CI:(-1.55,4.01);P=0.39].CONCLUSION BFR rehabilitation is more effective than non-BFR rehabilitation at improving muscle strength and activation following foot and ankle injury.Additional studies are needed to develop a standardized BFR training protocol.展开更多
Background Percutaneous coronary intervention(PCI)is a widely utilized revascularization technique for coronary artery disease(CAD).While clinical and biomarker-based prognostic tools are standard for predicting outco...Background Percutaneous coronary intervention(PCI)is a widely utilized revascularization technique for coronary artery disease(CAD).While clinical and biomarker-based prognostic tools are standard for predicting outcomes,there is growing interest in sarcopenia as a marker of frailty and its potential role in long-term prognosis.The prognostic value of the psoas muscle index(PMI),a sarcopenia metric,remains underexplored in PCI populations regarding long term survival.Methods This single-center retrospective cohort study evaluated 177 patients undergoing PCI from 2015 to 2019.PMI was calculated from computed tomography(CT)imaging at the L3 vertebral level using the formula:(left psoas area+right psoas area)/height2 and expressed in cm2/m2.Sarcopenia was defined as the lowest sex-specific PMI quartile.Primary outcomes included 5-year all-cause mortality and 3-point major adverse cardiovascular events(MACE:non-fatal myocardial infarction,ischemic stroke,and cardiac death).Binary linear regression and Cox proportional hazards models were utilized to determine associations between PMI and outcomes Results Sarcopenic patients exhibited significantly higher 5-year all-cause mortality compared to non-sarcopenic counterparts(64.4%vs.35.6%,P<0.001),while no significant difference was observed in 3-point MACE incidence(55.6%vs.51.4%,P=0.520).Sarcopenia was independently associated with all-cause mortality on binary logistic regression(OR=3.49;95%CI:1.69–7.19;P=0.0007),but not MACE(OR=1.00;95%CI:0.50–1.98;P=0.99).In a multivariable Cox regression model,sarcopenia was associated with increased hazard of mortality(HR=1.60;95%CI:0.96–2.66;P=0.071),though this did not reach statistical significance.Kaplan-Meier analysis demonstrated significantly reduced survival among sarcopenic patients(χ2=6.13,P=0.0133).Conclusions PMI is a significant independent predictor of 5-year all-cause mortality in PCI patients,underscoring the prognostic importance of assessing skeletal muscle mass in this population.展开更多
Metabolic dysfunction-associated steatotic liver disease is increasingly understood to be closely linked with skeletal muscle alterations,such as sarcopenia,myoste-atosis,and metabolic dysregulation,which play a key r...Metabolic dysfunction-associated steatotic liver disease is increasingly understood to be closely linked with skeletal muscle alterations,such as sarcopenia,myoste-atosis,and metabolic dysregulation,which play a key role in its pathogenesis and progression.Recent literature,including an article by Isakov,highlights the bidirectional interactions between muscle and liver,underscoring shared mechanisms such as insulin resistance,inflammation,and myokine imbalance.This letter reflects on key findings from the review,noting strengths such as its integration of mechanistic insights,discussion of emerging biomarkers,and emphasis on lifestyle and pharmacological interventions.It also identifies areas for further development,including standardization of diagnostic criteria and more rigorous evaluation of translational data.As muscle health gains promi-nence in metabolic dysfunction-associated steatotic liver disease research,multidisciplinary strategies that target both hepatic and muscular systems may offer more effective avenues for prevention and treatment.展开更多
The maximal force a muscle can exert depends on its length,which has been explained by the sliding filament theory on the sarcomere level.1 A longer muscle can act over a greater range of motion and has more sarcomere...The maximal force a muscle can exert depends on its length,which has been explained by the sliding filament theory on the sarcomere level.1 A longer muscle can act over a greater range of motion and has more sarcomeres in series,which increases its capacity to produce force at a specific muscle contraction velocity because each sarcomere contracts at a lower velocity.展开更多
Skeletal muscle dysfunction is a common extrapulmonary comorbidity of chronic obstructive pulmonary disease(COPD) and is associated with decreased quality-of-life and survival in patients. The autophagy lysosome pathw...Skeletal muscle dysfunction is a common extrapulmonary comorbidity of chronic obstructive pulmonary disease(COPD) and is associated with decreased quality-of-life and survival in patients. The autophagy lysosome pathway is one of the proteolytic systems that significantly affect skeletal muscle structure and function. Intriguingly, both promoting and inhibiting autophagy have been observed to improve COPD skeletal muscle dysfunction, yet the mechanism is unclear. This paper first reviewed the effects of macroautophagy and mitophagy on the structure and function of skeletal muscle in COPD, and then explored the mechanism of autophagy mediating the dysfunction of skeletal muscle in COPD. The results showed that macroautophagy-and mitophagy-related proteins were significantly increased in COPD skeletal muscle. Promoting macroautophagy in COPD improves myogenesis and replication capacity of muscle satellite cells, while inhibiting macroautophagy in COPD myotubes increases their diameters. Mitophagy helps to maintain mitochondrial homeostasis by removing impaired mitochondria in COPD. Autophagy is a promising target for improving COPD skeletal muscle dysfunction, and further research should be conducted to elucidate the specific mechanisms by which autophagy mediates COPD skeletal muscle dysfunction, with the aim of enhancing our understanding in this field.展开更多
Background While maternal proline(Pro)supplementation has demonstrated efficacy in enhancing placental angiogenesis and farrowing efficiency in swine,its regulatory role in fetal skeletal muscle ontogeny remains undef...Background While maternal proline(Pro)supplementation has demonstrated efficacy in enhancing placental angiogenesis and farrowing efficiency in swine,its regulatory role in fetal skeletal muscle ontogeny remains undefined.This study systematically evaluated the temporal-specific impacts of dietary Pro supplementation during critical phases of fetal myogenesis(encompassing primary myofiber formation and secondary myofiber hyperplasia)on offspring muscle development.A total of 120 sows with similar farrowing schedules were assigned to three groups:CON(basal diet),ST-Pro(0.5%Pro supplementation during secondary myofiber formation period,from d 60 gestation to farrowing),LT-Pro(0.5%Pro supplementation spanning primary and secondary myofiber formation period:from d 20 gestation to farrowing).Results LT-Pro group significantly increased the longissimus dorsi(LD)muscle mass per unit body weight in newborn piglets compared to CON group(P<0.05),while no such effect was observed in the ST-Pro group.Metabolomic profiling revealed elevated Pro,lysine,and tryptophan levels in the LD muscle of LT-Pro group piglets,accompanied by reduced branched-chain amino acids(BCAAs;leucine,isoleucine,and valine)in both serum and muscle(P<0.05).Histological analysis demonstrated a 45.74%increase in myofiber cross-sectional area in the LT-Pro group(P<0.05).At the molecular level,LT-Pro group piglets exhibited upregulated mRNA expression levels of myogenic regulatory genes(MYOD1,MYF6)and the cell cycle accelerator CCND1(P<0.05),coupled with activation of the STAT3 signaling pathway(phosphorylated STAT3 protein increased by 2.53-fold,P<0.01).Furthermore,Pro supplementation enhanced oxidative metabolism,evidenced by elevated mitochondrial biogenesis markers(the mRNA expression levels of PPARGC1A,OPA1,and SQSTM1)and a 61.58%increase in succinate dehydrogenase activity(P<0.05).Notably,LT-Pro group piglets showed a selective shift toward slow-twitch oxidative fibers,with both MyHC1 mRNA and protein expression levels significantly upregulated(P<0.05),while the mRNA expression levels of MyHCIIb showed no significant change.Conclusions This study identified the primary fiber formation period as a critical window.Supplementation with Pro during G20–114 reprogrammed offspring skeletal muscle development through STAT3-CCND1-mediated myoblast proliferation,enhanced mitochondrial bioenergetics,and oxidative fiber specification.However,no such effects were observed during G60–114.These findings propose maternal Pro intervention as a novel strategy to enhance muscle yield and metabolic efficiency in swine production,with potential applications for improving meat quality traits linked to oxidative muscle phenotypes.展开更多
Intensive care unit(ICU)acquired sarcopenia and myosteatosis are increasingly recognized complications of critical illness,characterized by a rapid loss of ske-letal muscle mass,quality,and function.These conditions r...Intensive care unit(ICU)acquired sarcopenia and myosteatosis are increasingly recognized complications of critical illness,characterized by a rapid loss of ske-letal muscle mass,quality,and function.These conditions result from a complex interplay of systemic inflammation,immobilization,catabolic stress,mitochon-drial dysfunction,and immune dysregulation,often culminating in impaired recovery,prolonged hospitalization,and increased long-term mortality.First identified in survivors of sepsis and prolonged mechanical ventilation,these muscle abnormalities were initially described using computed tomography-based assessments of muscle area and density.Subsequent advances in imaging,biomarker discovery,and functional testing have enabled earlier detection and risk stratification across diverse ICU populations.While nutritional optimization and early mobilization form the cornerstone of current prevention and treatment strategies,the emergence of novel approaches,including automated artificial intelligence-based screening,neuromuscular electrical stimulation,and targeted pharmacologic therapies,has broadened the clinical scope of interventions.Despite their significant prognostic implications,ICU-acquired sarcopenia and myosteatosis remain under-recognized in routine critical care practice.This mini-review aims to synthesize current knowledge regarding their pathophysiology,available diagnostic modalities,prognostic relevance,and the evolving landscape of therapeutic strategies for long-term functional recovery in critically ill patients.展开更多
BACKGROUND Improving our understanding of whether increased dietary intake ofω-3 polyunsaturated fatty acids(PUFAs)is beneficial for increasing skeletal muscle mass in patients with metabolic dysfunction-associated f...BACKGROUND Improving our understanding of whether increased dietary intake ofω-3 polyunsaturated fatty acids(PUFAs)is beneficial for increasing skeletal muscle mass in patients with metabolic dysfunction-associated fatty liver disease(MAFLD)could provide an important clinical evidence base for the development of relevant nutritional guidelines.AIM To investigate the effect of total dietaryω-3 PUFAs and their subtypes on skeletal muscle mass in MAFLD.METHODS This cross-sectional study involved 2316 participants from four National Health and Nutrition Examination Survey cycles between 2011 and 2018.Dietary intake ofω-3 PUFAs was collected through 24-hour dietary recall interviews.Appendicular skeletal muscle mass index(ASMI)was calculated by dividing ASM in kilograms by height squared.RESULTS The multiple linear regression model showed significant relationships for dietary intake of totalω-3 PUFAs with higher ASMI(β:0.06,95%CI:0.01-0.11)in MAFLD patients.Dietary a-linolenic acid(ALA)(β:0.06,95%CI:0.01-0.12),docosapentaenoic acid(β:1.28,95%CI:0.01-2.54),and docosahexaenoic acid(DHA)(β:0.19,95%CI:0.01-0.37)were significantly associated with higher ASMI,while intake of stearidonic acid and eicosapentaenoic acid did not improve ASMI.In patients with high probability of liver fibrosis,dietary intake of ALA was associated with higher ASMI(β:0.11,95%CI:0.03-0.18).Stratified analysis found that DHA was associated with higher ASMI in patients with obesity and higher metabolic risk.CONCLUSION Increasing dietary intake ofω-3 PUFAs improved skeletal muscle health in patients with MAFLD.Patient with obesity and higher metabolic risk were more likely to benefit from intake of DHA.展开更多
Obesity affects over 1 billion people worldwide and is linked to more than 230 health complications,with cardiovascular disease being a leading cause of mortality.Losing 5%-10%of body weight is considered clinically s...Obesity affects over 1 billion people worldwide and is linked to more than 230 health complications,with cardiovascular disease being a leading cause of mortality.Losing 5%-10%of body weight is considered clinically significant for improving health.This weight loss can be achieved through pharmacotherapy,including glucagon-like peptide 1(GLP-1)receptor agonists,GLP-1/glucosedependent insulinotropic peptide dual receptor agonists,and GLP-1/glucosedependent insulinotropic peptide/glucagon triple receptor agonists(such as semaglutide,tirzepatide,and retatrutide,respectively).While much of the weight loss comes from fat mass,these treatments also result in the loss of lean mass,including muscle.This loss of muscle may contribute to difficulties in maintaining weight over the long term and can lead to sarcopenia.Therefore,the focus of new anti-obesity treatments should be primarily on reducing fat mass while minimizing the loss of muscle mass,ideally promoting muscle gain.Research focusing on human myocytes has identified more than 600 myokines associated with muscle contraction,which may play a crucial role in preserving both muscle mass and function.We explored the potential of new anti-obesity agents and their combinations with incretin-based therapies to achieve these outcomes.Further studies are needed to better understand the functional implications of lean mass expansion during weight loss and weight maintenance programs.展开更多
文摘BACKGROUND Perioperative anesthesia management of obese patients presents significant challenges as traditional total body weight-based dosing fails to achieve optimal anesthetic effects due to altered pharmacokinetic characteristics including abnormal drug distribution and clearance.Rocuronium exhibits markedly different distribution patterns in obese patients,with conventional weight correction methods inadequately addressing individual muscle mass variations that critically influence drug distribution.AIM To investigate the quantitative relationship between skeletal muscle index(SMI)and rocuronium distribution volume in obese colorectal cancer patients,establish a population pharmacokinetic model,and develop individualized dosing strategies based on muscle mass.METHODS A retrospective cohort study was conducted,including 100 obese patients(body mass index≥30 kg/m^(2))who underwent elective radical colorectal cancer surgery at our hospital from June 2023 to January 2025.Skeletal muscle mass was measured using InBody 260 body composition analyzer and SMI was calculated to assess muscle mass,with male SMI<7.0 kg/m^(2) and female SMI<5.7 kg/m^(2)as diagnostic criteria for sarcopenia.Plasma rocuronium concentrations were detected by liquid chromatography-tandem mass spectrometry/mass spectrometry,and nonlinear mixed-effect modeling was used to establish population pharmacokinetic modeling.Stepwise regression was used to screen covariates,and dosing regimens were optimized through Monte Carlo simulation.The primary endpoint was targeted plasma concentration achievement rate,and the secondary endpoint was postoperative residual muscle relaxation incidence.RESULTS Among 100 patients,35(35.0%)had sarcopenia and 65(65.0%)did not.Patients in the sarcopenia group were older(64.1±9.8 years vs 54.2±10.9 years,P<0.001)and had significantly lower SMI(6.2±0.8 kg/m^(2)vs 8.4±1.2 kg/m^(2),P<0.001).SMI showed strong positive correlation with rocuronium steady-state distribution volume(r=0.718,P<0.001)and moderate negative correlation with clearance(r=-0.502,P<0.001).A two-compartment population pharmacokinetic model was successfully established,with SMI being the most important covariate affecting central compartment distribution volume(△OFV=-41.2,P<0.001).Model validation showed bootstrap successful convergence rate of 92.3%,and 92.1%of observed values fell within prediction intervals in predicted concentration versus predicted concentration.The SMI-based individualized dosing regimen improved target exposure achievement rate from 82.0%in traditional regimen to 93.5%(P=0.009),and reduced postoperative residual muscle relaxation incidence from 13.0%to 3.5%(P=0.018).The sarcopenia group showed the most significant improvement in achievement rate,from 71.4%to 93.8%(P=0.017).CONCLUSION SMI shows strong correlation with rocuronium distribution volume in obese colorectal cancer patients and is a key factor affecting drug distribution.SMI-based individualized dosing strategies can significantly improve target exposure achievement rate and reduce postoperative residual muscle relaxation incidence,providing scientific evidence for precision anesthesia management in obese patients.
文摘The“longevity protein”SIRT5 could hold the key to delaying age-related muscle decline.A study led by researchers from the Institute of Zoology(IOZ)of the Chinese Academy of Sciences and Capital Medical University in Beijing reveals that SIRT5 mitigates skeletal muscle aging by blocking pro-inflammatory pathways.Published in Nature Metabolism on March 14,2025,the work identifies SIRT5’s interaction with protein kinase TBK1 as critical to preserving muscle mass and function.
基金supported by funding from the National Natural Science Foundation of China(82272478,82002330,82202728)the National Key R&D Program of China(No.2022YFF1100100)the Natural Science Foundation of Beijing(L222086).
文摘Systematic bone and muscle loss is a complex metabolic disease,which is frequently linked to gut dysfunction,yet its etiology and treatment remain elusive.While probiotics show promise in managing diseases through microbiome modulation,their therapeutic impact on gut dysfunction-induced bone and muscle loss remains to be elucidated.Employing dextran sulfate sodium(DSS)-induced gut dysfunction model and wide-spectrum antibiotics(ABX)-treated mice model,our study revealed that gut dysfunction instigates muscle and bone loss,accompanied by microbial imbalances.Importantly,Bifidobacterium animalis subsp.lactis A6(B.lactis A6)administration significantly ameliorated muscle and bone loss by modulating gut microbiota composition and enhancing butyrate-producing bacteria.This intervention effectively restored depleted butyrate levels in serum,muscle,and bone tissues caused by gut dysfunction.Furthermore,butyrate supplementation mitigated musculoskeletal loss by repairing the damaged intestinal barrier and enriching beneficial butyrate-producing bacteria.Importantly,butyrate inhibited the NF-κB pathway activation,and reduced the secretion of corresponding inflammatory factors in T cells.Our study highlights the critical role of dysbiosis in gut dysfunction-induced musculoskeletal loss and underscores the therapeutic potential of B.lactis A6.These discoveries offer new microbiome directions for translational and clinical research,providing promising strategies for preventing and managing musculoskeletal diseases.
基金supported by the funded project(HYZHX M05005)in the field of space medical experiments of manned spaceflight engineering.
文摘Objective:To evaluate the efficacy and safety of transcutaneous electrical acupoint stimulation(TEAS)for muscle atrophy in patients with immobilization after surgical fixation of foot and ankle fractures.Methods:This was a two-arm randomized controlled trial wherein 80 patients were recruited and divided into control(n=40)and intervention(n=40)groups.The control group received conventional orthopedic treatment,whereas the intervention group received TEAS and conventional treatment.The intervention group received TEAS 3 times a week for 30 min each time for 8 weeks.The primary out-comes were muscle thickness(MT)and cross-sectional area(CSA)of the rectus femoris and gastroc-nemius muscles,whereas the secondary outcome measure was echo intensity(EI).Data were collected before the fixation operations(baseline assessment)and 4 and 8 weeks after intervention.Results:Compared with baseline,the MT and CSA were reduced in both groups by the end of treatment,whereas EI increased in both groups.At week 4,the reduction in the rectus femoris CSA in the inter-vention group was significantly lower than that in the control group(P=0.02);however,the between-group differences in the MT and EI(all P>0.05)were not significant.No serious adverse events were observed in either group.Conclusion:Our study showed that TEAS can improve muscle atrophy by attenuating the decline in the muscle CSA.Because this was only a pilot trial,subsequent studies will need longer follow-ups and larger sample sizes.
文摘1.Background When searching for the term“muscle power”on Google Scholar,about 3.7 million hits come up in 60 ms,and for the past 3 years,there were approximately 225 yearly peer-reviewed publications dealing with muscle power.Muscle power has been used to assess and predict athletic performance,to determine muscle rehabilitation following injury or disease,to measure functional decline as occurs in aging,and many other topics.
文摘Sarcomerogenesis,the addition of serial sarcomeres in skeletal muscle myofibrils and fibres,is a natural occurrence during growth and maturation of animals,including humans.However,the detailed mechanisms that allow for sarcomerogenesis are not fully understood.In some diseases,such as cerebral palsy in children,sarcomerogenesis appears to be inhibited or at least reduced,1,2 often causing severe restrictions in muscle and joint function.
基金supported by the National Natural Science Foundation of China(No.81572212)the Fundamental Research Funds for the Central Universities of China(No.2016BS013)
文摘Background:Hamstring muscle strain injury(hamstring injury) due to excessive muscle strain is one of the most common injuries in sports.The relationships among hamstring muscle optimal lengths and hamstring flexibility and strength were unknown,which limited our understanding of risk factors for hamstring injury.This study was aimed at examining the relationships among hamstring muscle optimal length and flexibility and strength.Methods:Hamstring flexibility and isokinetic strength data and three-dimensional kinematic data for hamstring isokinetic tests were collected for11 male and 10 female recreational athletes.The maximal hamstring muscle forces,optimal lengths,and muscle lengths in standing were determined for each participant.Results:Hamstring muscle optimal lengths were significantly correlated to hamstring flexibility score and gender,but not to hamstring strength.The greater the flexibility score,the longer the hamstring muscle optimal length.With the same flexibility score,females tend to have shorter hamstring optimal muscle lengths compared to males.Hamstring flexibility score and hamstring strength were not correlated.Hamstring muscle optimal lengths were longer than but not significantly correlated to corresponding hamstring muscle lengths in standing.Conclusion:Hamstring flexibility may affect hamstring muscle maximum strain in movements.With similar hamstring flexibility,hamstring muscle maximal strain in a given movement may be different between genders.Hamstring muscle lengths in standing should not be used as an approximation of their optimal lengths in calculation of hamstring muscle strain in musculoskeletal system modeling.
基金Supported by Russian Science Foundation,No.19-76-30014.
文摘Skeletal muscle alterations(SMA)are increasingly recognized as both contributors and consequences of metabolic dysfunction-associated steatotic liver disease(MASLD),affecting disease progression and outcomes.Sarcopenia is common in patients with MASLD,with a prevalence ranging from 20%to 40%depending on the population and diagnostic criteria used.In advanced stages,such as metabolic dysfunction-associated steatohepatitis and fibrosis,its prevalence is even higher.Sarcopenia exacerbates insulin resistance,systemic inflammation,and oxidative stress,all of which worsen MASLD.It is an independent risk factor for fibrosis progression and poor outcomes including mortality.Myosteatosis refers to the abnormal accumulation of fat within muscle tissue,leading to decreased muscle quality.Myosteatosis is prevalent(>30%)in patients with MASLD,especially those with obesity or type 2 diabetes,although this can vary with the imaging techniques used.It reduces muscle strength and metabolic efficiency,further contributing to insulin resistance and is usually associated with advanced liver disease,cardiovascular complications,and lower levels of physical activity.Altered muscle metabolism,which includes mitochondrial dysfunction and impaired amino acid metabolism,has been reported in metabolic syndromes,including MASLD,although its actual prevalence is unknown.Altered muscle metabolism limits glucose uptake and oxidation,worsening hyperglycemia and lipotoxicity.Reduced muscle perfusion and oxygenation due to endothelial dysfunction and systemic metabolic alterations are common in MASLD associated with comorbidities,such as obesity,hypertension,and atherosclerosis.It decrea-ses the muscle capacity for aerobic metabolism,leading to fatigue and reduced physical activity in patients with MASLD,aggravating metabolic dysfunction.Various SMA in MASLD worsen insulin resistance and hepatic fat accumulation,may accelerate progression to fibrosis and cirrhosis,and increase the risk of cardiovascular disease and mortality.Management strategies for SMA include resistance training,aerobic exercise,and nutritional support(e.g.,high-protein diets,vitamin D,and omega-3 fatty acids),which are essential for mitigating skeletal muscle loss and improving outcomes.However,pharmacological agents that target the muscle and liver(such as glucagon-like peptide-1 receptor agonists)show promise but have not yet been approved for the treatment of MASLD.
文摘BACKGROUND Pain in the back or pelvis or fear of back pain may affect the timing or cocontraction of the core muscles.In both static and dynamic movements,the Sahrmann core stability test provides an assessment of core muscle activation and a person's ability to stabilize the lumbopelvic complex.Preparatory cues and images can be used to increase the activation of these muscles.To attain optimal movement patterns,it will be necessary to determine what cueing will give the most effective results for core stability.AIM To investigate the effects of external and internal cues on core muscle activation during the Sahrmann five-level core stability test.METHODS Total 68 participants(21.83±3.47 years)were randomly allocated to an external(n=35)or internal cue group(n=33).Participants performed the Sahrmann fivelevel core stability test without a cue as baseline and the five-level stability exercises with an internal or external cue.External cue group received a pressure biofeedback unit(PBU),and the internal cue group received an audio cue.A Delsys Trigno^(TM)surface electromyography unit was used for muscle activation from the rectus abdominis,external oblique,and transverse abdominis/internal oblique muscles.RESULTS Linear mixed effects model analysis showed that cueing had a significant effect on core muscle activation(P=0.001);however,there was no significant difference between cue types(internal or external)(P=0.130).CONCLUSION Both external and internal cueing have significant effects on core muscle activation during the Sahrmann five-level core stability test and the PBU does not create higher muscle activation than internal cueing.
文摘It is a pleasure to contribute a commentary on the very interesting review by Dr.Orcioli-Silva and colleagues1 on the simultaneous measurements of cerebral cortex and muscle tissue oxygenation during exercise in healthy adults using near-infrared spectroscopy(NIRS).The first NIRS measurements of the cerebral cortex and muscle were performed on humans in 19772 and 1982,3 respectively.
基金supported by the Swedish Research Council(201500165)a Wallenberg Scholars Award from the Knut and Alice Wallenberg Foundation(KAW 2023.0312)The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent research center at the University of Copenhagen,partially funded by an unrestricted donation from the Novo Nordisk Foundation(NNF23SA0084103).
文摘1.Exercise enhances muscle function and insulin sensitivity Skeletal muscle plays a fundamental role in not only locomotion,but also systemic metabolism.In people with type 2 diabetes,skeletal muscle is a major site of insulin resistance,with impaired insulin signaling and reduced glucose transport activity contributing to metabolic dysfunction.
文摘BACKGROUND Poor musculoskeletal recovery following foot and ankle injury can result in chronic instability and persistent muscle weakness.Preliminary evidence has shown that blood flow restriction(BFR)rehabilitation can increase muscle strength and stability,helping to restore physical function and prevent repeated injury.AIM To determine whether BFR is more effective than traditional rehabilitation in improving muscle strength,size,and stability after foot and ankle injury.METHODS A systematic review and meta-analysis were performed.Articles were retrieved from MEDLINE,EMBASE,and CENTRAL databases.Included studies compared the effectiveness of BFR rehabilitation to traditional foot and ankle rehabilitation exercises.Eligible patients were those with a history of foot or ankle injury.Muscle strength,size,and dynamic balance were assessed by comparing impro vements in peak torque,cross-sectional area,and percent muscle activation.Methodological quality assessments were performed using the PEDro scale and Methodological Index for Non-Randomized Studies(MINORS).RESULTS Ten studies met the inclusion criteria.Five studies were of good to excellent quality according to the PEDro scale,and 5 studies were of moderate quality as per the MINORS criteria.Two studies compared the effect of BFR and non-BFR rehabilitation on muscle strength;the overall mean difference between the BRF and non-BFR groups was 0.09[95%CI:(0.05,0.12),P<0.0001].Two studies analyzed muscle activation following BFR and non-BFR rehabilitation;the overall mean difference between the BRF and non-BFR groups was 0.09[95%CI:(0.05,0.12),P<0.0001].Data on dynamic balance was synthesized from two studies;the mean difference between the BFR and control groups was 1.23[95%CI:(-1.55,4.01);P=0.39].CONCLUSION BFR rehabilitation is more effective than non-BFR rehabilitation at improving muscle strength and activation following foot and ankle injury.Additional studies are needed to develop a standardized BFR training protocol.
文摘Background Percutaneous coronary intervention(PCI)is a widely utilized revascularization technique for coronary artery disease(CAD).While clinical and biomarker-based prognostic tools are standard for predicting outcomes,there is growing interest in sarcopenia as a marker of frailty and its potential role in long-term prognosis.The prognostic value of the psoas muscle index(PMI),a sarcopenia metric,remains underexplored in PCI populations regarding long term survival.Methods This single-center retrospective cohort study evaluated 177 patients undergoing PCI from 2015 to 2019.PMI was calculated from computed tomography(CT)imaging at the L3 vertebral level using the formula:(left psoas area+right psoas area)/height2 and expressed in cm2/m2.Sarcopenia was defined as the lowest sex-specific PMI quartile.Primary outcomes included 5-year all-cause mortality and 3-point major adverse cardiovascular events(MACE:non-fatal myocardial infarction,ischemic stroke,and cardiac death).Binary linear regression and Cox proportional hazards models were utilized to determine associations between PMI and outcomes Results Sarcopenic patients exhibited significantly higher 5-year all-cause mortality compared to non-sarcopenic counterparts(64.4%vs.35.6%,P<0.001),while no significant difference was observed in 3-point MACE incidence(55.6%vs.51.4%,P=0.520).Sarcopenia was independently associated with all-cause mortality on binary logistic regression(OR=3.49;95%CI:1.69–7.19;P=0.0007),but not MACE(OR=1.00;95%CI:0.50–1.98;P=0.99).In a multivariable Cox regression model,sarcopenia was associated with increased hazard of mortality(HR=1.60;95%CI:0.96–2.66;P=0.071),though this did not reach statistical significance.Kaplan-Meier analysis demonstrated significantly reduced survival among sarcopenic patients(χ2=6.13,P=0.0133).Conclusions PMI is a significant independent predictor of 5-year all-cause mortality in PCI patients,underscoring the prognostic importance of assessing skeletal muscle mass in this population.
文摘Metabolic dysfunction-associated steatotic liver disease is increasingly understood to be closely linked with skeletal muscle alterations,such as sarcopenia,myoste-atosis,and metabolic dysregulation,which play a key role in its pathogenesis and progression.Recent literature,including an article by Isakov,highlights the bidirectional interactions between muscle and liver,underscoring shared mechanisms such as insulin resistance,inflammation,and myokine imbalance.This letter reflects on key findings from the review,noting strengths such as its integration of mechanistic insights,discussion of emerging biomarkers,and emphasis on lifestyle and pharmacological interventions.It also identifies areas for further development,including standardization of diagnostic criteria and more rigorous evaluation of translational data.As muscle health gains promi-nence in metabolic dysfunction-associated steatotic liver disease research,multidisciplinary strategies that target both hepatic and muscular systems may offer more effective avenues for prevention and treatment.
文摘The maximal force a muscle can exert depends on its length,which has been explained by the sliding filament theory on the sarcomere level.1 A longer muscle can act over a greater range of motion and has more sarcomeres in series,which increases its capacity to produce force at a specific muscle contraction velocity because each sarcomere contracts at a lower velocity.
基金supported by the National Natural Science Foundation of China(No.82172551)the Health Discipline Leader Project of Shanghai Municipal Health Commission(No.2022XD044),China.
文摘Skeletal muscle dysfunction is a common extrapulmonary comorbidity of chronic obstructive pulmonary disease(COPD) and is associated with decreased quality-of-life and survival in patients. The autophagy lysosome pathway is one of the proteolytic systems that significantly affect skeletal muscle structure and function. Intriguingly, both promoting and inhibiting autophagy have been observed to improve COPD skeletal muscle dysfunction, yet the mechanism is unclear. This paper first reviewed the effects of macroautophagy and mitophagy on the structure and function of skeletal muscle in COPD, and then explored the mechanism of autophagy mediating the dysfunction of skeletal muscle in COPD. The results showed that macroautophagy-and mitophagy-related proteins were significantly increased in COPD skeletal muscle. Promoting macroautophagy in COPD improves myogenesis and replication capacity of muscle satellite cells, while inhibiting macroautophagy in COPD myotubes increases their diameters. Mitophagy helps to maintain mitochondrial homeostasis by removing impaired mitochondria in COPD. Autophagy is a promising target for improving COPD skeletal muscle dysfunction, and further research should be conducted to elucidate the specific mechanisms by which autophagy mediates COPD skeletal muscle dysfunction, with the aim of enhancing our understanding in this field.
基金supported by the National Natural Science Foundation of China(32272895 and 32172744).
文摘Background While maternal proline(Pro)supplementation has demonstrated efficacy in enhancing placental angiogenesis and farrowing efficiency in swine,its regulatory role in fetal skeletal muscle ontogeny remains undefined.This study systematically evaluated the temporal-specific impacts of dietary Pro supplementation during critical phases of fetal myogenesis(encompassing primary myofiber formation and secondary myofiber hyperplasia)on offspring muscle development.A total of 120 sows with similar farrowing schedules were assigned to three groups:CON(basal diet),ST-Pro(0.5%Pro supplementation during secondary myofiber formation period,from d 60 gestation to farrowing),LT-Pro(0.5%Pro supplementation spanning primary and secondary myofiber formation period:from d 20 gestation to farrowing).Results LT-Pro group significantly increased the longissimus dorsi(LD)muscle mass per unit body weight in newborn piglets compared to CON group(P<0.05),while no such effect was observed in the ST-Pro group.Metabolomic profiling revealed elevated Pro,lysine,and tryptophan levels in the LD muscle of LT-Pro group piglets,accompanied by reduced branched-chain amino acids(BCAAs;leucine,isoleucine,and valine)in both serum and muscle(P<0.05).Histological analysis demonstrated a 45.74%increase in myofiber cross-sectional area in the LT-Pro group(P<0.05).At the molecular level,LT-Pro group piglets exhibited upregulated mRNA expression levels of myogenic regulatory genes(MYOD1,MYF6)and the cell cycle accelerator CCND1(P<0.05),coupled with activation of the STAT3 signaling pathway(phosphorylated STAT3 protein increased by 2.53-fold,P<0.01).Furthermore,Pro supplementation enhanced oxidative metabolism,evidenced by elevated mitochondrial biogenesis markers(the mRNA expression levels of PPARGC1A,OPA1,and SQSTM1)and a 61.58%increase in succinate dehydrogenase activity(P<0.05).Notably,LT-Pro group piglets showed a selective shift toward slow-twitch oxidative fibers,with both MyHC1 mRNA and protein expression levels significantly upregulated(P<0.05),while the mRNA expression levels of MyHCIIb showed no significant change.Conclusions This study identified the primary fiber formation period as a critical window.Supplementation with Pro during G20–114 reprogrammed offspring skeletal muscle development through STAT3-CCND1-mediated myoblast proliferation,enhanced mitochondrial bioenergetics,and oxidative fiber specification.However,no such effects were observed during G60–114.These findings propose maternal Pro intervention as a novel strategy to enhance muscle yield and metabolic efficiency in swine production,with potential applications for improving meat quality traits linked to oxidative muscle phenotypes.
文摘Intensive care unit(ICU)acquired sarcopenia and myosteatosis are increasingly recognized complications of critical illness,characterized by a rapid loss of ske-letal muscle mass,quality,and function.These conditions result from a complex interplay of systemic inflammation,immobilization,catabolic stress,mitochon-drial dysfunction,and immune dysregulation,often culminating in impaired recovery,prolonged hospitalization,and increased long-term mortality.First identified in survivors of sepsis and prolonged mechanical ventilation,these muscle abnormalities were initially described using computed tomography-based assessments of muscle area and density.Subsequent advances in imaging,biomarker discovery,and functional testing have enabled earlier detection and risk stratification across diverse ICU populations.While nutritional optimization and early mobilization form the cornerstone of current prevention and treatment strategies,the emergence of novel approaches,including automated artificial intelligence-based screening,neuromuscular electrical stimulation,and targeted pharmacologic therapies,has broadened the clinical scope of interventions.Despite their significant prognostic implications,ICU-acquired sarcopenia and myosteatosis remain under-recognized in routine critical care practice.This mini-review aims to synthesize current knowledge regarding their pathophysiology,available diagnostic modalities,prognostic relevance,and the evolving landscape of therapeutic strategies for long-term functional recovery in critically ill patients.
基金Supported by The National Natural Science Foundation of China,No.82103356.
文摘BACKGROUND Improving our understanding of whether increased dietary intake ofω-3 polyunsaturated fatty acids(PUFAs)is beneficial for increasing skeletal muscle mass in patients with metabolic dysfunction-associated fatty liver disease(MAFLD)could provide an important clinical evidence base for the development of relevant nutritional guidelines.AIM To investigate the effect of total dietaryω-3 PUFAs and their subtypes on skeletal muscle mass in MAFLD.METHODS This cross-sectional study involved 2316 participants from four National Health and Nutrition Examination Survey cycles between 2011 and 2018.Dietary intake ofω-3 PUFAs was collected through 24-hour dietary recall interviews.Appendicular skeletal muscle mass index(ASMI)was calculated by dividing ASM in kilograms by height squared.RESULTS The multiple linear regression model showed significant relationships for dietary intake of totalω-3 PUFAs with higher ASMI(β:0.06,95%CI:0.01-0.11)in MAFLD patients.Dietary a-linolenic acid(ALA)(β:0.06,95%CI:0.01-0.12),docosapentaenoic acid(β:1.28,95%CI:0.01-2.54),and docosahexaenoic acid(DHA)(β:0.19,95%CI:0.01-0.37)were significantly associated with higher ASMI,while intake of stearidonic acid and eicosapentaenoic acid did not improve ASMI.In patients with high probability of liver fibrosis,dietary intake of ALA was associated with higher ASMI(β:0.11,95%CI:0.03-0.18).Stratified analysis found that DHA was associated with higher ASMI in patients with obesity and higher metabolic risk.CONCLUSION Increasing dietary intake ofω-3 PUFAs improved skeletal muscle health in patients with MAFLD.Patient with obesity and higher metabolic risk were more likely to benefit from intake of DHA.
文摘Obesity affects over 1 billion people worldwide and is linked to more than 230 health complications,with cardiovascular disease being a leading cause of mortality.Losing 5%-10%of body weight is considered clinically significant for improving health.This weight loss can be achieved through pharmacotherapy,including glucagon-like peptide 1(GLP-1)receptor agonists,GLP-1/glucosedependent insulinotropic peptide dual receptor agonists,and GLP-1/glucosedependent insulinotropic peptide/glucagon triple receptor agonists(such as semaglutide,tirzepatide,and retatrutide,respectively).While much of the weight loss comes from fat mass,these treatments also result in the loss of lean mass,including muscle.This loss of muscle may contribute to difficulties in maintaining weight over the long term and can lead to sarcopenia.Therefore,the focus of new anti-obesity treatments should be primarily on reducing fat mass while minimizing the loss of muscle mass,ideally promoting muscle gain.Research focusing on human myocytes has identified more than 600 myokines associated with muscle contraction,which may play a crucial role in preserving both muscle mass and function.We explored the potential of new anti-obesity agents and their combinations with incretin-based therapies to achieve these outcomes.Further studies are needed to better understand the functional implications of lean mass expansion during weight loss and weight maintenance programs.