In this paper, our focus is to introduce and investigate a class of mappings called M-asymmetric irresolute multifunctions defined between bitopological structural sets satisfying certain minimal properties. M-asymmet...In this paper, our focus is to introduce and investigate a class of mappings called M-asymmetric irresolute multifunctions defined between bitopological structural sets satisfying certain minimal properties. M-asymmetric irresolute multifunctions are point-to-set mappings defined using M-asymmetric semiopen and semiclosed sets. Some relations between M-asymmetric semicontinuous multifunctions and M-asymmetric irresolute multifunctions are established. This notion of M-asymmetric irresolute multifunctions is analog to that of irresolute multifunctions in the general topological space and, upper and lower M-asymmetric irresolute multifunctions in minimal bitopological spaces, but mathematically behaves differently.展开更多
In this present paper, we introduce and investigate a new form of mappings namely;upper and lower M-asymmetric preirresolute multifunctions defined between M-structural asymmetric topological spaces. The relationships...In this present paper, we introduce and investigate a new form of mappings namely;upper and lower M-asymmetric preirresolute multifunctions defined between M-structural asymmetric topological spaces. The relationships between the multifunctions in our sense and other types of precountinuous and preirresolute multifunctions defined on both symmetric and asymmetric topological structures are discussed.展开更多
In this paper, we investigate the normality relationship between algebroid multifunctions and their coefficient functions. We prove that the normality of a k-valued entire algebroid multifunctions family is equivalent...In this paper, we investigate the normality relationship between algebroid multifunctions and their coefficient functions. We prove that the normality of a k-valued entire algebroid multifunctions family is equivalent to their coefficient functions in some conditions. Furthermore, we obtain some new normality criteria for algebroid multifunctions families based on these results. We also provide some examples to expound that some restricted conditions of our main results are necessary.展开更多
In this paper, we aim to introduce and study some basic properties of upper and lower M-asymmetric irresolute multifunctions defined between asymmetric sets in the realm of bitopological spaces with certain minimal st...In this paper, we aim to introduce and study some basic properties of upper and lower M-asymmetric irresolute multifunctions defined between asymmetric sets in the realm of bitopological spaces with certain minimal structures as a generalization of irresolute functions deal to Crossley and Hildebrand <a href="#ref1">[1] and upper and lower irresolute Multifunctions deal to Popa <a href="#ref2">[2].展开更多
The purpose of this paper is to introduce the notions of m-asymmetric semiopen sets and M-asymmetric semicontinuous multifunctions defined between asymmetric sets satisfying certain minimal conditions in the framework...The purpose of this paper is to introduce the notions of m-asymmetric semiopen sets and M-asymmetric semicontinuous multifunctions defined between asymmetric sets satisfying certain minimal conditions in the framework of bitopological spaces. Some new characterizations of m-asymmetric semiopen sets and M-asymmetric semicontinuous multifunctions will be investigated and several fundamental properties will be obtained.展开更多
In this article the notion of repeller for multifunctions from the viewpoints of semi-bornologicul spaces is considered. The concept of lower semi-continuous multifunctions is extended by the use of semi-bornological ...In this article the notion of repeller for multifunctions from the viewpoints of semi-bornologicul spaces is considered. The concept of lower semi-continuous multifunctions is extended by the use of semi-bornological spaces. Semi-bornological vector spaces are studied. The notion of conjugacy for semi-bornological multifunctions is considered. The persistence of repeller under conjugate relation is proved.展开更多
In this paper, by providing some different conditions respect to another works, we shall present two results on absolute retractivity of some sets related to some multifunctions of the form F : X × X → Pb,cl (...In this paper, by providing some different conditions respect to another works, we shall present two results on absolute retractivity of some sets related to some multifunctions of the form F : X × X → Pb,cl (X), on complete metric spaces.展开更多
An existence result on Ky Fan type best approximation is proved. For this pur- pose, a class of factorizable multifunctions and the other one being a demicontinuous, rela- tive almost quasi-convex, onto function on an...An existence result on Ky Fan type best approximation is proved. For this pur- pose, a class of factorizable multifunctions and the other one being a demicontinuous, rela- tive almost quasi-convex, onto function on an approximately weakly compact, convex sub- set of Hausdorff locally convex topological vector space are used. As consequence, this result extends the best approximation results of Basha and Veeramani[8] and many others.展开更多
Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR clo...Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations.Here,we propose a multiscale hierarchical structure design,integrating wrinkled MXene IR shielding layer and flexible Fe_(3)O_(4)@C/PDMS microwave absorption layer.The top wrinkled MXene layer induces the intensive diffuse reflection effect,shielding IR radiation signals while allowing microwave to pass through.Meanwhile,the permeable microwaves are assimilated into the bottom Fe_(3)O_(4)@C/PDMS layer via strong magneto-electric synergy.Through theoretical and experimental optimization,the assembled stealth devices realize a near-perfect stealth capability in both X-band(8–12 GHz)and long-wave infrared(8–14μm)wavelength ranges.Specifically,it delivers a radar cross-section reduction of−20 dB m^(2),a large apparent temperature modulation range(ΔT=70℃),and a low average IR emissivity of 0.35.Additionally,the optimal device demonstrates exceptional curved surface conformability,self-cleaning capability(contact angle≈129°),and abrasion resistance(recovery time≈5 s).This design strategy promotes the development of multispectral stealth technology and reinforces its applicability and durability in complex and hostile environments.展开更多
Low-density lipoprotein receptor-related protein 1(LRP1)is a multifunctional endocytic receptor whose dysfunction is linked to developmental dysplasia of the hip,osteoporosis and osteoarthritis.Our work addresses the ...Low-density lipoprotein receptor-related protein 1(LRP1)is a multifunctional endocytic receptor whose dysfunction is linked to developmental dysplasia of the hip,osteoporosis and osteoarthritis.Our work addresses the critical question of how these skeletal pathologies emerge.Here,we show the abundant expression of LRP1 in skeletal progenitor cells at mouse embryonic stage E10.5 and onwards,especially in the perichondrium,the stem cell layer surrounding developing limbs essential for bone formation.Lrp1 deficiency in these stem cells causes joint fusion,malformation of cartilage/bone template and markedly delayed or lack of primary ossification.展开更多
Smart batteries play a key role in upgrading energy storage systems.However,they require a well-balanced integration of material structure,functional properties,and electrochemical performance,and their development is...Smart batteries play a key role in upgrading energy storage systems.However,they require a well-balanced integration of material structure,functional properties,and electrochemical performance,and their development is limited by conventional material systems in terms of energy density,response time,and functional integration.Carbon materials have emerged as a key solution for overcoming these problems due to their structural adjustability and multifunctional compatibility.Strategies for improving their electrochemical performance by changing the pore structure and interlayer spacing,as well as chemical functionalization,and composite design are analyzed,and their impact on improving the specific capacity and cycling stability of batteries is demonstrated.The unique advantages of carbon materials in realizing smart functions such as power supply,real-time monitoring and energy management in smart batteries are also discussed.Based on current progress in related fields,the prospects for the use of carbon materials in smart batteries are evaluated.展开更多
Metabolic dysfunction-associated steatotic liver disease(MASLD)has a high global incidence and associated with increased lipid accumulation in hepatocytes,elevated hepatic enzyme levels,liver fibrosis,and hepatic carc...Metabolic dysfunction-associated steatotic liver disease(MASLD)has a high global incidence and associated with increased lipid accumulation in hepatocytes,elevated hepatic enzyme levels,liver fibrosis,and hepatic carcinoma.Despite decades of research and significant advancements,the treatment of MASLD still faces formidable challenges.Nanoprobes for diagnostics and nanomedicine for targeted drug delivery to the liver present promising options for MASLD diagnosis and treatment,enhancing both imaging contrast and bioavailability.Here,we review recent advances in nanotechnology applied to MASLD diagnosis and treatment,specifically focusing on drug delivery systems targeting hepatocytes,hepatic stellate cells,Kupffer cells,and liver sinusoidal endothelial cells.This review aims to provide an overview of nanomedicine’s potential in early MASLD diagnosis and therapeutic interventions,addressing related complications.展开更多
Hydrogel-based flexible sensors are emerging as ideal candidates for wearable devices and soft robotics.However,most current hydrogels possess limited physicochemical properties,which hinder their practical applicatio...Hydrogel-based flexible sensors are emerging as ideal candidates for wearable devices and soft robotics.However,most current hydrogels possess limited physicochemical properties,which hinder their practical application in long-term and complex scenarios.Herein,inspired by the unique structure of the barnacle,we design multifunctional poly(DMAPA-co-PHEA)hydrogels(CP hydrogels)by employing multiple physical crosslinks in the presence of Ag nanoparticles and NaCl additives.Owing to the synergistic effect of cation-πinteractions,hydrophobic interactions,and ionic bonds,the CP hydrogels exhibit high stretchability(strain up to 1430%),strong adhesion(22.8 kPa),satisfactory antibacterial activity,stable anti-icing ability(<20 kPa after 20 icing-deicing cycles),and high electrical conductivity(18.5 mS/cm).Additionally,the CP hydrogels show fast and sensitive responsiveness and cycling stability and can attach directly to human skin to accurately detect both human motions and tiny physiological signals as a flexible wearable sensor.Collectively,this work significantly contributes a straightforward and efficient design strategy for the development of multifunctional hydrogels,broadening their application scenarios.展开更多
All maritime industries are plagued by marine biofouling pollution,which causes large economic and environmental costs.Therefore,there is an urgent need for ecofriendly alternatives that can effectively reduce the neg...All maritime industries are plagued by marine biofouling pollution,which causes large economic and environmental costs.Therefore,there is an urgent need for ecofriendly alternatives that can effectively reduce the negative consequences of biofouling pollution.This study aimed to produce novel capsaicin-inspired amide derivatives(CIADs)with multifunctional antifouling features by introducing amide compounds to aromatic compounds via a Friedel-Crafts alkylation reaction.The structure of the CIADs was characterized using FTIR,1H NMR,13C NMR,and HRMS,and the comprehensive antifouling capacity was determined by thermal stability,anti-ultraviolet,antibacterial,anti-algal,and marine field experiments.CIADs showed good thermal stability and did not show obvious weight loss before 226°C.2,4-dihydroxy-3,5-diphenylimidemet-hylbenzophenone(DDB)had an excellent ultraviolet absorption effect,which was even better than that of 2-hydroxy-4-(octyloxy)benzophenone.The antibacterial and anti-algal rates of N-(2,4-dimethyl-3-chloro-5-benzamide-methyl-6-hydroxybenzyl)benzamide(NDCBHB)were more than 99.5%and 64.0%,respectively,and the surface of antifouling coating with NDCBHB(NDCBHB-AC)was covered with only a small amount of sludge and biofilm,its antifouling effect was better than that of chlorothalonil.The above work provides a reference for preparing green and multifunctional antifouling agents.展开更多
Sodium-ion-based electrochromic device(SECD)has been identified as an appealing cost-effective alternative of lithium-based counterparts,only if it can address the challenges in association with the inadequate electro...Sodium-ion-based electrochromic device(SECD)has been identified as an appealing cost-effective alternative of lithium-based counterparts,only if it can address the challenges in association with the inadequate electrochromic performance.In this regard,the quantized strategy is a particularly promising approach owing to the large surface-to-volume ratio and high reaction activity.However,quantum dots inevitably suffer from volume changes and undesired aggregation during electrochemical cycling.Herein,bioinspired from the robust connection of alveoli in lung,we propose a stable electrode,where WO_(3) quantum dots(WQDs)are robustly anchored on Ti_(3)C_(2) MXene through the strong chemical bonds of W-O-Ti.Theoretical results reveal the fundamental mechanism of the volume changes within WQDs and the dynamic diffusion process of sodium ions.The WQD@MXene electrodes exhibit a nearly twofold enhancement in cycling performance(1000 vs 500 cycles),coloration speed(3.2 vs 6.0 s),and areal capacity(87.5 vs 43.9 mAhm^(-2) at 0.1 mA cm^(-2)),compared to those of the pristine WQD electrode.As a proof-of-concept demonstration,a smart house system integrated with SECDs demonstrates a“3-in-1”device,enabling a combination of energy-saving,energy storage,and display functionalities.The present work significantly advances the versatile applications of cost-effective electrochromic electronics in interdisciplinary.展开更多
To facilitate real-time monitoring and recording of humidity in the environment and to satisfy the requirement for strain performance in certain applications(such as wearable devices),this paper proposes an in-situ me...To facilitate real-time monitoring and recording of humidity in the environment and to satisfy the requirement for strain performance in certain applications(such as wearable devices),this paper proposes an in-situ method for synthesising Au nanoparticles on ZIF-67.In this study,an Au@ZIF-67 composite humidity-sensitive material was combined with flexible polyethylene terephthalate interdigitated electrodes to create an Au@ZIF-67 flexible humidity sensor.The prepared samples were characterised using X-ray diffraction,X-ray photoelectron spectroscopy,and transmission electron microscopy.The humidity-sensitive properties of the sensor were investigated,and its monitoring capabilities in applications involving respiration,gestures,skin,and baby diapers were tested.The experimental results indicate that compared with a pure ZIF-67 humidity sensor,the Au@ZIF-67(0.1Au@Z)flexible humidity sensor exhibits a 158.07%decrease in baseline resistance and a 51.66%increase in sensitivity to 95%relative humidity,and the hysteresis,response time,and recovery time are significantly reduced.Furthermore,the sensor exhibits excellent characteristics such as high resolution,repeatability,and stability.The obtained results regarding the material properties,humidity sensitivity,and practical application of non-contact humidity monitoring demonstrate that the prepared sensors exhibit excellent and comprehensive performance,indicating their broad prospects in wearable medical devices,wireless Internet of Things,humidity detection in complex environments,and intelligent integrated systems.展开更多
Ultrafast reaction kinetics is essential for rapid detection,synthesis,and process monitoring,but the intrinsic energy barrier as a basic material property is challenging to tailor.With the involvement of nanointerfac...Ultrafast reaction kinetics is essential for rapid detection,synthesis,and process monitoring,but the intrinsic energy barrier as a basic material property is challenging to tailor.With the involvement of nanointerfacial chemistry,we propose a carbonization-based strategy for achieving ultrafast chemical reaction.In a case study,ultrafast Griess reaction within 1 min through the carbonization of N-(1-naphthalene)ethylenediamine(NETH)was realized.The carbonization-mediated ultrafast reaction is attributed to the synergic action of reduced electrostatic repulsion,enriched reactant concentration,and boosted NETH nucleophilicity.The enhanced reaction kinetics in o-phenylenediamine-Cu^(2)+and ophenylenediamine-ascorbic acid systems validate the universality of carbonization-engineered ultrafast chemical reaction strategy.The finding of this work offers a novel and simple tactic for the fabrication of multifunctional nanoparticles as ultrafast and effective nanoreactants and/or reporters in analytical,biological,and material aspects.展开更多
An all-solid-state ion-selective electrode(ISE)for the detection of potassium ions in complex media was developed based on functional peptides with both antibacterial and antifouling properties.While exhibiting unique...An all-solid-state ion-selective electrode(ISE)for the detection of potassium ions in complex media was developed based on functional peptides with both antibacterial and antifouling properties.While exhibiting unique antifouling property,the ISE capitalized on the high surface area of the conductive metalorganic framework(MOF)solid transducer layer to facilitate rapid ion-electron transfer,consequently improving the electrode stability.For a short period,the application of a±1 n A current to the ISE resulted in a slight potential drift of 2.5μV/s,while for a long-term stability test,the ISE maintained a stable Nernstian response slope over 8 days.The antifouling and antibacterial peptide effectively eradicated bacteria from the electrode surface while inhibited the adhesion of bacteria and other biological organisms.Both theoretical calculations and experimental results indicated that the incorporation of peptides in the sensing membrane did not compromise the detection performance of the ISE.The prepared antifouling potassium ion-selective electrode exhibited a Nernstian response range spanning from 1.0×10^(–8)mol/L to 1.0×10–3mol/L,with a detection limit of 2.51 nmol/L.Crucially,the prepared solid-contact ISE maintained excellent antifouling and sensing capabilities in actual seawater and human urine,indicating a promising feasibility of this strategy for constructing ISEs suitable for practical application in complex systems.展开更多
Excessive production of reactive oxygen species(ROS)and bacterial infection are intractable obstacles for wound healing in diabetic foot ulcers.Here,we devised a novel approach using a multifunctional hydrogel to achi...Excessive production of reactive oxygen species(ROS)and bacterial infection are intractable obstacles for wound healing in diabetic foot ulcers.Here,we devised a novel approach using a multifunctional hydrogel to achieve self-cascade glucose depletion and ROS scavenging,thereby modifying the diabetic wound microenvironment.In this study,using polyvinyl alcohol(PVA),borax,oligomeric proanthocyanidins(OPC),and nanozymes(AuPt@PDA),a PVA/Borax/OPC/AuPt@PDA(PBON)hydrogel was prepared by a one-step process.The PBON hydrogel combined with near-infrared(NIR)treatment can match the complicated and changeable microenvironment in the diabetic high-mobility region through glucose depletion,ROS scavenging,photothermal therapy(photothermal conversion 81.9%),and deformation adaptation,thus promoting wound healing close to the hip in diabetic mice through angiogenesis and epidermal regeneration by collagen deposition.This approach provides a simple,safe,and efficient treatment for diabetic wounds in mobile regions.展开更多
Meniscal injury,a prevalent and challenging medical condition,is characterized by poor self-healing potential and a complex microenvironment.Tissue engineering scaffolds,particularly those made of silk fibroin(SF)/hya...Meniscal injury,a prevalent and challenging medical condition,is characterized by poor self-healing potential and a complex microenvironment.Tissue engineering scaffolds,particularly those made of silk fibroin(SF)/hyaluronic acid methacryloyl(HAMA)and encapsulating Mg^(2+),are promising options for meniscal repair.However,the inflammatory response following implantation is a significant concern.In this study,we prepared a composite SF/HAMA-Mg hydrogel scaffold,evaluated its physical and chemical properties,and detected its fibrochondrogenic differentiation effect in vitro and the healing effect in a rabbit meniscus defect model in vivo.Our results showed that the scaffold differentiates pro-inflammatory M1 macrophages into anti-inflammatory M2 macrophages after implantation,thereby reducing inflammation and facilitating the growth and repair of meniscus tissue.Further,the composite scaffold provided a conducive milieu for cell proliferation,anticipatory differentiation,and generation of extracellular matrix.In summary,composite SF/HAMA-Mg scaffolds exhibit exceptional biocompatibility and anti-inflammatory properties,demonstrating superior potential for meniscal repair.展开更多
文摘In this paper, our focus is to introduce and investigate a class of mappings called M-asymmetric irresolute multifunctions defined between bitopological structural sets satisfying certain minimal properties. M-asymmetric irresolute multifunctions are point-to-set mappings defined using M-asymmetric semiopen and semiclosed sets. Some relations between M-asymmetric semicontinuous multifunctions and M-asymmetric irresolute multifunctions are established. This notion of M-asymmetric irresolute multifunctions is analog to that of irresolute multifunctions in the general topological space and, upper and lower M-asymmetric irresolute multifunctions in minimal bitopological spaces, but mathematically behaves differently.
文摘In this present paper, we introduce and investigate a new form of mappings namely;upper and lower M-asymmetric preirresolute multifunctions defined between M-structural asymmetric topological spaces. The relationships between the multifunctions in our sense and other types of precountinuous and preirresolute multifunctions defined on both symmetric and asymmetric topological structures are discussed.
文摘In this paper, we investigate the normality relationship between algebroid multifunctions and their coefficient functions. We prove that the normality of a k-valued entire algebroid multifunctions family is equivalent to their coefficient functions in some conditions. Furthermore, we obtain some new normality criteria for algebroid multifunctions families based on these results. We also provide some examples to expound that some restricted conditions of our main results are necessary.
文摘In this paper, we aim to introduce and study some basic properties of upper and lower M-asymmetric irresolute multifunctions defined between asymmetric sets in the realm of bitopological spaces with certain minimal structures as a generalization of irresolute functions deal to Crossley and Hildebrand <a href="#ref1">[1] and upper and lower irresolute Multifunctions deal to Popa <a href="#ref2">[2].
文摘The purpose of this paper is to introduce the notions of m-asymmetric semiopen sets and M-asymmetric semicontinuous multifunctions defined between asymmetric sets satisfying certain minimal conditions in the framework of bitopological spaces. Some new characterizations of m-asymmetric semiopen sets and M-asymmetric semicontinuous multifunctions will be investigated and several fundamental properties will be obtained.
基金supported financially by Mahani Mathematical Research Center
文摘In this article the notion of repeller for multifunctions from the viewpoints of semi-bornologicul spaces is considered. The concept of lower semi-continuous multifunctions is extended by the use of semi-bornological spaces. Semi-bornological vector spaces are studied. The notion of conjugacy for semi-bornological multifunctions is considered. The persistence of repeller under conjugate relation is proved.
文摘In this paper, by providing some different conditions respect to another works, we shall present two results on absolute retractivity of some sets related to some multifunctions of the form F : X × X → Pb,cl (X), on complete metric spaces.
文摘An existence result on Ky Fan type best approximation is proved. For this pur- pose, a class of factorizable multifunctions and the other one being a demicontinuous, rela- tive almost quasi-convex, onto function on an approximately weakly compact, convex sub- set of Hausdorff locally convex topological vector space are used. As consequence, this result extends the best approximation results of Basha and Veeramani[8] and many others.
基金financial support from the National Nature Science Foundation of China(No.52273247)the National Science and Technology Major Project of China(J2019-VI-0017-0132).
文摘Developing advanced stealth devices to cope with radar-infrared(IR)fusion detection and diverse application scenarios is increasingly demanded,which faces significant challenges due to conflicting microwave and IR cloaking mechanisms and functional integration limitations.Here,we propose a multiscale hierarchical structure design,integrating wrinkled MXene IR shielding layer and flexible Fe_(3)O_(4)@C/PDMS microwave absorption layer.The top wrinkled MXene layer induces the intensive diffuse reflection effect,shielding IR radiation signals while allowing microwave to pass through.Meanwhile,the permeable microwaves are assimilated into the bottom Fe_(3)O_(4)@C/PDMS layer via strong magneto-electric synergy.Through theoretical and experimental optimization,the assembled stealth devices realize a near-perfect stealth capability in both X-band(8–12 GHz)and long-wave infrared(8–14μm)wavelength ranges.Specifically,it delivers a radar cross-section reduction of−20 dB m^(2),a large apparent temperature modulation range(ΔT=70℃),and a low average IR emissivity of 0.35.Additionally,the optimal device demonstrates exceptional curved surface conformability,self-cleaning capability(contact angle≈129°),and abrasion resistance(recovery time≈5 s).This design strategy promotes the development of multispectral stealth technology and reinforces its applicability and durability in complex and hostile environments.
基金The Andor dragonfly Spinning Disk microscope in the CCI was funded by the BBSRC(BB/R01390X/1)This work was supported by the ministry of education of the Kingdom of Saudi Arabia(to M.Alhashmi)+6 种基金Libyan Ministry of Higher Education and Scientific Research and ECMage(to A.M.E.Gremida)Qatar National Research Fund(to N.A.Al-Maslamani)European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement(860635 to M.Antonaci and A.Kerr)BBSRC Grants(BB/T00715X/1 to S.K.Maharana and G.N.WheelerBB/X000907/1 to D.A.Turner)Versus Arthritis Career Development Fellowship(21447 to K.Yamamoto)Versus Arthritis Bridging Fellowship(23137 to K.Yamamoto).
文摘Low-density lipoprotein receptor-related protein 1(LRP1)is a multifunctional endocytic receptor whose dysfunction is linked to developmental dysplasia of the hip,osteoporosis and osteoarthritis.Our work addresses the critical question of how these skeletal pathologies emerge.Here,we show the abundant expression of LRP1 in skeletal progenitor cells at mouse embryonic stage E10.5 and onwards,especially in the perichondrium,the stem cell layer surrounding developing limbs essential for bone formation.Lrp1 deficiency in these stem cells causes joint fusion,malformation of cartilage/bone template and markedly delayed or lack of primary ossification.
文摘Smart batteries play a key role in upgrading energy storage systems.However,they require a well-balanced integration of material structure,functional properties,and electrochemical performance,and their development is limited by conventional material systems in terms of energy density,response time,and functional integration.Carbon materials have emerged as a key solution for overcoming these problems due to their structural adjustability and multifunctional compatibility.Strategies for improving their electrochemical performance by changing the pore structure and interlayer spacing,as well as chemical functionalization,and composite design are analyzed,and their impact on improving the specific capacity and cycling stability of batteries is demonstrated.The unique advantages of carbon materials in realizing smart functions such as power supply,real-time monitoring and energy management in smart batteries are also discussed.Based on current progress in related fields,the prospects for the use of carbon materials in smart batteries are evaluated.
基金supported in part by Noncommunicable Chronic Diseases-National Science and Technology Major Project(2023ZD0508800)National Natural Science Foundation of China(32401171)+4 种基金the Key Research and Development Program of Jiangsu Province(BE2023767a)Fundamental Research Fund of Southeast University(3290002406A2)Research Personnel Cultivation Programme of Zhongda Hospital,Southeast University(CZXM-GSP-RC125)Distinguished Medical Specialists in Jiangsu Province(CZXM-RC-43)Changjiang Scholars Talent Cultivation Project of Zhongda Hospital of Southeast University(2023YJXYYRCPY03).
文摘Metabolic dysfunction-associated steatotic liver disease(MASLD)has a high global incidence and associated with increased lipid accumulation in hepatocytes,elevated hepatic enzyme levels,liver fibrosis,and hepatic carcinoma.Despite decades of research and significant advancements,the treatment of MASLD still faces formidable challenges.Nanoprobes for diagnostics and nanomedicine for targeted drug delivery to the liver present promising options for MASLD diagnosis and treatment,enhancing both imaging contrast and bioavailability.Here,we review recent advances in nanotechnology applied to MASLD diagnosis and treatment,specifically focusing on drug delivery systems targeting hepatocytes,hepatic stellate cells,Kupffer cells,and liver sinusoidal endothelial cells.This review aims to provide an overview of nanomedicine’s potential in early MASLD diagnosis and therapeutic interventions,addressing related complications.
基金financial support from the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515012218)Macao Science and Technology Development Fund(Nos.FDCT 0009/2020/AMJ,0027/2023/RIB1)+1 种基金National Natural Science Foundation of China(No.32301104)Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.23ptpy165).
文摘Hydrogel-based flexible sensors are emerging as ideal candidates for wearable devices and soft robotics.However,most current hydrogels possess limited physicochemical properties,which hinder their practical application in long-term and complex scenarios.Herein,inspired by the unique structure of the barnacle,we design multifunctional poly(DMAPA-co-PHEA)hydrogels(CP hydrogels)by employing multiple physical crosslinks in the presence of Ag nanoparticles and NaCl additives.Owing to the synergistic effect of cation-πinteractions,hydrophobic interactions,and ionic bonds,the CP hydrogels exhibit high stretchability(strain up to 1430%),strong adhesion(22.8 kPa),satisfactory antibacterial activity,stable anti-icing ability(<20 kPa after 20 icing-deicing cycles),and high electrical conductivity(18.5 mS/cm).Additionally,the CP hydrogels show fast and sensitive responsiveness and cycling stability and can attach directly to human skin to accurately detect both human motions and tiny physiological signals as a flexible wearable sensor.Collectively,this work significantly contributes a straightforward and efficient design strategy for the development of multifunctional hydrogels,broadening their application scenarios.
基金supported by the Scientific Research Project funded by the Qingdao Postdoctoral Science Foundation(No.QDBSH20230102075)the China Postdoctoral Science Foundation(No.2023M733337)the National Natural Science Foundation of China(No.U2141251).
文摘All maritime industries are plagued by marine biofouling pollution,which causes large economic and environmental costs.Therefore,there is an urgent need for ecofriendly alternatives that can effectively reduce the negative consequences of biofouling pollution.This study aimed to produce novel capsaicin-inspired amide derivatives(CIADs)with multifunctional antifouling features by introducing amide compounds to aromatic compounds via a Friedel-Crafts alkylation reaction.The structure of the CIADs was characterized using FTIR,1H NMR,13C NMR,and HRMS,and the comprehensive antifouling capacity was determined by thermal stability,anti-ultraviolet,antibacterial,anti-algal,and marine field experiments.CIADs showed good thermal stability and did not show obvious weight loss before 226°C.2,4-dihydroxy-3,5-diphenylimidemet-hylbenzophenone(DDB)had an excellent ultraviolet absorption effect,which was even better than that of 2-hydroxy-4-(octyloxy)benzophenone.The antibacterial and anti-algal rates of N-(2,4-dimethyl-3-chloro-5-benzamide-methyl-6-hydroxybenzyl)benzamide(NDCBHB)were more than 99.5%and 64.0%,respectively,and the surface of antifouling coating with NDCBHB(NDCBHB-AC)was covered with only a small amount of sludge and biofilm,its antifouling effect was better than that of chlorothalonil.The above work provides a reference for preparing green and multifunctional antifouling agents.
基金supported by the Singapore National Research Foundation(NRFCRP26-2021-0003,NRF),for research conducted at the National University of Singaporethe support by the ARTIC(ADT-RP2-Low Loss and Tunable Ferroelectrics for Sub-6G Applications).
文摘Sodium-ion-based electrochromic device(SECD)has been identified as an appealing cost-effective alternative of lithium-based counterparts,only if it can address the challenges in association with the inadequate electrochromic performance.In this regard,the quantized strategy is a particularly promising approach owing to the large surface-to-volume ratio and high reaction activity.However,quantum dots inevitably suffer from volume changes and undesired aggregation during electrochemical cycling.Herein,bioinspired from the robust connection of alveoli in lung,we propose a stable electrode,where WO_(3) quantum dots(WQDs)are robustly anchored on Ti_(3)C_(2) MXene through the strong chemical bonds of W-O-Ti.Theoretical results reveal the fundamental mechanism of the volume changes within WQDs and the dynamic diffusion process of sodium ions.The WQD@MXene electrodes exhibit a nearly twofold enhancement in cycling performance(1000 vs 500 cycles),coloration speed(3.2 vs 6.0 s),and areal capacity(87.5 vs 43.9 mAhm^(-2) at 0.1 mA cm^(-2)),compared to those of the pristine WQD electrode.As a proof-of-concept demonstration,a smart house system integrated with SECDs demonstrates a“3-in-1”device,enabling a combination of energy-saving,energy storage,and display functionalities.The present work significantly advances the versatile applications of cost-effective electrochromic electronics in interdisciplinary.
基金supported by the Natural Science Project of Zhengzhou Science and Technology Bureau(No.21ZZXTCX12)the Key Research and Development Program of Henan Province(No.221111220300)+1 种基金the Key Program of the National Natural Science Foundation of China(No.62333013)the Youth Backbone Teacher Training Program of Henan University of Technology(No.21420154).
文摘To facilitate real-time monitoring and recording of humidity in the environment and to satisfy the requirement for strain performance in certain applications(such as wearable devices),this paper proposes an in-situ method for synthesising Au nanoparticles on ZIF-67.In this study,an Au@ZIF-67 composite humidity-sensitive material was combined with flexible polyethylene terephthalate interdigitated electrodes to create an Au@ZIF-67 flexible humidity sensor.The prepared samples were characterised using X-ray diffraction,X-ray photoelectron spectroscopy,and transmission electron microscopy.The humidity-sensitive properties of the sensor were investigated,and its monitoring capabilities in applications involving respiration,gestures,skin,and baby diapers were tested.The experimental results indicate that compared with a pure ZIF-67 humidity sensor,the Au@ZIF-67(0.1Au@Z)flexible humidity sensor exhibits a 158.07%decrease in baseline resistance and a 51.66%increase in sensitivity to 95%relative humidity,and the hysteresis,response time,and recovery time are significantly reduced.Furthermore,the sensor exhibits excellent characteristics such as high resolution,repeatability,and stability.The obtained results regarding the material properties,humidity sensitivity,and practical application of non-contact humidity monitoring demonstrate that the prepared sensors exhibit excellent and comprehensive performance,indicating their broad prospects in wearable medical devices,wireless Internet of Things,humidity detection in complex environments,and intelligent integrated systems.
基金supported by the National Natural Science Foundation of China(Nos.82160153,21505162,22074005,and 22101027)Natural Science Foundation of Hunan Province,China(No.2022SK2102)+1 种基金Hunan Provincial Department of Education Scientific Research Project(No.240994)the Natural Science Foundation of Beijing Municipality(No.2202038).
文摘Ultrafast reaction kinetics is essential for rapid detection,synthesis,and process monitoring,but the intrinsic energy barrier as a basic material property is challenging to tailor.With the involvement of nanointerfacial chemistry,we propose a carbonization-based strategy for achieving ultrafast chemical reaction.In a case study,ultrafast Griess reaction within 1 min through the carbonization of N-(1-naphthalene)ethylenediamine(NETH)was realized.The carbonization-mediated ultrafast reaction is attributed to the synergic action of reduced electrostatic repulsion,enriched reactant concentration,and boosted NETH nucleophilicity.The enhanced reaction kinetics in o-phenylenediamine-Cu^(2)+and ophenylenediamine-ascorbic acid systems validate the universality of carbonization-engineered ultrafast chemical reaction strategy.The finding of this work offers a novel and simple tactic for the fabrication of multifunctional nanoparticles as ultrafast and effective nanoreactants and/or reporters in analytical,biological,and material aspects.
基金supported by the National Natural Science Foundation of China(Nos.22174082,22374085)the Key Research and Development Program of Shandong Province(No.2021ZDSYS30)Qingdao Postdoctoral Innovation Project Funding(No.QDBSH20220201038)。
文摘An all-solid-state ion-selective electrode(ISE)for the detection of potassium ions in complex media was developed based on functional peptides with both antibacterial and antifouling properties.While exhibiting unique antifouling property,the ISE capitalized on the high surface area of the conductive metalorganic framework(MOF)solid transducer layer to facilitate rapid ion-electron transfer,consequently improving the electrode stability.For a short period,the application of a±1 n A current to the ISE resulted in a slight potential drift of 2.5μV/s,while for a long-term stability test,the ISE maintained a stable Nernstian response slope over 8 days.The antifouling and antibacterial peptide effectively eradicated bacteria from the electrode surface while inhibited the adhesion of bacteria and other biological organisms.Both theoretical calculations and experimental results indicated that the incorporation of peptides in the sensing membrane did not compromise the detection performance of the ISE.The prepared antifouling potassium ion-selective electrode exhibited a Nernstian response range spanning from 1.0×10^(–8)mol/L to 1.0×10–3mol/L,with a detection limit of 2.51 nmol/L.Crucially,the prepared solid-contact ISE maintained excellent antifouling and sensing capabilities in actual seawater and human urine,indicating a promising feasibility of this strategy for constructing ISEs suitable for practical application in complex systems.
基金supported by the National Natural Science Foundation of China (No. U1804198) to MHYZhongyuan Thousand Talents Project (No. 204200510013) to FXG+1 种基金Key Scientific and Technological Research Projects in Henan Province (No. 232102311098) to RMJthe Center for Modern Analysis and Gene Sequencing, Zhengzhou University, for the facility support.
文摘Excessive production of reactive oxygen species(ROS)and bacterial infection are intractable obstacles for wound healing in diabetic foot ulcers.Here,we devised a novel approach using a multifunctional hydrogel to achieve self-cascade glucose depletion and ROS scavenging,thereby modifying the diabetic wound microenvironment.In this study,using polyvinyl alcohol(PVA),borax,oligomeric proanthocyanidins(OPC),and nanozymes(AuPt@PDA),a PVA/Borax/OPC/AuPt@PDA(PBON)hydrogel was prepared by a one-step process.The PBON hydrogel combined with near-infrared(NIR)treatment can match the complicated and changeable microenvironment in the diabetic high-mobility region through glucose depletion,ROS scavenging,photothermal therapy(photothermal conversion 81.9%),and deformation adaptation,thus promoting wound healing close to the hip in diabetic mice through angiogenesis and epidermal regeneration by collagen deposition.This approach provides a simple,safe,and efficient treatment for diabetic wounds in mobile regions.
基金supported by grants from the Beijing Natural Science Foundation,China(No.7244431)the Postdoctoral Science Foundation of China(No.2022M710260)the National Natural Science Foundation of China(No.82202723).
文摘Meniscal injury,a prevalent and challenging medical condition,is characterized by poor self-healing potential and a complex microenvironment.Tissue engineering scaffolds,particularly those made of silk fibroin(SF)/hyaluronic acid methacryloyl(HAMA)and encapsulating Mg^(2+),are promising options for meniscal repair.However,the inflammatory response following implantation is a significant concern.In this study,we prepared a composite SF/HAMA-Mg hydrogel scaffold,evaluated its physical and chemical properties,and detected its fibrochondrogenic differentiation effect in vitro and the healing effect in a rabbit meniscus defect model in vivo.Our results showed that the scaffold differentiates pro-inflammatory M1 macrophages into anti-inflammatory M2 macrophages after implantation,thereby reducing inflammation and facilitating the growth and repair of meniscus tissue.Further,the composite scaffold provided a conducive milieu for cell proliferation,anticipatory differentiation,and generation of extracellular matrix.In summary,composite SF/HAMA-Mg scaffolds exhibit exceptional biocompatibility and anti-inflammatory properties,demonstrating superior potential for meniscal repair.