Robust, ultra-flexible, and multifunctional MXene-basedelectromagnetic interference (EMI) shielding nanocomposite filmsexhibit enormous potential for applications in artificial intelligence,wireless telecommunication,...Robust, ultra-flexible, and multifunctional MXene-basedelectromagnetic interference (EMI) shielding nanocomposite filmsexhibit enormous potential for applications in artificial intelligence,wireless telecommunication, and portable/wearable electronic equipment.In this work, a nacre-inspired multifunctional heterocyclic aramid(HA)/MXene@polypyrrole (PPy) (HMP) nanocomposite paper withlarge-scale, high strength, super toughness, and excellent tolerance tocomplex conditions is fabricated through the strategy of HA/MXenehydrogel template-assisted in-situ assembly of PPy. Benefiting from the"brick-and-mortar" layered structure and the strong hydrogen-bondinginteractions among MXene, HA, and PPy, the paper exhibits remarkable mechanical performances, including high tensile strength (309.7 MPa),outstanding toughness (57.6 MJ m−3), exceptional foldability, and structural stability against ultrasonication. By using the template effect ofHA/MXene to guide the assembly of conductive polymers, the synthesized paper obtains excellent electronic conductivity. More importantly,the highly continuous conductive path enables the nanocomposite paper to achieve a splendid EMI shielding effectiveness (EMI SE) of 54.1 dBat an ultra-thin thickness (25.4 μm) and a high specific EMI SE of 17,204.7 dB cm2g−1. In addition, the papers also have excellent applicationsin electromagnetic protection, electro-/photothermal de-icing, thermal therapy, and fire safety. These findings broaden the ideas for developinghigh-performance and multifunctional MXene-based films with enormous application potential in EMI shielding and thermal management.展开更多
Hydrogel-based flexible sensors are emerging as ideal candidates for wearable devices and soft robotics.However,most current hydrogels possess limited physicochemical properties,which hinder their practical applicatio...Hydrogel-based flexible sensors are emerging as ideal candidates for wearable devices and soft robotics.However,most current hydrogels possess limited physicochemical properties,which hinder their practical application in long-term and complex scenarios.Herein,inspired by the unique structure of the barnacle,we design multifunctional poly(DMAPA-co-PHEA)hydrogels(CP hydrogels)by employing multiple physical crosslinks in the presence of Ag nanoparticles and NaCl additives.Owing to the synergistic effect of cation-πinteractions,hydrophobic interactions,and ionic bonds,the CP hydrogels exhibit high stretchability(strain up to 1430%),strong adhesion(22.8 kPa),satisfactory antibacterial activity,stable anti-icing ability(<20 kPa after 20 icing-deicing cycles),and high electrical conductivity(18.5 mS/cm).Additionally,the CP hydrogels show fast and sensitive responsiveness and cycling stability and can attach directly to human skin to accurately detect both human motions and tiny physiological signals as a flexible wearable sensor.Collectively,this work significantly contributes a straightforward and efficient design strategy for the development of multifunctional hydrogels,broadening their application scenarios.展开更多
All maritime industries are plagued by marine biofouling pollution,which causes large economic and environmental costs.Therefore,there is an urgent need for ecofriendly alternatives that can effectively reduce the neg...All maritime industries are plagued by marine biofouling pollution,which causes large economic and environmental costs.Therefore,there is an urgent need for ecofriendly alternatives that can effectively reduce the negative consequences of biofouling pollution.This study aimed to produce novel capsaicin-inspired amide derivatives(CIADs)with multifunctional antifouling features by introducing amide compounds to aromatic compounds via a Friedel-Crafts alkylation reaction.The structure of the CIADs was characterized using FTIR,1H NMR,13C NMR,and HRMS,and the comprehensive antifouling capacity was determined by thermal stability,anti-ultraviolet,antibacterial,anti-algal,and marine field experiments.CIADs showed good thermal stability and did not show obvious weight loss before 226°C.2,4-dihydroxy-3,5-diphenylimidemet-hylbenzophenone(DDB)had an excellent ultraviolet absorption effect,which was even better than that of 2-hydroxy-4-(octyloxy)benzophenone.The antibacterial and anti-algal rates of N-(2,4-dimethyl-3-chloro-5-benzamide-methyl-6-hydroxybenzyl)benzamide(NDCBHB)were more than 99.5%and 64.0%,respectively,and the surface of antifouling coating with NDCBHB(NDCBHB-AC)was covered with only a small amount of sludge and biofilm,its antifouling effect was better than that of chlorothalonil.The above work provides a reference for preparing green and multifunctional antifouling agents.展开更多
Sodium-ion-based electrochromic device(SECD)has been identified as an appealing cost-effective alternative of lithium-based counterparts,only if it can address the challenges in association with the inadequate electro...Sodium-ion-based electrochromic device(SECD)has been identified as an appealing cost-effective alternative of lithium-based counterparts,only if it can address the challenges in association with the inadequate electrochromic performance.In this regard,the quantized strategy is a particularly promising approach owing to the large surface-to-volume ratio and high reaction activity.However,quantum dots inevitably suffer from volume changes and undesired aggregation during electrochemical cycling.Herein,bioinspired from the robust connection of alveoli in lung,we propose a stable electrode,where WO_(3) quantum dots(WQDs)are robustly anchored on Ti_(3)C_(2) MXene through the strong chemical bonds of W-O-Ti.Theoretical results reveal the fundamental mechanism of the volume changes within WQDs and the dynamic diffusion process of sodium ions.The WQD@MXene electrodes exhibit a nearly twofold enhancement in cycling performance(1000 vs 500 cycles),coloration speed(3.2 vs 6.0 s),and areal capacity(87.5 vs 43.9 mAhm^(-2) at 0.1 mA cm^(-2)),compared to those of the pristine WQD electrode.As a proof-of-concept demonstration,a smart house system integrated with SECDs demonstrates a“3-in-1”device,enabling a combination of energy-saving,energy storage,and display functionalities.The present work significantly advances the versatile applications of cost-effective electrochromic electronics in interdisciplinary.展开更多
Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions ...Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions affect EMF remain largely unknown.Here,we investigated variation in three measures of diversity(alpha diversity,community composition and network complexity)among rare,intermediate,and abundant taxa across a latitudinal gradient spanning five forest plots in Yunnan Province,China and examined their contributions on EMF.We aimed to characterize the diversity distributions of bacterial groups across latitudes and to assess the differences in the mechanisms underlying their contributions to EMF.We found that multifaceted diversity(i.e.,diversity assessed by the three different metrics)of rare,intermediate,and abundant bacteria generally decreased with increasing latitude.More importantly,we found that rare bacterial taxa tended to be more diverse,but they contributed less to EMF than intermediate or abundant bacteria.Among the three dimensions of diversity we assessed,only community composition significantly affected EMF across all locations,while alpha diversity had a negative effect,and network complexity showed no significant impact.Our study further emphasizes the importance of intermediate and abundant bacterial taxa as well as community composition to EMF and provides a theoretical basis for investigating the mechanisms by which belowground microorganisms drive EMF along a latitudinal gradient.展开更多
To facilitate real-time monitoring and recording of humidity in the environment and to satisfy the requirement for strain performance in certain applications(such as wearable devices),this paper proposes an in-situ me...To facilitate real-time monitoring and recording of humidity in the environment and to satisfy the requirement for strain performance in certain applications(such as wearable devices),this paper proposes an in-situ method for synthesising Au nanoparticles on ZIF-67.In this study,an Au@ZIF-67 composite humidity-sensitive material was combined with flexible polyethylene terephthalate interdigitated electrodes to create an Au@ZIF-67 flexible humidity sensor.The prepared samples were characterised using X-ray diffraction,X-ray photoelectron spectroscopy,and transmission electron microscopy.The humidity-sensitive properties of the sensor were investigated,and its monitoring capabilities in applications involving respiration,gestures,skin,and baby diapers were tested.The experimental results indicate that compared with a pure ZIF-67 humidity sensor,the Au@ZIF-67(0.1Au@Z)flexible humidity sensor exhibits a 158.07%decrease in baseline resistance and a 51.66%increase in sensitivity to 95%relative humidity,and the hysteresis,response time,and recovery time are significantly reduced.Furthermore,the sensor exhibits excellent characteristics such as high resolution,repeatability,and stability.The obtained results regarding the material properties,humidity sensitivity,and practical application of non-contact humidity monitoring demonstrate that the prepared sensors exhibit excellent and comprehensive performance,indicating their broad prospects in wearable medical devices,wireless Internet of Things,humidity detection in complex environments,and intelligent integrated systems.展开更多
In recent years,soil acidification has been expanding in many areas of Asia due to increasing reactive nitrogen inputs and industrial activities,which may seriously affect the performance of various ecosystem function...In recent years,soil acidification has been expanding in many areas of Asia due to increasing reactive nitrogen inputs and industrial activities,which may seriously affect the performance of various ecosystem functions.However,the underlying patterns and processes of ecosystem multifunctionality(EMF)are largely unknown at different levels of pH,limiting our understanding of how EMF respond to drivers.This study aims to explore threshold of pH on changes in EMF and differences in the drivers for the changes in EMF on either side of each of the determined pH thresholds.We collected nutrient and environmental databases for raster-level sampling data,totaling 4,000 sampling points.Averaging and cluster-multiple-threshold approach were used to calculate EMF,then quadratic and generalized additive models and Mann-Whitney U were used to determine and test the pH thresholds for changes in EMF,structural equation modellings and variance partitioning analysis were used to explore the main drivers on changes in EMF.The pH threshold for EMF changes in Chinese terrestrial ecosystems is 6.0.When pH<6.0,climate was consistently more important in controlling the variation of EMF than other variables;when pH≥6.0,soil was consistently more important in controlling the variation of EMF than other variables.Specifically,when pH<6.0,mean annual temperature was the main factor in regulating the EMF variation;when pH≥6.0,soil moisture was the main factor in regulating the EMF variation.Our study provides important scientific value for the mechanism of maintaining EMF under global change.For example,with further increases in global nitrogen deposition,leading to increased soil acidification,there are different impacts on EMF in different regions.It may lead to a decrease in EMF in acidic soils and an increase in EMF in alkaline soils.This suggests different management strategies for different regions to maintain EMF stability in the context of future global changes.In the future,more attention should be paid to the biological mechanisms regulating EMF.展开更多
An all-solid-state ion-selective electrode(ISE)for the detection of potassium ions in complex media was developed based on functional peptides with both antibacterial and antifouling properties.While exhibiting unique...An all-solid-state ion-selective electrode(ISE)for the detection of potassium ions in complex media was developed based on functional peptides with both antibacterial and antifouling properties.While exhibiting unique antifouling property,the ISE capitalized on the high surface area of the conductive metalorganic framework(MOF)solid transducer layer to facilitate rapid ion-electron transfer,consequently improving the electrode stability.For a short period,the application of a±1 n A current to the ISE resulted in a slight potential drift of 2.5μV/s,while for a long-term stability test,the ISE maintained a stable Nernstian response slope over 8 days.The antifouling and antibacterial peptide effectively eradicated bacteria from the electrode surface while inhibited the adhesion of bacteria and other biological organisms.Both theoretical calculations and experimental results indicated that the incorporation of peptides in the sensing membrane did not compromise the detection performance of the ISE.The prepared antifouling potassium ion-selective electrode exhibited a Nernstian response range spanning from 1.0×10^(–8)mol/L to 1.0×10–3mol/L,with a detection limit of 2.51 nmol/L.Crucially,the prepared solid-contact ISE maintained excellent antifouling and sensing capabilities in actual seawater and human urine,indicating a promising feasibility of this strategy for constructing ISEs suitable for practical application in complex systems.展开更多
Perovskite solar cells(PSCs)have emerged as promising photovoltaic technologies owing to their remarkable power conversion efficiency(PCE).However,heat accumulation under continuous illumination remains a critical bot...Perovskite solar cells(PSCs)have emerged as promising photovoltaic technologies owing to their remarkable power conversion efficiency(PCE).However,heat accumulation under continuous illumination remains a critical bottleneck,severely affecting device stability and long-term operational performance.Herein,we present a multifunctional strategy by incorporating highly thermally conductive Ti_(3)C_(2)T_(X) MXene nanosheets into the perovskite layer to simultaneously enhance thermal management and optoelectronic properties.The Ti_(3)C_(2)T_(X) nanosheets,embedded at perovskite grain boundaries,construct efficient thermal conduction pathways,significantly improving the thermal conductivity and diffusivity of the film.This leads to a notable reduction in the device’s steady-state operating temperature from 42.96 to 39.97 under 100 mW cm^(−2) illumination,thereby alleviating heat-induced performance degradation.Beyond thermal regulation,Ti_(3)C_(2)T_(X),with high conductivity and negatively charged surface terminations,also serves as an effective defect passivation agent,reducing trap-assisted recombination,while simultaneously facilitating charge extraction and transport by optimizing interfacial energy alignment.As a result,the Ti_(3)C_(2)T_(X)-modified PSC achieve a champion PCE of 25.13%and exhibit outstanding thermal stability,retaining 80%of the initial PCE after 500 h of thermal aging at 85 and 30±5%relative humidity.(In contrast,control PSC retain only 58%after 200 h.)Moreover,under continuous maximum power point tracking in N2 atmosphere,Ti_(3)C_(2)T_(X)-modified PSC retained 70%of the initial PCE after 500 h,whereas the control PSC drop sharply to 20%.These findings highlight the synergistic role of Ti_(3)C_(2)T_(X) in thermal management and optoelectronic performance,paving the way for the development of high-efficiency and heat-resistant perovskite photovoltaics.展开更多
The dwell scheduling problem for a multifunctional radar system is led to the formation of corresponding optimiza-tion problem.In order to solve the resulting optimization prob-lem,the dwell scheduling process in a sc...The dwell scheduling problem for a multifunctional radar system is led to the formation of corresponding optimiza-tion problem.In order to solve the resulting optimization prob-lem,the dwell scheduling process in a scheduling interval(SI)is formulated as a Markov decision process(MDP),where the state,action,and reward are specified for this dwell scheduling problem.Specially,the action is defined as scheduling the task on the left side,right side or in the middle of the radar idle time-line,which reduces the action space effectively and accelerates the convergence of the training.Through the above process,a model-free reinforcement learning framework is established.Then,an adaptive dwell scheduling method based on Q-learn-ing is proposed,where the converged Q value table after train-ing is utilized to instruct the scheduling process.Simulation results demonstrate that compared with existing dwell schedul-ing algorithms,the proposed one can achieve better scheduling performance considering the urgency criterion,the importance criterion and the desired execution time criterion comprehen-sively.The average running time shows the proposed algorithm has real-time performance.展开更多
With the continuously increasing awareness of energy conservation and the intensifying impacts of global warming, Personal Thermal Management (PTM) technologies are increasingly recognized for their potential to ensur...With the continuously increasing awareness of energy conservation and the intensifying impacts of global warming, Personal Thermal Management (PTM) technologies are increasingly recognized for their potential to ensure human thermal comfort in extreme environments. Biomimetic structures have emerged as a novel source of inspiration for PTM applications. This review systematically summarizes the biomimetic structures, phase change materials, manufacturing methods, and the performance of multifunctional PTM wearables. Firstly, it analyzes the biomimetic structures with thermal regulation and encapsulated phase change material functionalities from different dimensions, highlighting their applications in PTM. Subsequently, it outlines the conventional manufacturing methods incorporating various biomimetic structures, offering strategies for the production of PTM wearables. The review also discusses the typical performance characteristics of multifunctional PTM wearables, addressing the current demands in thermal management. Finally, opportunities and challenges in PTM field are proposed, proposing new directions for future research.展开更多
Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage.However,achieving an integrated high evaporation rate,salt harvesting,and multifunctionality i...Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage.However,achieving an integrated high evaporation rate,salt harvesting,and multifunctionality in evaporator is still a crucial challenge.Here,a novel composite membrane with biomimetic micronanostructured superhydrophobic surface is designed via ultrafast laser etching technology.Attractively,the double-transition-metal(V_(1/2)Mo_(1/2))_(2)CT_(x)MXene nanomaterials as a photothermal layer,exhibiting the enhanced photothermal conversion performance due to elevated joint densities of states,which enables high populations of photoexcited carrier relaxation and heat release,provides a new insight into the photothermal conversion mechanism for multiple principal element MXene.Hence,the(V_(1/2)Mo_(1/2))_(2)CT_(x)MXene-200 composite membrane can achieve a high evaporation rate of 2.23 kg m^(−2)h^(−1)under one sun,owing to the enhanced“light trap”effect,photothermal conversion,and high-throughput water transfer.Synergetically,the membrane can induce the directed precipitation of salt at the membrane edge,thus enabling salt harvesting for recycling and zero-emission of brine water.Moreover,the composite membrane is endowed with excellent multifunctionality of anti-/de-icing,anti-fouling,and antibacterial,overcoming the disadvantage that versatility is difficult to be compatible.Therefore,the evaporator and the promising strategy hold great potential for the practical application of solar evaporation.展开更多
Herein,a novel Janus-structured multifunctional membrane with integrated electromagnetic interference(EMI)shielding and personalized thermal management is fabricated using shear-induced in situ fibrillation and vacuum...Herein,a novel Janus-structured multifunctional membrane with integrated electromagnetic interference(EMI)shielding and personalized thermal management is fabricated using shear-induced in situ fibrillation and vacuum-assisted filtration.Interestingly,within the polytetrafluoroethylene(PTFE)-carbon nanotube(CNT)-Fe_(3)O_(4)layer(FCFe),CNT nanofibers interweave with PTFE fibers to form a stable“silk-like”structure that effectively captures Fe_(3)O_(4)particles.By incorporating a highly conductive MXene layer,the FCFe/MXene(FCFe/M)membrane exhibits excellent electrical/thermal conductivity,mechanical properties,and flame retardancy.Impressively,benefiting from the rational regulation of component proportions and the design of a Janus structure,the FCFe/M membrane with a thickness of only 84.9μm delivers outstanding EMI shielding effectiveness of 44.56 dB in the X-band,with a normalized specific SE reaching 10,421.3 dB cm^(2)g^(-1),which is attributed to the“absorption-reflection-reabsorption”mechanism.Furthermore,the membrane demonstrates low-voltage-driven Joule heating and fast-response photothermal performance.Under the stimulation of a 3 V voltage and an optical power density of 320 mW cm^(-2),the surface temperatures of the FCFe/M membranes can reach up to 140.4 and 145.7℃,respectively.In brief,the FCFe/M membrane with anti-electromagnetic radiation and temperature regulation is an attractive candidate for the next generation of wearable electronics,EMI compatibility,visual heating,thermotherapy,and military and aerospace applications.展开更多
Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architec...Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architecture makes the PSD perform more functions by modifying its architecture.As the PSD is mainly formed of an array of photodiodes.The primary concept involves employing transistors to alternate between the operating modes of the photodiodes(photoconductive and photovoltaic).Additionally,alternating among output pins can be done based on the required function.This paper presents the mathematical modeling and simulation of a reconfigurable-multifunctional optical sensor which can perform energy harvesting and data acquisition,as well as positioning,which is not available in the traditional PSDs.Simulation using the MATLAB software tool was achieved to demonstrate the modeling.The simulation results confirmed the validity of the mathematical modeling and proved that the modified sensor architecture,as depicted by the equations,accurately describes its behavior.The proposed sensor is expected to extend the battery's lifecycle,reduce its physical size,and increase the integration and functionality of the system.The presented sensor might be used in free space optical(FSO)communication like cube satellites or even in underwater wireless optical communication(UWOC).展开更多
Metamaterials can control and manipulate acoustic/elastic waves on a subwavelength scale using cavities or additional components.However,the large cavity and weak stiffness components of traditional metamaterials may ...Metamaterials can control and manipulate acoustic/elastic waves on a subwavelength scale using cavities or additional components.However,the large cavity and weak stiffness components of traditional metamaterials may cause a conflict between vibroacoustic reduction and load-bearing capacity,and thus limit their application.Here,we propose a lightweight multifunctional metamaterial that can simultaneously achieve low-frequency sound insulation,broadband vibration reduction,and excellent load-bearing performance,named as vibroacoustic isolation and bearing metamaterial(VIBM).The advent of additive manufacturing technology provides a convenient and reliable method for the fabrication of VIBM samples.The results show that the compressive strength of the VIBM is as high as 9.71 MPa,which is nearly 87.81%higher than that of the conventional grid structure(CGS)under the same volume fraction.Moreover,the vibration and sound transmission are significantly reduced over a low and wide frequency range,which agrees well with the experimental data,and the reduction degree is obviously larger than that obtained by the CGS.The design strategy can effectively realize the key components of metamaterials and improve their application scenarios.展开更多
Separator modification is an effective approach to suppress dendrite growth to realize high-energy sodium metal batteries(SMBs)in practical applications,however,its success is mainly subject to surface modification.He...Separator modification is an effective approach to suppress dendrite growth to realize high-energy sodium metal batteries(SMBs)in practical applications,however,its success is mainly subject to surface modification.Herein,a separator with multifunctional layers composed of N-doped mesoporous hollow carbon spheres(HCS)as the inner layer and sodium fluoride(NaF)as the outer layer on commercial polypropylene separator(PP)is proposed(PP@HCS-NaF)to achieve stable cycling in SMB.At the molecular level,the inner HCS layer with a high content of pyrrolic-N induces the uniform Na^(+)flux as a potential Na^(+)redistributor for homogenous deposition,whereas its hollow mesoporous structure offers nanoporous buffers and ion channels to regulate Na^(+)ion distribution and uniform deposition.The outer layer(NaF)constructs the NaF-enriched robust solid electrolyte interphase layer,significantly lowering the Na^(+)ions diffusion barrier.Benefiting from these merits,higher electrochemical performances are achieved with multifunctional double-layered PP@HCS-NaF separators compared with single-layered separators(i.e.PP@HCS or PP@NaF)in SMBs.The Na‖Cu half-cell with PP@HCS-NaF offers stable cycling(280 cycles)with a high CE(99.6%),and Na‖Na symmetric cells demonstrate extended lifespans for over 6000 h at 1 mA cm^(-2)with a progressively stable overpotential of 9 mV.Remarkably,in Na‖NVP full-cells,the PP@HCS-NaF separator grants a stable capacity of~81 mA h g^(-1)after 3500 cycles at 1 C and an impressive rate capability performance(~70 mA h g^(-1)at 15 C).展开更多
Biological neurons exhibit a double-membrane structure and perform specialized functions.Replicating the doublemembrane architecture in artificial neurons to mimic biological neuronal functions is a compelling researc...Biological neurons exhibit a double-membrane structure and perform specialized functions.Replicating the doublemembrane architecture in artificial neurons to mimic biological neuronal functions is a compelling research challenge.In this study,we propose a multifunctional neural circuit composed of two capacitors,two linear resistors,a phototube cell,a nonlinear resistor,and a memristor.The phototube and charge-controlled memristor serve as sensors for external light and electric field signals,respectively.By applying Kirchhoff's and Helmholtz's laws,we derive the system's nonlinear dynamical equations and energy function.We further investigate the circuit's dynamics using methods from nonlinear dynamics.Our results show that the circuit can exhibit both periodic and chaotic patterns under stimulation by external light and electric fields.展开更多
Aqueous zinc-ion batteries(AZIBs)have garnered extensive attention as the promising energy storage technology owing to their high safety,cost-effectiveness,and environmental friendliness.Nevertheless,their practical a...Aqueous zinc-ion batteries(AZIBs)have garnered extensive attention as the promising energy storage technology owing to their high safety,cost-effectiveness,and environmental friendliness.Nevertheless,their practical application is hindered by critical challenges,including Hydrogen evolution reactions(HER)and non-uniform Zn deposition,which compromise electrochemical performance and cycling stability.Herein,we propose a multifunctional hybrid electrolyte additive consisting of vanillin and Dimethyl sulfoxide,designed to weaken the interaction between Zn^(2+)and H_(2)O molecules,effectively modulating the solvation shell structure.In situ optical microscopy shows the hybrid additive significantly suppresses HER and promotes Zn^(2+)deposition on the(002)plane,inhibiting dendritic growth.The Zn||Zn symmetric cells with hybrid additive exhibit exceptional cycling stability,achieving over 4000 h at 1.0 mA cm^(-2)/1.0 m A h cm^(-2).The research on hybrid additives presents significant potential for exploration,offering a promising approach to the development of durable AZIBs.展开更多
The electrochemical performance of all-solid-state lithium batteries(ASSLBs)can be prominently enhanced by minimizing the detrimental degradation of solid electrolytes through their undesirable side reactions with the...The electrochemical performance of all-solid-state lithium batteries(ASSLBs)can be prominently enhanced by minimizing the detrimental degradation of solid electrolytes through their undesirable side reactions with the conductive carbon additives(CCAs)inside the composite cathodes.Herein,the well-defined Mo_(3)Ni_(3)N nanosheets embedded onto the N-doped porous carbons(NPCs)substrate are successfully synthesized(Mo-Ni@NPCs)as CCAs inside LiCoO_(2)for Li_(6)PSC_5)Cl(LPSCl)-based ASSLBs.This nano-composite not only makes it difficult for hydroxide groups(-OH)to survive on the surface but also allows the in situ surface reconstruction to generate the ultra-stable MoS_(2)-Mo_(3)Ni_(3)N heterostructures after the initial cycling stage.These can effectively prevent the occurrence of OH-induced LPSC decomposition reaction from producing harmful insulating sulfates,as well as simultaneously constructing the highly-efficient electrons/ions dual-migration pathways at the cathode interfaces to facilitate the improvement of both electrons and Li+ions conductivities in ASSLBs.With this approach,fine-tuned Mo-Ni@NPCs can deliver extremely outstanding performance,including an ultra-high first discharge-specific capacity of 148.61 mAh g^(-1)(0.1C),a high Coulombic efficiency(94.01%),and a capacity retention rate after 1000 cycles still attain as high as 90.62%.This work provides a brand-new approach of“conversionprotection”strategy to overcome the drawbacks of composite cathodes interfaces instability and further promotes the commercialization of ASSLBs.展开更多
The suburbs surrounding metropolitan areas are the priority area for urban-rural integration development where functional optimization is essential to reconcile growing urban demands with sustainable rural development...The suburbs surrounding metropolitan areas are the priority area for urban-rural integration development where functional optimization is essential to reconcile growing urban demands with sustainable rural development.Rural functions are changing substantially and vary significantly across areas in the practice of high-quality urban-rural integration development era.How to make use of the advantages of different rural functions and achieve optimized combination of functions are actual problems that urgently need to be solved.The paper analyzed the process of urban-rural integration through the identification of urban-rural integration interfaces and evaluated the multifunctional transformation of rural areas in the Chengdu-Chongqing Economic Circle(CCEC)with a fixed weight evaluation model.The differences in rural functions analyzed with the Theil index reveals the characteristics and sources of differences in the“production-living-ecology-culture”functional areas in the CCEC.The research results show that:(1)The spatial distribution characteristics of rural functions in the CCEC are obvious,and agricultural production clusters dominate the Chengdu Plain and eastern Chongqing,contrasting with ecological conservation zones along the Yangtze River system,while cultural heritage hubs concentrate in economically vibrant tourism corridors.(2)The overall regional differences in rural functions are mainly due to intra-regional differences;in terms of the contribution rate,the contribution rate of intra-regional differences in agricultural production,ecological conservation,and cultural heritage functions is much larger than that of inter-regional differences,whereas the inter-regional differences in human living functions are larger than those of intra-regional differences.(3)Based on the research results,the study area is divided into 14 functional types,which can provide scientific basis for improving the spatial layout and high-quality development of rural functions in the CCEC.These insights advance theoretical understanding of mountainous-urban transitional areas while informing practical strategies for high-quality integrated development.展开更多
基金supported by the Fundamental Research Funds for the Central Universities and Heilongjiang Provincial Natural Science Foundation of China(Grant No.YQ2020E009).
文摘Robust, ultra-flexible, and multifunctional MXene-basedelectromagnetic interference (EMI) shielding nanocomposite filmsexhibit enormous potential for applications in artificial intelligence,wireless telecommunication, and portable/wearable electronic equipment.In this work, a nacre-inspired multifunctional heterocyclic aramid(HA)/MXene@polypyrrole (PPy) (HMP) nanocomposite paper withlarge-scale, high strength, super toughness, and excellent tolerance tocomplex conditions is fabricated through the strategy of HA/MXenehydrogel template-assisted in-situ assembly of PPy. Benefiting from the"brick-and-mortar" layered structure and the strong hydrogen-bondinginteractions among MXene, HA, and PPy, the paper exhibits remarkable mechanical performances, including high tensile strength (309.7 MPa),outstanding toughness (57.6 MJ m−3), exceptional foldability, and structural stability against ultrasonication. By using the template effect ofHA/MXene to guide the assembly of conductive polymers, the synthesized paper obtains excellent electronic conductivity. More importantly,the highly continuous conductive path enables the nanocomposite paper to achieve a splendid EMI shielding effectiveness (EMI SE) of 54.1 dBat an ultra-thin thickness (25.4 μm) and a high specific EMI SE of 17,204.7 dB cm2g−1. In addition, the papers also have excellent applicationsin electromagnetic protection, electro-/photothermal de-icing, thermal therapy, and fire safety. These findings broaden the ideas for developinghigh-performance and multifunctional MXene-based films with enormous application potential in EMI shielding and thermal management.
基金financial support from the Guangdong Basic and Applied Basic Research Foundation(No.2023A1515012218)Macao Science and Technology Development Fund(Nos.FDCT 0009/2020/AMJ,0027/2023/RIB1)+1 种基金National Natural Science Foundation of China(No.32301104)Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.23ptpy165).
文摘Hydrogel-based flexible sensors are emerging as ideal candidates for wearable devices and soft robotics.However,most current hydrogels possess limited physicochemical properties,which hinder their practical application in long-term and complex scenarios.Herein,inspired by the unique structure of the barnacle,we design multifunctional poly(DMAPA-co-PHEA)hydrogels(CP hydrogels)by employing multiple physical crosslinks in the presence of Ag nanoparticles and NaCl additives.Owing to the synergistic effect of cation-πinteractions,hydrophobic interactions,and ionic bonds,the CP hydrogels exhibit high stretchability(strain up to 1430%),strong adhesion(22.8 kPa),satisfactory antibacterial activity,stable anti-icing ability(<20 kPa after 20 icing-deicing cycles),and high electrical conductivity(18.5 mS/cm).Additionally,the CP hydrogels show fast and sensitive responsiveness and cycling stability and can attach directly to human skin to accurately detect both human motions and tiny physiological signals as a flexible wearable sensor.Collectively,this work significantly contributes a straightforward and efficient design strategy for the development of multifunctional hydrogels,broadening their application scenarios.
基金supported by the Scientific Research Project funded by the Qingdao Postdoctoral Science Foundation(No.QDBSH20230102075)the China Postdoctoral Science Foundation(No.2023M733337)the National Natural Science Foundation of China(No.U2141251).
文摘All maritime industries are plagued by marine biofouling pollution,which causes large economic and environmental costs.Therefore,there is an urgent need for ecofriendly alternatives that can effectively reduce the negative consequences of biofouling pollution.This study aimed to produce novel capsaicin-inspired amide derivatives(CIADs)with multifunctional antifouling features by introducing amide compounds to aromatic compounds via a Friedel-Crafts alkylation reaction.The structure of the CIADs was characterized using FTIR,1H NMR,13C NMR,and HRMS,and the comprehensive antifouling capacity was determined by thermal stability,anti-ultraviolet,antibacterial,anti-algal,and marine field experiments.CIADs showed good thermal stability and did not show obvious weight loss before 226°C.2,4-dihydroxy-3,5-diphenylimidemet-hylbenzophenone(DDB)had an excellent ultraviolet absorption effect,which was even better than that of 2-hydroxy-4-(octyloxy)benzophenone.The antibacterial and anti-algal rates of N-(2,4-dimethyl-3-chloro-5-benzamide-methyl-6-hydroxybenzyl)benzamide(NDCBHB)were more than 99.5%and 64.0%,respectively,and the surface of antifouling coating with NDCBHB(NDCBHB-AC)was covered with only a small amount of sludge and biofilm,its antifouling effect was better than that of chlorothalonil.The above work provides a reference for preparing green and multifunctional antifouling agents.
基金supported by the Singapore National Research Foundation(NRFCRP26-2021-0003,NRF),for research conducted at the National University of Singaporethe support by the ARTIC(ADT-RP2-Low Loss and Tunable Ferroelectrics for Sub-6G Applications).
文摘Sodium-ion-based electrochromic device(SECD)has been identified as an appealing cost-effective alternative of lithium-based counterparts,only if it can address the challenges in association with the inadequate electrochromic performance.In this regard,the quantized strategy is a particularly promising approach owing to the large surface-to-volume ratio and high reaction activity.However,quantum dots inevitably suffer from volume changes and undesired aggregation during electrochemical cycling.Herein,bioinspired from the robust connection of alveoli in lung,we propose a stable electrode,where WO_(3) quantum dots(WQDs)are robustly anchored on Ti_(3)C_(2) MXene through the strong chemical bonds of W-O-Ti.Theoretical results reveal the fundamental mechanism of the volume changes within WQDs and the dynamic diffusion process of sodium ions.The WQD@MXene electrodes exhibit a nearly twofold enhancement in cycling performance(1000 vs 500 cycles),coloration speed(3.2 vs 6.0 s),and areal capacity(87.5 vs 43.9 mAhm^(-2) at 0.1 mA cm^(-2)),compared to those of the pristine WQD electrode.As a proof-of-concept demonstration,a smart house system integrated with SECDs demonstrates a“3-in-1”device,enabling a combination of energy-saving,energy storage,and display functionalities.The present work significantly advances the versatile applications of cost-effective electrochromic electronics in interdisciplinary.
基金supported by the Fundamental Research Funds of Chinese Academy of Forestry(Nos.CAFYBB2022SY037,CAFYBB2021ZA002 and CAFYBB2022QC002)the Basic Research Foundation of Yunnan Province(Grant No.202201AT070264).
文摘Soil microbial communities are key factors in maintaining ecosystem multifunctionality(EMF).However,the distribution patterns of bacterial diversity and how the different bacterial taxa and their diversity dimensions affect EMF remain largely unknown.Here,we investigated variation in three measures of diversity(alpha diversity,community composition and network complexity)among rare,intermediate,and abundant taxa across a latitudinal gradient spanning five forest plots in Yunnan Province,China and examined their contributions on EMF.We aimed to characterize the diversity distributions of bacterial groups across latitudes and to assess the differences in the mechanisms underlying their contributions to EMF.We found that multifaceted diversity(i.e.,diversity assessed by the three different metrics)of rare,intermediate,and abundant bacteria generally decreased with increasing latitude.More importantly,we found that rare bacterial taxa tended to be more diverse,but they contributed less to EMF than intermediate or abundant bacteria.Among the three dimensions of diversity we assessed,only community composition significantly affected EMF across all locations,while alpha diversity had a negative effect,and network complexity showed no significant impact.Our study further emphasizes the importance of intermediate and abundant bacterial taxa as well as community composition to EMF and provides a theoretical basis for investigating the mechanisms by which belowground microorganisms drive EMF along a latitudinal gradient.
基金supported by the Natural Science Project of Zhengzhou Science and Technology Bureau(No.21ZZXTCX12)the Key Research and Development Program of Henan Province(No.221111220300)+1 种基金the Key Program of the National Natural Science Foundation of China(No.62333013)the Youth Backbone Teacher Training Program of Henan University of Technology(No.21420154).
文摘To facilitate real-time monitoring and recording of humidity in the environment and to satisfy the requirement for strain performance in certain applications(such as wearable devices),this paper proposes an in-situ method for synthesising Au nanoparticles on ZIF-67.In this study,an Au@ZIF-67 composite humidity-sensitive material was combined with flexible polyethylene terephthalate interdigitated electrodes to create an Au@ZIF-67 flexible humidity sensor.The prepared samples were characterised using X-ray diffraction,X-ray photoelectron spectroscopy,and transmission electron microscopy.The humidity-sensitive properties of the sensor were investigated,and its monitoring capabilities in applications involving respiration,gestures,skin,and baby diapers were tested.The experimental results indicate that compared with a pure ZIF-67 humidity sensor,the Au@ZIF-67(0.1Au@Z)flexible humidity sensor exhibits a 158.07%decrease in baseline resistance and a 51.66%increase in sensitivity to 95%relative humidity,and the hysteresis,response time,and recovery time are significantly reduced.Furthermore,the sensor exhibits excellent characteristics such as high resolution,repeatability,and stability.The obtained results regarding the material properties,humidity sensitivity,and practical application of non-contact humidity monitoring demonstrate that the prepared sensors exhibit excellent and comprehensive performance,indicating their broad prospects in wearable medical devices,wireless Internet of Things,humidity detection in complex environments,and intelligent integrated systems.
基金This work was supported by the Tianshan Programme of Excellence(2022TSYCCX0001)the National Key Program for Basic Research and Development(973 Program)(2012CB417101)。
文摘In recent years,soil acidification has been expanding in many areas of Asia due to increasing reactive nitrogen inputs and industrial activities,which may seriously affect the performance of various ecosystem functions.However,the underlying patterns and processes of ecosystem multifunctionality(EMF)are largely unknown at different levels of pH,limiting our understanding of how EMF respond to drivers.This study aims to explore threshold of pH on changes in EMF and differences in the drivers for the changes in EMF on either side of each of the determined pH thresholds.We collected nutrient and environmental databases for raster-level sampling data,totaling 4,000 sampling points.Averaging and cluster-multiple-threshold approach were used to calculate EMF,then quadratic and generalized additive models and Mann-Whitney U were used to determine and test the pH thresholds for changes in EMF,structural equation modellings and variance partitioning analysis were used to explore the main drivers on changes in EMF.The pH threshold for EMF changes in Chinese terrestrial ecosystems is 6.0.When pH<6.0,climate was consistently more important in controlling the variation of EMF than other variables;when pH≥6.0,soil was consistently more important in controlling the variation of EMF than other variables.Specifically,when pH<6.0,mean annual temperature was the main factor in regulating the EMF variation;when pH≥6.0,soil moisture was the main factor in regulating the EMF variation.Our study provides important scientific value for the mechanism of maintaining EMF under global change.For example,with further increases in global nitrogen deposition,leading to increased soil acidification,there are different impacts on EMF in different regions.It may lead to a decrease in EMF in acidic soils and an increase in EMF in alkaline soils.This suggests different management strategies for different regions to maintain EMF stability in the context of future global changes.In the future,more attention should be paid to the biological mechanisms regulating EMF.
基金supported by the National Natural Science Foundation of China(Nos.22174082,22374085)the Key Research and Development Program of Shandong Province(No.2021ZDSYS30)Qingdao Postdoctoral Innovation Project Funding(No.QDBSH20220201038)。
文摘An all-solid-state ion-selective electrode(ISE)for the detection of potassium ions in complex media was developed based on functional peptides with both antibacterial and antifouling properties.While exhibiting unique antifouling property,the ISE capitalized on the high surface area of the conductive metalorganic framework(MOF)solid transducer layer to facilitate rapid ion-electron transfer,consequently improving the electrode stability.For a short period,the application of a±1 n A current to the ISE resulted in a slight potential drift of 2.5μV/s,while for a long-term stability test,the ISE maintained a stable Nernstian response slope over 8 days.The antifouling and antibacterial peptide effectively eradicated bacteria from the electrode surface while inhibited the adhesion of bacteria and other biological organisms.Both theoretical calculations and experimental results indicated that the incorporation of peptides in the sensing membrane did not compromise the detection performance of the ISE.The prepared antifouling potassium ion-selective electrode exhibited a Nernstian response range spanning from 1.0×10^(–8)mol/L to 1.0×10–3mol/L,with a detection limit of 2.51 nmol/L.Crucially,the prepared solid-contact ISE maintained excellent antifouling and sensing capabilities in actual seawater and human urine,indicating a promising feasibility of this strategy for constructing ISEs suitable for practical application in complex systems.
基金the National Natural Science Foundation of China(Nos.62374029,22175029,62474033,and W2433038)the Young Elite Scientists Sponsorship Program by CAST(No.YESS20220550)+2 种基金the Sichuan Science and Technology Program(No.2024NSFSC0250)the Natural Science Foundation of Shenzhen Innovation Committee(JCYJ20210324135614040)the Fundamental Research Funds for the Central Universities of China(No.ZYGX2022J032).
文摘Perovskite solar cells(PSCs)have emerged as promising photovoltaic technologies owing to their remarkable power conversion efficiency(PCE).However,heat accumulation under continuous illumination remains a critical bottleneck,severely affecting device stability and long-term operational performance.Herein,we present a multifunctional strategy by incorporating highly thermally conductive Ti_(3)C_(2)T_(X) MXene nanosheets into the perovskite layer to simultaneously enhance thermal management and optoelectronic properties.The Ti_(3)C_(2)T_(X) nanosheets,embedded at perovskite grain boundaries,construct efficient thermal conduction pathways,significantly improving the thermal conductivity and diffusivity of the film.This leads to a notable reduction in the device’s steady-state operating temperature from 42.96 to 39.97 under 100 mW cm^(−2) illumination,thereby alleviating heat-induced performance degradation.Beyond thermal regulation,Ti_(3)C_(2)T_(X),with high conductivity and negatively charged surface terminations,also serves as an effective defect passivation agent,reducing trap-assisted recombination,while simultaneously facilitating charge extraction and transport by optimizing interfacial energy alignment.As a result,the Ti_(3)C_(2)T_(X)-modified PSC achieve a champion PCE of 25.13%and exhibit outstanding thermal stability,retaining 80%of the initial PCE after 500 h of thermal aging at 85 and 30±5%relative humidity.(In contrast,control PSC retain only 58%after 200 h.)Moreover,under continuous maximum power point tracking in N2 atmosphere,Ti_(3)C_(2)T_(X)-modified PSC retained 70%of the initial PCE after 500 h,whereas the control PSC drop sharply to 20%.These findings highlight the synergistic role of Ti_(3)C_(2)T_(X) in thermal management and optoelectronic performance,paving the way for the development of high-efficiency and heat-resistant perovskite photovoltaics.
基金supported by the National Natural Science Foundation of China(6177109562031007).
文摘The dwell scheduling problem for a multifunctional radar system is led to the formation of corresponding optimiza-tion problem.In order to solve the resulting optimization prob-lem,the dwell scheduling process in a scheduling interval(SI)is formulated as a Markov decision process(MDP),where the state,action,and reward are specified for this dwell scheduling problem.Specially,the action is defined as scheduling the task on the left side,right side or in the middle of the radar idle time-line,which reduces the action space effectively and accelerates the convergence of the training.Through the above process,a model-free reinforcement learning framework is established.Then,an adaptive dwell scheduling method based on Q-learn-ing is proposed,where the converged Q value table after train-ing is utilized to instruct the scheduling process.Simulation results demonstrate that compared with existing dwell schedul-ing algorithms,the proposed one can achieve better scheduling performance considering the urgency criterion,the importance criterion and the desired execution time criterion comprehen-sively.The average running time shows the proposed algorithm has real-time performance.
基金supported by Basic and Applied Basic Research Foundation of Guangdong Province(No.2024A1515010772)State Key Laboratory of Massive Personalized Customization System and Technology,No.H&C-MPC-2023-02-06(Q)+2 种基金“CUG scholar”Scientific Research Funds at China University of Geosciences,Wuhan(No.CUG2022185)Guangzhou Youth Top Talent ProgramChina College Student Innovation and Entrepreneurship Training Program(No.S202410491063).
文摘With the continuously increasing awareness of energy conservation and the intensifying impacts of global warming, Personal Thermal Management (PTM) technologies are increasingly recognized for their potential to ensure human thermal comfort in extreme environments. Biomimetic structures have emerged as a novel source of inspiration for PTM applications. This review systematically summarizes the biomimetic structures, phase change materials, manufacturing methods, and the performance of multifunctional PTM wearables. Firstly, it analyzes the biomimetic structures with thermal regulation and encapsulated phase change material functionalities from different dimensions, highlighting their applications in PTM. Subsequently, it outlines the conventional manufacturing methods incorporating various biomimetic structures, offering strategies for the production of PTM wearables. The review also discusses the typical performance characteristics of multifunctional PTM wearables, addressing the current demands in thermal management. Finally, opportunities and challenges in PTM field are proposed, proposing new directions for future research.
基金supported by the National Natural Science Foundation of China(No.U2106216,52331004)the Natural Science Foundation of Shandong Province(No.ZR2022ZD12)+5 种基金the Key R&D Program of Shandong Province,China(2023ZLGX05,2023CXGC010406)the Taishan Scholarship of Climbing Plan(No.tspd20230603)the Fundamental Research Funds for the Central Universities(202461105)the China Postdoctoral Science Foundation(2023M732677)Shandong Province Postdoctoral Innovation Project(SDCX-ZG-202303086)Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education(LOEC-202309).
文摘Solar-driven interfacial evaporation is one of the most attractive approaches to addressing the global freshwater shortage.However,achieving an integrated high evaporation rate,salt harvesting,and multifunctionality in evaporator is still a crucial challenge.Here,a novel composite membrane with biomimetic micronanostructured superhydrophobic surface is designed via ultrafast laser etching technology.Attractively,the double-transition-metal(V_(1/2)Mo_(1/2))_(2)CT_(x)MXene nanomaterials as a photothermal layer,exhibiting the enhanced photothermal conversion performance due to elevated joint densities of states,which enables high populations of photoexcited carrier relaxation and heat release,provides a new insight into the photothermal conversion mechanism for multiple principal element MXene.Hence,the(V_(1/2)Mo_(1/2))_(2)CT_(x)MXene-200 composite membrane can achieve a high evaporation rate of 2.23 kg m^(−2)h^(−1)under one sun,owing to the enhanced“light trap”effect,photothermal conversion,and high-throughput water transfer.Synergetically,the membrane can induce the directed precipitation of salt at the membrane edge,thus enabling salt harvesting for recycling and zero-emission of brine water.Moreover,the composite membrane is endowed with excellent multifunctionality of anti-/de-icing,anti-fouling,and antibacterial,overcoming the disadvantage that versatility is difficult to be compatible.Therefore,the evaporator and the promising strategy hold great potential for the practical application of solar evaporation.
基金support from the National Natural Science Foundation of China(NSFC,Grant No.52175341)Shandong Provincial Natural Science Foundation(Grant No.ZR2022JQ24)Funding Project of Jinan City’s New Twenty Items for Colleges and Universities(Grant No.202333038).
文摘Herein,a novel Janus-structured multifunctional membrane with integrated electromagnetic interference(EMI)shielding and personalized thermal management is fabricated using shear-induced in situ fibrillation and vacuum-assisted filtration.Interestingly,within the polytetrafluoroethylene(PTFE)-carbon nanotube(CNT)-Fe_(3)O_(4)layer(FCFe),CNT nanofibers interweave with PTFE fibers to form a stable“silk-like”structure that effectively captures Fe_(3)O_(4)particles.By incorporating a highly conductive MXene layer,the FCFe/MXene(FCFe/M)membrane exhibits excellent electrical/thermal conductivity,mechanical properties,and flame retardancy.Impressively,benefiting from the rational regulation of component proportions and the design of a Janus structure,the FCFe/M membrane with a thickness of only 84.9μm delivers outstanding EMI shielding effectiveness of 44.56 dB in the X-band,with a normalized specific SE reaching 10,421.3 dB cm^(2)g^(-1),which is attributed to the“absorption-reflection-reabsorption”mechanism.Furthermore,the membrane demonstrates low-voltage-driven Joule heating and fast-response photothermal performance.Under the stimulation of a 3 V voltage and an optical power density of 320 mW cm^(-2),the surface temperatures of the FCFe/M membranes can reach up to 140.4 and 145.7℃,respectively.In brief,the FCFe/M membrane with anti-electromagnetic radiation and temperature regulation is an attractive candidate for the next generation of wearable electronics,EMI compatibility,visual heating,thermotherapy,and military and aerospace applications.
文摘Position sensitive device(PSD)sensor is a vital optical element that is mainly used in tracking systems for visible light communication(VLC).Recently,a new reconfigurable PSD architecture emerged.The proposed architecture makes the PSD perform more functions by modifying its architecture.As the PSD is mainly formed of an array of photodiodes.The primary concept involves employing transistors to alternate between the operating modes of the photodiodes(photoconductive and photovoltaic).Additionally,alternating among output pins can be done based on the required function.This paper presents the mathematical modeling and simulation of a reconfigurable-multifunctional optical sensor which can perform energy harvesting and data acquisition,as well as positioning,which is not available in the traditional PSDs.Simulation using the MATLAB software tool was achieved to demonstrate the modeling.The simulation results confirmed the validity of the mathematical modeling and proved that the modified sensor architecture,as depicted by the equations,accurately describes its behavior.The proposed sensor is expected to extend the battery's lifecycle,reduce its physical size,and increase the integration and functionality of the system.The presented sensor might be used in free space optical(FSO)communication like cube satellites or even in underwater wireless optical communication(UWOC).
基金Project supported by the National Natural Science Foundation of China(Nos.11991032 and 52241103)the Hunan Province Graduate Research Innovation Project of China(No.KY0409052440)。
文摘Metamaterials can control and manipulate acoustic/elastic waves on a subwavelength scale using cavities or additional components.However,the large cavity and weak stiffness components of traditional metamaterials may cause a conflict between vibroacoustic reduction and load-bearing capacity,and thus limit their application.Here,we propose a lightweight multifunctional metamaterial that can simultaneously achieve low-frequency sound insulation,broadband vibration reduction,and excellent load-bearing performance,named as vibroacoustic isolation and bearing metamaterial(VIBM).The advent of additive manufacturing technology provides a convenient and reliable method for the fabrication of VIBM samples.The results show that the compressive strength of the VIBM is as high as 9.71 MPa,which is nearly 87.81%higher than that of the conventional grid structure(CGS)under the same volume fraction.Moreover,the vibration and sound transmission are significantly reduced over a low and wide frequency range,which agrees well with the experimental data,and the reduction degree is obviously larger than that obtained by the CGS.The design strategy can effectively realize the key components of metamaterials and improve their application scenarios.
基金supported by the National Natural Science Foundation of China(Grant Number 22350410379)Zhejiang Provincial Natural Science Foundation of China(LZ23B030003)+1 种基金the Fundamental Research Funds for the Central Universities(226-202400075)Ten Thousand Talent Program of Zhejiang Province.
文摘Separator modification is an effective approach to suppress dendrite growth to realize high-energy sodium metal batteries(SMBs)in practical applications,however,its success is mainly subject to surface modification.Herein,a separator with multifunctional layers composed of N-doped mesoporous hollow carbon spheres(HCS)as the inner layer and sodium fluoride(NaF)as the outer layer on commercial polypropylene separator(PP)is proposed(PP@HCS-NaF)to achieve stable cycling in SMB.At the molecular level,the inner HCS layer with a high content of pyrrolic-N induces the uniform Na^(+)flux as a potential Na^(+)redistributor for homogenous deposition,whereas its hollow mesoporous structure offers nanoporous buffers and ion channels to regulate Na^(+)ion distribution and uniform deposition.The outer layer(NaF)constructs the NaF-enriched robust solid electrolyte interphase layer,significantly lowering the Na^(+)ions diffusion barrier.Benefiting from these merits,higher electrochemical performances are achieved with multifunctional double-layered PP@HCS-NaF separators compared with single-layered separators(i.e.PP@HCS or PP@NaF)in SMBs.The Na‖Cu half-cell with PP@HCS-NaF offers stable cycling(280 cycles)with a high CE(99.6%),and Na‖Na symmetric cells demonstrate extended lifespans for over 6000 h at 1 mA cm^(-2)with a progressively stable overpotential of 9 mV.Remarkably,in Na‖NVP full-cells,the PP@HCS-NaF separator grants a stable capacity of~81 mA h g^(-1)after 3500 cycles at 1 C and an impressive rate capability performance(~70 mA h g^(-1)at 15 C).
基金Project supported by the Gansu Provincial Department of Education University Teacher Innovation Fund Project(Grant No.2024A-168)the Qingyang Science and Technology Plan Project(Grant No.QY-STK-2024B-193)the Horizontal Research Project of Longdong University(Grant No.HXZK2422)。
文摘Biological neurons exhibit a double-membrane structure and perform specialized functions.Replicating the doublemembrane architecture in artificial neurons to mimic biological neuronal functions is a compelling research challenge.In this study,we propose a multifunctional neural circuit composed of two capacitors,two linear resistors,a phototube cell,a nonlinear resistor,and a memristor.The phototube and charge-controlled memristor serve as sensors for external light and electric field signals,respectively.By applying Kirchhoff's and Helmholtz's laws,we derive the system's nonlinear dynamical equations and energy function.We further investigate the circuit's dynamics using methods from nonlinear dynamics.Our results show that the circuit can exhibit both periodic and chaotic patterns under stimulation by external light and electric fields.
基金supported by the National Natural Science Foundation of China(52402247)the Innovative Funds Plan of Henan University of Technology(2020ZKCJ07)+1 种基金the Cultivation Project of Tuoxin Team in Henan University of Technology(2024TXTD14)the Doctoral Fund of Henan University of Technology(31401577)。
文摘Aqueous zinc-ion batteries(AZIBs)have garnered extensive attention as the promising energy storage technology owing to their high safety,cost-effectiveness,and environmental friendliness.Nevertheless,their practical application is hindered by critical challenges,including Hydrogen evolution reactions(HER)and non-uniform Zn deposition,which compromise electrochemical performance and cycling stability.Herein,we propose a multifunctional hybrid electrolyte additive consisting of vanillin and Dimethyl sulfoxide,designed to weaken the interaction between Zn^(2+)and H_(2)O molecules,effectively modulating the solvation shell structure.In situ optical microscopy shows the hybrid additive significantly suppresses HER and promotes Zn^(2+)deposition on the(002)plane,inhibiting dendritic growth.The Zn||Zn symmetric cells with hybrid additive exhibit exceptional cycling stability,achieving over 4000 h at 1.0 mA cm^(-2)/1.0 m A h cm^(-2).The research on hybrid additives presents significant potential for exploration,offering a promising approach to the development of durable AZIBs.
基金support provided by the National Natural Science Foundation of China(Grant No.21804008,52102209)the International Technological Collaboration Project of Shanghai(Grant No.17520710300).
文摘The electrochemical performance of all-solid-state lithium batteries(ASSLBs)can be prominently enhanced by minimizing the detrimental degradation of solid electrolytes through their undesirable side reactions with the conductive carbon additives(CCAs)inside the composite cathodes.Herein,the well-defined Mo_(3)Ni_(3)N nanosheets embedded onto the N-doped porous carbons(NPCs)substrate are successfully synthesized(Mo-Ni@NPCs)as CCAs inside LiCoO_(2)for Li_(6)PSC_5)Cl(LPSCl)-based ASSLBs.This nano-composite not only makes it difficult for hydroxide groups(-OH)to survive on the surface but also allows the in situ surface reconstruction to generate the ultra-stable MoS_(2)-Mo_(3)Ni_(3)N heterostructures after the initial cycling stage.These can effectively prevent the occurrence of OH-induced LPSC decomposition reaction from producing harmful insulating sulfates,as well as simultaneously constructing the highly-efficient electrons/ions dual-migration pathways at the cathode interfaces to facilitate the improvement of both electrons and Li+ions conductivities in ASSLBs.With this approach,fine-tuned Mo-Ni@NPCs can deliver extremely outstanding performance,including an ultra-high first discharge-specific capacity of 148.61 mAh g^(-1)(0.1C),a high Coulombic efficiency(94.01%),and a capacity retention rate after 1000 cycles still attain as high as 90.62%.This work provides a brand-new approach of“conversionprotection”strategy to overcome the drawbacks of composite cathodes interfaces instability and further promotes the commercialization of ASSLBs.
基金funded by the National Natural Science Foundation of China(Grant Nos.T2261129477,42101202 and 42401261)Fundamental Research Funds for the Central Universities(2024CDJSKXYGG06)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202400528).
文摘The suburbs surrounding metropolitan areas are the priority area for urban-rural integration development where functional optimization is essential to reconcile growing urban demands with sustainable rural development.Rural functions are changing substantially and vary significantly across areas in the practice of high-quality urban-rural integration development era.How to make use of the advantages of different rural functions and achieve optimized combination of functions are actual problems that urgently need to be solved.The paper analyzed the process of urban-rural integration through the identification of urban-rural integration interfaces and evaluated the multifunctional transformation of rural areas in the Chengdu-Chongqing Economic Circle(CCEC)with a fixed weight evaluation model.The differences in rural functions analyzed with the Theil index reveals the characteristics and sources of differences in the“production-living-ecology-culture”functional areas in the CCEC.The research results show that:(1)The spatial distribution characteristics of rural functions in the CCEC are obvious,and agricultural production clusters dominate the Chengdu Plain and eastern Chongqing,contrasting with ecological conservation zones along the Yangtze River system,while cultural heritage hubs concentrate in economically vibrant tourism corridors.(2)The overall regional differences in rural functions are mainly due to intra-regional differences;in terms of the contribution rate,the contribution rate of intra-regional differences in agricultural production,ecological conservation,and cultural heritage functions is much larger than that of inter-regional differences,whereas the inter-regional differences in human living functions are larger than those of intra-regional differences.(3)Based on the research results,the study area is divided into 14 functional types,which can provide scientific basis for improving the spatial layout and high-quality development of rural functions in the CCEC.These insights advance theoretical understanding of mountainous-urban transitional areas while informing practical strategies for high-quality integrated development.