Cancer multidrug resistance(MDR)impairs the therapeutic efficacy of various chemotherapeutics.Novel approaches,particularly the development of MDR reversal agents,are critically needed to address this challenge.This s...Cancer multidrug resistance(MDR)impairs the therapeutic efficacy of various chemotherapeutics.Novel approaches,particularly the development of MDR reversal agents,are critically needed to address this challenge.This study demonstrates that tenacissoside I(TI),a compound isolated from Marsdenia tenacissima(Roxb.)Wight et Arn,traditionally used in clinical practice as an ethnic medicine for cancer treatment,exhibits significant MDR reversal effects in ABCB1-mediated MDR cancer cells.TI reversed the resistance of SW620/AD300 and KBV200 cells to doxorubicin(DOX)and paclitaxel(PAC)by downregulating ABCB1 expression and reducing ABCB1 drug transport function.Mechanistically,protein arginine methyltransferase 1(PRMT1),whose expression correlates with poor prognosis and shows positive association with both ABCB1 and EGFR expressions in tumor tissues,was differentially expressed in TI-treated SW620/AD300 cells.SW620/AD300 and KBV200 cells exhibited elevated levels of EGFR asymmetric dimethylarginine(aDMA)and enhanced PRMT1-EGFR interaction compared to their parental cells.Moreover,TI-induced PRMT1 downregulation impaired PRMT1-mediated aDMA of EGFR,PRMT1-EGFR interaction,and EGFR downstream signaling in SW620/AD300 and KBV200 cells.These effects were significantly reversed by PRMT1 overexpression.Additionally,TI demonstrated resistance reversal to PAC in xenograft models without detectable toxicities.This study establishes TI's MDR reversal effect in ABCB1-mediated MDR human cancer cells through inhibition of PRMT1-mediated aDMA of EGFR,suggesting TI's potential as an MDR modulator for improving chemotherapy outcomes.展开更多
Objectives The combined use of bedaquiline and delamanid(BDQ-DLM)is limited by an increased risk of prolonging the QTc interval.We retrospectively evaluated patients who received DLM/BDQcontaining regimens at a TB-spe...Objectives The combined use of bedaquiline and delamanid(BDQ-DLM)is limited by an increased risk of prolonging the QTc interval.We retrospectively evaluated patients who received DLM/BDQcontaining regimens at a TB-specialized hospital.We aimed to present clinical efficacy and safety data for Chinese patients.Methods This case-control study included patients with multidrug-resistant tuberculosis(MDR-TB)treated with BDQ alone or BDQ plus DLM.Results A total of 96 patients were included in this analysis:64 in the BDQ group and 32 in the BDQ+DLM group.Among the 96 patients with positive sputum culture at the initiation of BDQ alone or BDQ combined with DLM,46 patients(71.9%)in the BDQ group and 29(90.6%)in the BDQ-DLM group achieved sputum culture conversion during treatment.The rate of sputum culture conversion did not differ between the two groups.The time to sputum culture conversion was significantly shorter in the BDQ-DLM group than in the BDQ group.The most frequent adverse event was QTc interval prolongation;however,the frequency of adverse events did not differ between the groups.Conclusion In conclusion,our results demonstrate that the combined use of BDQ and DLM is efficacious and tolerable in Chinese patients infected with MDR-TB.Patients in the BDQ-DLM group achieved sputum culture conversion sooner than those in the BDQ group.展开更多
Objectives:This investigation aimed to elucidate the inhibitory impact of apatinib on the multidrug resistance of liver cancer both in vivo and in vitro.Methods:To establish a Hep3B/5-Fu resistant cell line,5-Fu conce...Objectives:This investigation aimed to elucidate the inhibitory impact of apatinib on the multidrug resistance of liver cancer both in vivo and in vitro.Methods:To establish a Hep3B/5-Fu resistant cell line,5-Fu concentrations were gradually increased in the culture media.Hep3B/5-Fu cells drug resistance and its alleviation by apatinib were confirmed via flow cytometry and Cell Counting Kit 8(CCK8)test.Further,Nuclear factor kappa B(NF-κB)siRNA was transfected into Hep3B/5-Fu cells to assess alterations in the expression of multidrug resistance(MDR)-related genes and proteins.Nude mice were injected with Hep3B/5-Fu cells to establish subcutaneous xenograft tumors and then categorized into 8 treatment groups.The treatments included oxaliplatin,5-Fu,and apatinib.In the tumor tissues,the expression of MDRrelated genes was elucidated via qRT-PCR,immunohistochemistry,and Western blot analyses.Results:The apatinibtreated mice indicated slower tumor growth with smaller size compared to the control group.Both the in vivo and in vitro investigations revealed that the apatinib-treated groups had reduced expression of MDR genes GST-pi,LRP,MDR1,and p-p65.Conclusions:Apatinib effectively suppresses MDR in human hepatic cancer cells by modulating the expression of genes related to MDR,potentially by suppressing the NF-κB signaling pathway.展开更多
Microbial resistance to antibiotics is a global problem that threatens the lives of millions of people and affects several sectors, including aquaculture. The aim of the present study is to contribute to the monitorin...Microbial resistance to antibiotics is a global problem that threatens the lives of millions of people and affects several sectors, including aquaculture. The aim of the present study is to contribute to the monitoring of multi-resistant enterobacterial strains circulating in fish ponds in the Sud-Comoé region of south-eastern Côte d’Ivoire, more specifically in the Aboisso and Tiapoum departments. To this end, 20 samples of Tilapia fish (Oreochromis niloticus) and 60 samples of farm water were collected from 5 fish farms in the Sud-Comoé region. Microbiological analyses were based on the isolation and identification of enterobacteria on Mac Conkey + Ceftazidime medium. These analyses resulted in the isolation of 73 strains of enterobacteria, including 58 from fish and 15 from fish pond water samples. Antibiotic sensitivity tests carried out on enterobacteria isolated from water and fish samples showed high levels of resistance (100%) to the beta-lactam family (Amoxicilin + clavulanic acid, Ceftazidime). Klebsiella pneumoniae and Enterobacter spp. showed resistance to Ciprofloxacins (100%) and (25%) respectively. The study also showed that strains of Enterobacteriaceae were resistant to all 3 families of antibiotics, notably Beta-lactams, Fluoro-quinolones and Aminosides. The presence of multi-resistant Enterobacteriaceae in fish and pond water samples represents a public health risk.展开更多
Diarrheal diseases represent a significant and pervasive health challenge for humanity. The aetiology of diarrheal diseases is typically associated with the presence of enteropathogens, including viruses, bacteria and...Diarrheal diseases represent a significant and pervasive health challenge for humanity. The aetiology of diarrheal diseases is typically associated with the presence of enteropathogens, including viruses, bacteria and parasites. The implementation of preventive measures, including the maintenance of good food hygiene, effective water sanitation, and the development of rotavirus vaccines, has resulted in a notable reduction in the prevalence of the disease. However, the emergence of bacterial multidrug resistance due to the past or present inappropriate use of antibiotics has rendered bacterial infections a significant challenge. The objective of this review is threefold: firstly, to provide an overview of diarrheal diseases associated with bacteria;secondly, to offer a concise analysis of bacterial multidrug resistance on a global scale;and thirdly, to present the potential of filamentous fungi as an alternative solution to the challenge posed by multidrug-resistant strains. Campylobacter spp. is the most dangerous bacteria, followed by Shigella spp. and Vibrio cholerae in all age groups combined. However, Shigella spp. was the deadliest in children under five years of age and, together with E. coli, are the most antibiotic-resistant bacteria. With their highly developed secondary metabolism, fungi are a reservoir of natural bioactive compounds.展开更多
Multidrug Resistance Protein 2 (MRP2) is an ATP-dependent transmembrane protein that plays a pivotal role in the efflux of a wide variety of physiological substrates across the plasma membrane. Several studies have sh...Multidrug Resistance Protein 2 (MRP2) is an ATP-dependent transmembrane protein that plays a pivotal role in the efflux of a wide variety of physiological substrates across the plasma membrane. Several studies have shown that MRP2 can significantly affect the absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles of many therapeutic drugs and chemicals found in the environment and diet. This transporter can also efflux newly developed anticancer agents that target specific signaling pathways and are major clinical markers associated with multidrug resistance (MDR) of several types of cancers. MDR remains a major limitation to the advancement of the combinatorial chemotherapy regimen in cancer treatment. In addition to anticancer agents, MRP2 reduces the efficacy of various drug classes such as antivirals, antimalarials, and antibiotics. The unique role of MRP2 and its contribution to MDR makes it essential to profile drug-transporter interactions for all new and promising drugs. Thus, this current research seeks to identify modulators of MRP2 protein expression levels using cell-based assays. A unique recently approved FDA library (372 drugs) was screened using a high-throughput In-Cell ELISA assay to determine the effect of these therapeutic agents on protein expression levels of MRP2. A total of 49 FDA drugs altered MRP2 protein expression levels by more than 50% representing 13.17% of the compounds screened. Among the identified hits, thirty-nine (39) drugs increased protein expression levels whereas 10 drugs lowered protein expression levels of MRP2 after drug treatment. Our findings from this initial drug screening showed that modulators of MRP2 peregrinate multiple drug families and signify the importance of profiling drug interactions with this transporter. Data from this study provides essential information to improve combinatorial drug therapy and precision medicine as well as reduce the drug toxicity of various cancer chemotherapies.展开更多
Resistant bacteria can be transmitted to humans through feces or contaminated meat from local chickens. Bacterial strains were isolated from the intestinal contents of 400 local chicken samples from various sales site...Resistant bacteria can be transmitted to humans through feces or contaminated meat from local chickens. Bacterial strains were isolated from the intestinal contents of 400 local chicken samples from various sales sites. These strains were then characterized using bacteriological and biochemical methods to identify resistant strains. In a study conducted in Ouagadougou, we systematically collected chicken fecal samples from 20 locations across the city, followed by isolation and identification of Salmonella spp. using specific enrichment and culture methods, as well as Escherichia coli. Bacterial strains were characterized using antibiotic resistance profiles were determined through agar diffusion tests, revealing sensitivity or resistance to a range of antibiotics based on established scientific criteria. The results showed that out of the 400 samples collected, 81.25% and 63.5% were contaminated by Escherichia coli and Salmonella spp., respectively. Among these, 86.15% of identified Escherichia coli and 50.78% of Salmonella spp. displayed resistance to at least one tested antibiotic. Among 280 Escherichia coli isolates identified resistant to at least one antibiotic, 31.07% were resistant to cefotaxime (CTX), 20.35% to ceftazidime (CAZ), 21.07% to ceftriaxone (CTR), 75% to amoxicillin clavulanic acid (AMC), 23.57% aztreoname (ATM) and 27.14% were resistant to imipenem (IMP). In the case of the 129 Salmonella spp. isolates resistant to at least one tested antibiotic, 34.88% were resistant to CTX;41.08% to CAZ;35.65% to CTR, 92% to AMC, 39.53% to ATM and finally 47.28% were resistant to IMP. Our study revealed high prevalence of resistance in bacterial strains isolated from local chickens sold outdoors in Ouagadougou. These findings raise significant public health concerns, due to the possible transmission of these resistant strains to humans through the consumption of contaminated meat, thus complicating the treatment of bacterial infections.展开更多
AIM:To evaluate the effect of efflux pump inhibitors (EPIs) on multidrug resistance of Helicobacter pylori (H. pylori).METHODS: H. pylori strains were isolated and cultured on Brucella agar plates with 10% sheep's...AIM:To evaluate the effect of efflux pump inhibitors (EPIs) on multidrug resistance of Helicobacter pylori (H. pylori).METHODS: H. pylori strains were isolated and cultured on Brucella agar plates with 10% sheep's blood. The multidrug resistant (MDR) H. pylori were obtained with the inducer chloramphenicol by repeated doubling of the concentration until no colony was seen, then the susceptibilities of the MDR strains and their parents to 9 antibiotics were assessed with agar dilution tests. The present study included periods before and after the advent of the EPIs, carbonyl cyanide m-chlorophenyl hydrazone (CCCP), reserpine and pantoprazole), and the minimum inhibitory concentrations (MICs) were determined accordingly. In the same way, the effects of 5 proton pump inhibitors (PPIs), used in treatment of H. pylori infection, on MICs of antibiotics were evaluated.RESULTS: Four strains of MDR H. pylori were induced successfully, and the antibiotic susceptibilities of MDR strains were partly restored by CCCP and pantoprazole, but there was little effect of reserpine. Rabeprazole was the most effective of the 5 PPIs which could decrease the MICs of antibiotics for MDR H. pylori significantly.CONCLUSION: In vitro, some EPIs can strengthen the activities of different antibiotics which are the putative substrates of the efflux pump system in H. pylori.展开更多
[Objective] This study aimed to investigate the multidrug resistance and prevalence of class I integrons in Salmonel a. [Method] Salmonel a strains were isolated from chicken farms in Shandong Province. Kauffmann-Whi...[Objective] This study aimed to investigate the multidrug resistance and prevalence of class I integrons in Salmonel a. [Method] Salmonel a strains were isolated from chicken farms in Shandong Province. Kauffmann-White classification method was employed to analyze the serotypes of Salmonel a strains. Minimum in-hibition concentration (MIC) of Salmonel a strains against 19 common antimicrobial drugs was analyzed determined with microdilution method. The class I integrons and carried drug resistance gene cassettes were detected by PCR. [Result] A total of 311 Salmonel a strains were isolated and classified into two serotypes, including 133 Salmonel a Indiana strains and 178 Salmonel a Enteritidis strains. Drug sensitivity test showed that the isolated Salmonel a strains were general y resistant to sulfadiazine, sulfamethoxazole, nalidixic acid, ampicil in, tetracycline, doxycycline and trimethoprim, with a multidrug resistance rate of 91.0% (283/311); 99% strains were sensitive to amikacin and colistin. PCR assay indicated that the detection rate of class I integrons was 65.0% (202/311); the positive rate of class I integrons in Salmonel a strains with multidrug resistance was 92.6%; among 202 positive strains, six strains carried gene cassette dfr17-aadA5. [Conclusion] According to the above results, class I integrons exist general y in Salmonel a and are closely associated with the multidrug resistance of Salmonel a strains.展开更多
Multidrug resistance remains a serious clinical problem in the successful therapy of malignant diseases. It occurs in cultured tumor cell lines, as well as in human cancers. Therefore, it is critical to develop novel ...Multidrug resistance remains a serious clinical problem in the successful therapy of malignant diseases. It occurs in cultured tumor cell lines, as well as in human cancers. Therefore, it is critical to develop novel anticancer drugs with multidrug-resistance modulating potential to increase the survival rate of leukemia patients. Plant-derived natural products have been used for the treatment of various diseases for thousands of years. This review summarizes the anticancer and multidrug-resistance reversing properties of the extracts and bioactive compounds from traditional medicinal plants in different leukemia cell lines. Further mechanistic studies will pave the road to establish the anticancer potential of plant-derived natural compounds.展开更多
AIM: To study the expression and phosphorylation of extracellular signal-regulated kinase (ERK) i and ERK2 in multidrug resistant (MDR) hepatocellular carcinoma (HCC) cells.METHODS: MDR HCC cell lines, HepG2/a...AIM: To study the expression and phosphorylation of extracellular signal-regulated kinase (ERK) i and ERK2 in multidrug resistant (MDR) hepatocellular carcinoma (HCC) cells.METHODS: MDR HCC cell lines, HepG2/adriamycin (ADM) and SMMC7721/ADM, were developed by exposing parental cells to stepwise increasing concentrations of ADM. MTT assay was used to determine drug sensitivity. Flow cytometry was employed to analyze cell cycle distribution and measure cell P-glycoprotein (P-gp) and multidrug resistant protein 1 (MRP1) expression levels. ERK1 and ERK2 mRNA expression lev-ls were measured by quantitative real-time PCR (QRTPCR). Expression and phosphorylation of ERK1 and ERK2 were analyzed by Western blot.RESULTS: MTT assay showed that HepG2/ADM andSMMC7721/ADM were resistant not only to ADM, but also to multiple anticancer drugs. The P-gp expression was over 10-fold higher in HepG2/ADM cells than in HepG2 cells (8.92% ±0.22% vs 0.88% ± 0.05%, P 〈 0.001) and over 4-fold higher in SMMC7721/ADM cells than in SMMC7721 cells (7.37% ± 0.26% vs 1.74% ± 0.25%, P 〈 0.001). However, the MRP1 expression was not significantly higher in HepG2/ADM and SMMC7721/ADM cells than in parental cells. In addition, the percentage of MDR HepG2/ADM and SMMC7721/ADM cells was significantly decreased in the G0/G1 phase and increased in the the S phase or G2/M phase. QRT-PCR analysis demonstrated that the ERK1 and ERK2 mRNA expression increased apparently in HepG2/ADM cells and decreased significantly in SMMC7721/ADM cells. Compared with the expression of parental cells, ERK1 and ERK2 protein expressions were markedly decreased in SMMC7721/ADM cells. However, ERK2 protein expression was markedly increased while ERK1 protein expression had no significant change in HepG2/ADM cells. Phosphorylation of ERK1 and ERK2 was markedly decreased in both HepG2/ADM and SMMC7721/ADM MDR cells.CONCLUSION: ERK1 and ERK2 activities are downregulated in P-gp-mediated MDR HCC cells. ERK1 or ERK2 might be a potential drug target for circumventing MDR HCC cells,展开更多
Silver nitrate could inhibit the clinical multidrug resistant isolates at high concentrations(with minimal inhibitory concentrations(MICs) from 32 μM to 64 μM). The activities of amikacin in the presence of sub-...Silver nitrate could inhibit the clinical multidrug resistant isolates at high concentrations(with minimal inhibitory concentrations(MICs) from 32 μM to 64 μM). The activities of amikacin in the presence of sub-lethal silver nitrate(15 μM) were tested for the combinational effects against multidrug resistant clinical isolates in vitro. Silver nitrate restored the susceptibility of drug-resistant Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus to amikacin. It lowered the MICs of amikacin from 〉128 μg/mL to(2–16) μg/mL and 32 μg/mL, respectively, and lowered the MICs of amikacin on extended spectrum β-lactamase-producing Pseudomonas aeruginosa and Escherichia coli from(16–32) μg/mL and 16 μg/mL to(〈1–4) μg/mL and 〈1 μg/mL, respectively.展开更多
Studies on structure-activity relationship of phenothiazines (PTZs) forinhibition of protein kinase C (PKC) and reversal of multidrug resistance (MDR) has been made invitro. The results showed that the order of potenc...Studies on structure-activity relationship of phenothiazines (PTZs) forinhibition of protein kinase C (PKC) and reversal of multidrug resistance (MDR) has been made invitro. The results showed that the order of potency of reversal effect of PTZs on MDR is as follows:2-COC_3 H_7 > 2-CF_3 > 2-COCH_3 > H. The type of piperazinyl substitution also significantlyaffected potency against MDR. The results show the order: CH_3 > COOC_2 H_5 > C_2 H_4 OH. Inaddition, PKC plays a marked role in diverse cellular process including MDR. Some derivatives of PTZwas tested for inhibition of PKC, of which PTZ11 showed the highest inhibitory effect of MDR andPKC, implying a potential reversal agent of MDR for tumor therapy in the future. We also tried toexplore the possible binding model of PTZs to PKC. Our molecular-modeling study preliminarilysuggests how these PTZs bind to PKC and provides a structural basis for the design of high affinityPKC-modulator. The infor-mation may be used in the rational design of more effective drugs.展开更多
To establish a method to evaluate the effects of chemosensitizer onP-glycoprotein using ^(99m)Tc-MIBI, and observe the changes of ^(99m)Tc-MIBI uptake kinetics andP-glycoprotein levels after using verapamil in MDR hum...To establish a method to evaluate the effects of chemosensitizer onP-glycoprotein using ^(99m)Tc-MIBI, and observe the changes of ^(99m)Tc-MIBI uptake kinetics andP-glycoprotein levels after using verapamil in MDR human breast cells MCF-7/Adr. Methods: MDR breastcarcinoma cells, MCF-7/Adr, were incubated and different protocols were performed. Protocol Ⅰ: achemosensitizer, verapamil (10 μmol/L), was added into cell culture medium, while in control group,the same volume of DMEM was given. Cells were harvested after 2 h incubation with ^(99m)Tc-MIBI.Protocol Ⅱ: Verapamil (10 μmol/L) was added into cell culture medium and incubated for 20 min, 40min, 60 min, 80 min, 8 h, 24 h, 48 h and 72 h respectively. Cells were harvested after 2 hincubation with ^(99m)Tc-MIBI. The radioactivity of the cells was measured and P-glycoproteinexpression levels were determined with immunohistochemical stain. Results: Protocol Ⅰ: After 2hincubation with verapamil the cellular uptake of ^(99m)Tc-MIBI was remarkably higher than controlgroup (t=2.33, P 【 0.05), but there was no difference in P-glycoprotein expression levels betweentwo groups (P 】 0.05). Protocol Ⅱ: In verapamil group, ^(99m)Tc-MIBI uptake was increased withincubation time prolonging (F=58.2, P 【 0.05). When verapamil incubation time surpassed 8 h the^(99m)Tc-MIBI uptake negatively correlated to the P-glycoprotein expression levels (r=-0.73, P 【0.01). However, when incubation time was less than 80 min, there was no correlation between^(99m)Tc-MIBI accumulation and P-glycoprotein levels (r=0.16, P 】 0.05). Conclusion: ^(99m)Tc-MIBImay be used to evaluate the qualitative as well as quantitative change of P-glycoprotein expressionlevels induced by the chemosensitizer, verapamil.展开更多
Objective: To study the reversal effect of neferine on adriamycin (ADM) resistant human breast cancer cell line MCF-7/ADM. Methods: The cytotoxic effect of Nef or ADM was determined by 3-[4, 5-dimethylthiazol-2.-yl], ...Objective: To study the reversal effect of neferine on adriamycin (ADM) resistant human breast cancer cell line MCF-7/ADM. Methods: The cytotoxic effect of Nef or ADM was determined by 3-[4, 5-dimethylthiazol-2.-yl], 5-diphenyl tetraxolium bromid (MTT) assay. Apoptosis and the expression of P-glycoprotein (P-gp) were detected by flow cytometry (FCM). The intracellular ADM concentration was measured by HPLC. Results: Nef at 1, 5, 10 mol/L decreased the IC50 of ADM to MCF-7/ADM from 11.63 g/mL to 4.59, 2.44, 0.27 g/mL respectively. MCF-7/ADM could resist the apoptosis induced by ADM while Nef (1-10 mol/L) could augment ADR-mediated apoptosis. Nef (10 mol/L) increased the accumulation of ADM up to 2.88 fold in MCF-7/ADM but not in sensitive cells MCF-7/S and reduced the expression of P-gp in MCF-7/ADM cells. Conclusion: Nef can circumvent multidrug resistance (MDR) of MCF-7/ADM cells and the mechanism was associated with the increase of intracellular accumulation of ADM and the reduced expression of P-gp in MCF-7/ADM cells.展开更多
Objective: To evaluate the expression and clinical significance of multidrug resistance gene (mdr1) and multidrug resistance-associated protein (MRP) gene in acute leukemia. Methods: The expression of mdr1 and MRP ass...Objective: To evaluate the expression and clinical significance of multidrug resistance gene (mdr1) and multidrug resistance-associated protein (MRP) gene in acute leukemia. Methods: The expression of mdr1 and MRP assay in 55 patients with acute leukemia (AL) by reverse transcription polymerase chain reaction (RT-PCR). Results: The mdr1 and MRP gene expression levels in the relapsed AL and the blastic plastic phases of CML were significantly higher than those in the newly diagnostic AL and controls. The mdr1 and MRP gene expression levels in the clinical drug-resistant group were significantly higher than those in the non-drug-resistant group. The complete remission (CR) rate in patients with high mdr1 expression (14.3%) was significantly lower than that with low mdr1 expression (57.5%); similarly the CR rate in patients with high MRP level was also lower than that with low MRP level. Using both high expression of mdr1 and MRP gene as the indicator for evaluating multidrug resistance (MDR), the positive predictive value and accuracy increased in comparison with single gene high expression. Conclusion: Elevated level of mdr1 or MRP gene expression might be unfavorable prognostic factors for AL patient and may be used as an important index for predicting drug-resistance and relapse in AL patient. Measuring both mdr1 and MRP gene expression would increase accuracy and sensibility of evaluating MDR in acute leukemia.展开更多
The ability of two dihydrostilbene derivatives erianin and chrysotoxine from Dendrobium chrysotoxum to reverse multidrug resistant (MDR) cells was investigated using murine B16 melanoma cells transfected with the huma...The ability of two dihydrostilbene derivatives erianin and chrysotoxine from Dendrobium chrysotoxum to reverse multidrug resistant (MDR) cells was investigated using murine B16 melanoma cells transfected with the human MDR 1 gene and crossresistant to vinblastine and adriamycin (B16/h MDR 1 cells). Both of the two compounds were shown to increase the accumulation of adriamycin, the P glycoprotein (P gp) substrate, in B16/h MDR 1 transfectants.展开更多
Overexpression of P-glycoprotein (P-gp) encoded by the multidrug resistance gene-1 (MDR-1) is the main mechanism responsible for multidrug resistance (MDR) in a majority of cancer cells. However, the mechanism b...Overexpression of P-glycoprotein (P-gp) encoded by the multidrug resistance gene-1 (MDR-1) is the main mechanism responsible for multidrug resistance (MDR) in a majority of cancer cells. However, the mechanism by which cancer cells acquire high levels of P-gp has not been well defined. Accumulating evidence suggests that nuclear receptors (NRs), especially human pregnane X receptor (PXR), play a crucial role in multidrug resistance. It has been shown that chemotherapeutic drug activates PXR and then enhances P-gp expression. Genetic knockdown or pharmacologic inhibition of PXR led to attenuation of drug-induced MDR1 over expression, implying that NRs may be an effective target to reverse multidrug resistance. Recent investigations suggested that transcriptional activity of NRs is mediated by methylases, the important enzymes involved in epigenetic regulation. Other epigenetic modifications, such as promoter methylation, histone deacetylases and microRNAs, were also found to be involved in activation of MDR1 promoter, though the underlying mechanisms are not thoroughly known. In this review, we summarized recent researches in the regulation of P-gp expression, with particular focus on NRs and epigenetics, aiming to provide references and options to reverse and/or prevent MDR in cancer treatment.展开更多
The discovery of antibiotics marked a golden age in the revolution of human medicine. However,decades later, bacterial infections remain a global healthcare threat, and a return to the pre-antibiotic era seems inevita...The discovery of antibiotics marked a golden age in the revolution of human medicine. However,decades later, bacterial infections remain a global healthcare threat, and a return to the pre-antibiotic era seems inevitable if stringent measures are not adopted to curb the rapid emergence and spread of multidrug resistance and the indiscriminate use of antibiotics. In hospital settings, multidrug resistant(MDR) pathogens, including carbapenem-resistant Pseudomonas aeruginosa, vancomycin-resistant enterococci(VRE), methicillin-resistant Staphylococcus aureus(MRSA), and extendedspectrum β-lactamases(ESBL) bearing Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae are amongst the most problematic due to the paucity of treatment options,increased hospital stay, and exorbitant medical costs. Antimicrobial peptides(AMPs) provide an excellent potential strategy for combating these threats. Compared to empirical antibiotics, they show low tendency to select for resistance, rapid killing action, broad-spectrum activity, and extraordinary clinical efficacy against several MDR strains. Therefore, this review highlights multidrug resistance among nosocomial bacterial pathogens and its implications and reiterates the importance of AMPs as next-generation antibiotics for combating MDR superbugs.展开更多
AIM: To investigate the inhibitory effects of emodin, baicalin, etc.on the hefA gene of multidrug resistance(MDR) in Helicobacter pylori(H.pylori).METHODS: The double dilution method was used to screen MDR H.pylori st...AIM: To investigate the inhibitory effects of emodin, baicalin, etc.on the hefA gene of multidrug resistance(MDR) in Helicobacter pylori(H.pylori).METHODS: The double dilution method was used to screen MDR H.pylori strains and determine the minimum inhibitory concentrations(MICs) of emodin, baicalin, schizandrin, berberine, clarithromycin, metronidazole, tetracycline, amoxicillin and levofloxacin against H.pylori strains.After the screened MDR stains were treated with emodin, baicalin, schizandrin or berberine at a 1/2 MIC concentration for 48 h, changes in MICs of amoxicillin, tetracycline, levofloxacin, metronidazole and clarithromycin were determined.MDR strains with reduced MICs of amoxicillin were selected to detect the hefA mR NA expression by realtime quantitative PCR.RESULTS: A total of four MDR H.pylori strains were screened.Treatment with emodin, baicalin, schizandrin and berberine significantly decreased the MICs of amoxicillin and tetracycline against some strains, decreased by 1 to 2 times, but did not significantly change the MICs of clarithromycin, levofloxacin, and metronidazole against MDR strains.In the majority of strains with reduced MICs of amoxicillin, hef A m RNA expression was decreased; one-way ANOVA(SPSS 12.0) used for comparative analysis, P < 0.05.CONCLUSION: Emodin, baicalin, schizandrin and berberine significantly decreased the MICs of amoxicillin and tetracycline against some H.pylori strains, possibly by mechanisms associated with decreasing hefA mR NA expression.展开更多
基金supported by the National Natural Science Foundation of China(Nos.82274211 and 82474190)the Natural Science Foundation of Tianjin(Nos.24JCZDJC00120 and 24PTLYHZ00280)Liaoning Provincial Department of Education Basic Research Projects for Higher Education Institutions(No.LJ212510163021)。
文摘Cancer multidrug resistance(MDR)impairs the therapeutic efficacy of various chemotherapeutics.Novel approaches,particularly the development of MDR reversal agents,are critically needed to address this challenge.This study demonstrates that tenacissoside I(TI),a compound isolated from Marsdenia tenacissima(Roxb.)Wight et Arn,traditionally used in clinical practice as an ethnic medicine for cancer treatment,exhibits significant MDR reversal effects in ABCB1-mediated MDR cancer cells.TI reversed the resistance of SW620/AD300 and KBV200 cells to doxorubicin(DOX)and paclitaxel(PAC)by downregulating ABCB1 expression and reducing ABCB1 drug transport function.Mechanistically,protein arginine methyltransferase 1(PRMT1),whose expression correlates with poor prognosis and shows positive association with both ABCB1 and EGFR expressions in tumor tissues,was differentially expressed in TI-treated SW620/AD300 cells.SW620/AD300 and KBV200 cells exhibited elevated levels of EGFR asymmetric dimethylarginine(aDMA)and enhanced PRMT1-EGFR interaction compared to their parental cells.Moreover,TI-induced PRMT1 downregulation impaired PRMT1-mediated aDMA of EGFR,PRMT1-EGFR interaction,and EGFR downstream signaling in SW620/AD300 and KBV200 cells.These effects were significantly reversed by PRMT1 overexpression.Additionally,TI demonstrated resistance reversal to PAC in xenograft models without detectable toxicities.This study establishes TI's MDR reversal effect in ABCB1-mediated MDR human cancer cells through inhibition of PRMT1-mediated aDMA of EGFR,suggesting TI's potential as an MDR modulator for improving chemotherapy outcomes.
基金supported by the Beijing Municipal Science&Technology Commission(Z191100006619077).
文摘Objectives The combined use of bedaquiline and delamanid(BDQ-DLM)is limited by an increased risk of prolonging the QTc interval.We retrospectively evaluated patients who received DLM/BDQcontaining regimens at a TB-specialized hospital.We aimed to present clinical efficacy and safety data for Chinese patients.Methods This case-control study included patients with multidrug-resistant tuberculosis(MDR-TB)treated with BDQ alone or BDQ plus DLM.Results A total of 96 patients were included in this analysis:64 in the BDQ group and 32 in the BDQ+DLM group.Among the 96 patients with positive sputum culture at the initiation of BDQ alone or BDQ combined with DLM,46 patients(71.9%)in the BDQ group and 29(90.6%)in the BDQ-DLM group achieved sputum culture conversion during treatment.The rate of sputum culture conversion did not differ between the two groups.The time to sputum culture conversion was significantly shorter in the BDQ-DLM group than in the BDQ group.The most frequent adverse event was QTc interval prolongation;however,the frequency of adverse events did not differ between the groups.Conclusion In conclusion,our results demonstrate that the combined use of BDQ and DLM is efficacious and tolerable in Chinese patients infected with MDR-TB.Patients in the BDQ-DLM group achieved sputum culture conversion sooner than those in the BDQ group.
基金supported by grants from the National Natural Science Foundation of China(No.82272986 to SY)the Natural Science Foundation of Guangdong Province,China(No.2023A1515010230 to SY)+1 种基金the Science and Technology Foundation of Shenzhen(No.JCYJ20220531094805012 to SY)the Scientific Research Project of Shenzhen Pingshan District Health System(202060 to SY).
文摘Objectives:This investigation aimed to elucidate the inhibitory impact of apatinib on the multidrug resistance of liver cancer both in vivo and in vitro.Methods:To establish a Hep3B/5-Fu resistant cell line,5-Fu concentrations were gradually increased in the culture media.Hep3B/5-Fu cells drug resistance and its alleviation by apatinib were confirmed via flow cytometry and Cell Counting Kit 8(CCK8)test.Further,Nuclear factor kappa B(NF-κB)siRNA was transfected into Hep3B/5-Fu cells to assess alterations in the expression of multidrug resistance(MDR)-related genes and proteins.Nude mice were injected with Hep3B/5-Fu cells to establish subcutaneous xenograft tumors and then categorized into 8 treatment groups.The treatments included oxaliplatin,5-Fu,and apatinib.In the tumor tissues,the expression of MDRrelated genes was elucidated via qRT-PCR,immunohistochemistry,and Western blot analyses.Results:The apatinibtreated mice indicated slower tumor growth with smaller size compared to the control group.Both the in vivo and in vitro investigations revealed that the apatinib-treated groups had reduced expression of MDR genes GST-pi,LRP,MDR1,and p-p65.Conclusions:Apatinib effectively suppresses MDR in human hepatic cancer cells by modulating the expression of genes related to MDR,potentially by suppressing the NF-κB signaling pathway.
文摘Microbial resistance to antibiotics is a global problem that threatens the lives of millions of people and affects several sectors, including aquaculture. The aim of the present study is to contribute to the monitoring of multi-resistant enterobacterial strains circulating in fish ponds in the Sud-Comoé region of south-eastern Côte d’Ivoire, more specifically in the Aboisso and Tiapoum departments. To this end, 20 samples of Tilapia fish (Oreochromis niloticus) and 60 samples of farm water were collected from 5 fish farms in the Sud-Comoé region. Microbiological analyses were based on the isolation and identification of enterobacteria on Mac Conkey + Ceftazidime medium. These analyses resulted in the isolation of 73 strains of enterobacteria, including 58 from fish and 15 from fish pond water samples. Antibiotic sensitivity tests carried out on enterobacteria isolated from water and fish samples showed high levels of resistance (100%) to the beta-lactam family (Amoxicilin + clavulanic acid, Ceftazidime). Klebsiella pneumoniae and Enterobacter spp. showed resistance to Ciprofloxacins (100%) and (25%) respectively. The study also showed that strains of Enterobacteriaceae were resistant to all 3 families of antibiotics, notably Beta-lactams, Fluoro-quinolones and Aminosides. The presence of multi-resistant Enterobacteriaceae in fish and pond water samples represents a public health risk.
文摘Diarrheal diseases represent a significant and pervasive health challenge for humanity. The aetiology of diarrheal diseases is typically associated with the presence of enteropathogens, including viruses, bacteria and parasites. The implementation of preventive measures, including the maintenance of good food hygiene, effective water sanitation, and the development of rotavirus vaccines, has resulted in a notable reduction in the prevalence of the disease. However, the emergence of bacterial multidrug resistance due to the past or present inappropriate use of antibiotics has rendered bacterial infections a significant challenge. The objective of this review is threefold: firstly, to provide an overview of diarrheal diseases associated with bacteria;secondly, to offer a concise analysis of bacterial multidrug resistance on a global scale;and thirdly, to present the potential of filamentous fungi as an alternative solution to the challenge posed by multidrug-resistant strains. Campylobacter spp. is the most dangerous bacteria, followed by Shigella spp. and Vibrio cholerae in all age groups combined. However, Shigella spp. was the deadliest in children under five years of age and, together with E. coli, are the most antibiotic-resistant bacteria. With their highly developed secondary metabolism, fungi are a reservoir of natural bioactive compounds.
文摘Multidrug Resistance Protein 2 (MRP2) is an ATP-dependent transmembrane protein that plays a pivotal role in the efflux of a wide variety of physiological substrates across the plasma membrane. Several studies have shown that MRP2 can significantly affect the absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiles of many therapeutic drugs and chemicals found in the environment and diet. This transporter can also efflux newly developed anticancer agents that target specific signaling pathways and are major clinical markers associated with multidrug resistance (MDR) of several types of cancers. MDR remains a major limitation to the advancement of the combinatorial chemotherapy regimen in cancer treatment. In addition to anticancer agents, MRP2 reduces the efficacy of various drug classes such as antivirals, antimalarials, and antibiotics. The unique role of MRP2 and its contribution to MDR makes it essential to profile drug-transporter interactions for all new and promising drugs. Thus, this current research seeks to identify modulators of MRP2 protein expression levels using cell-based assays. A unique recently approved FDA library (372 drugs) was screened using a high-throughput In-Cell ELISA assay to determine the effect of these therapeutic agents on protein expression levels of MRP2. A total of 49 FDA drugs altered MRP2 protein expression levels by more than 50% representing 13.17% of the compounds screened. Among the identified hits, thirty-nine (39) drugs increased protein expression levels whereas 10 drugs lowered protein expression levels of MRP2 after drug treatment. Our findings from this initial drug screening showed that modulators of MRP2 peregrinate multiple drug families and signify the importance of profiling drug interactions with this transporter. Data from this study provides essential information to improve combinatorial drug therapy and precision medicine as well as reduce the drug toxicity of various cancer chemotherapies.
文摘Resistant bacteria can be transmitted to humans through feces or contaminated meat from local chickens. Bacterial strains were isolated from the intestinal contents of 400 local chicken samples from various sales sites. These strains were then characterized using bacteriological and biochemical methods to identify resistant strains. In a study conducted in Ouagadougou, we systematically collected chicken fecal samples from 20 locations across the city, followed by isolation and identification of Salmonella spp. using specific enrichment and culture methods, as well as Escherichia coli. Bacterial strains were characterized using antibiotic resistance profiles were determined through agar diffusion tests, revealing sensitivity or resistance to a range of antibiotics based on established scientific criteria. The results showed that out of the 400 samples collected, 81.25% and 63.5% were contaminated by Escherichia coli and Salmonella spp., respectively. Among these, 86.15% of identified Escherichia coli and 50.78% of Salmonella spp. displayed resistance to at least one tested antibiotic. Among 280 Escherichia coli isolates identified resistant to at least one antibiotic, 31.07% were resistant to cefotaxime (CTX), 20.35% to ceftazidime (CAZ), 21.07% to ceftriaxone (CTR), 75% to amoxicillin clavulanic acid (AMC), 23.57% aztreoname (ATM) and 27.14% were resistant to imipenem (IMP). In the case of the 129 Salmonella spp. isolates resistant to at least one tested antibiotic, 34.88% were resistant to CTX;41.08% to CAZ;35.65% to CTR, 92% to AMC, 39.53% to ATM and finally 47.28% were resistant to IMP. Our study revealed high prevalence of resistance in bacterial strains isolated from local chickens sold outdoors in Ouagadougou. These findings raise significant public health concerns, due to the possible transmission of these resistant strains to humans through the consumption of contaminated meat, thus complicating the treatment of bacterial infections.
基金Supported by Henan Distinguished Junior Scholar Grant,No.074100510017
文摘AIM:To evaluate the effect of efflux pump inhibitors (EPIs) on multidrug resistance of Helicobacter pylori (H. pylori).METHODS: H. pylori strains were isolated and cultured on Brucella agar plates with 10% sheep's blood. The multidrug resistant (MDR) H. pylori were obtained with the inducer chloramphenicol by repeated doubling of the concentration until no colony was seen, then the susceptibilities of the MDR strains and their parents to 9 antibiotics were assessed with agar dilution tests. The present study included periods before and after the advent of the EPIs, carbonyl cyanide m-chlorophenyl hydrazone (CCCP), reserpine and pantoprazole), and the minimum inhibitory concentrations (MICs) were determined accordingly. In the same way, the effects of 5 proton pump inhibitors (PPIs), used in treatment of H. pylori infection, on MICs of antibiotics were evaluated.RESULTS: Four strains of MDR H. pylori were induced successfully, and the antibiotic susceptibilities of MDR strains were partly restored by CCCP and pantoprazole, but there was little effect of reserpine. Rabeprazole was the most effective of the 5 PPIs which could decrease the MICs of antibiotics for MDR H. pylori significantly.CONCLUSION: In vitro, some EPIs can strengthen the activities of different antibiotics which are the putative substrates of the efflux pump system in H. pylori.
基金Supported by National Natural Science Foundation of China(31201949,31172362)~~
文摘[Objective] This study aimed to investigate the multidrug resistance and prevalence of class I integrons in Salmonel a. [Method] Salmonel a strains were isolated from chicken farms in Shandong Province. Kauffmann-White classification method was employed to analyze the serotypes of Salmonel a strains. Minimum in-hibition concentration (MIC) of Salmonel a strains against 19 common antimicrobial drugs was analyzed determined with microdilution method. The class I integrons and carried drug resistance gene cassettes were detected by PCR. [Result] A total of 311 Salmonel a strains were isolated and classified into two serotypes, including 133 Salmonel a Indiana strains and 178 Salmonel a Enteritidis strains. Drug sensitivity test showed that the isolated Salmonel a strains were general y resistant to sulfadiazine, sulfamethoxazole, nalidixic acid, ampicil in, tetracycline, doxycycline and trimethoprim, with a multidrug resistance rate of 91.0% (283/311); 99% strains were sensitive to amikacin and colistin. PCR assay indicated that the detection rate of class I integrons was 65.0% (202/311); the positive rate of class I integrons in Salmonel a strains with multidrug resistance was 92.6%; among 202 positive strains, six strains carried gene cassette dfr17-aadA5. [Conclusion] According to the above results, class I integrons exist general y in Salmonel a and are closely associated with the multidrug resistance of Salmonel a strains.
基金supported by the National Natural Science Foundation of P.R.China(Nos.81170492,81370673)National High Technology Research and Development Program 863 of P.R.China(No.2012AA022703)+2 种基金National Key Basic Research Program 973 of P.R.China(No.2010CB732404)Key Medical Projects of Jiangsu Province(No.BL2014078)Key Discipline of Jiangsu Province(2011-2015)
文摘Multidrug resistance remains a serious clinical problem in the successful therapy of malignant diseases. It occurs in cultured tumor cell lines, as well as in human cancers. Therefore, it is critical to develop novel anticancer drugs with multidrug-resistance modulating potential to increase the survival rate of leukemia patients. Plant-derived natural products have been used for the treatment of various diseases for thousands of years. This review summarizes the anticancer and multidrug-resistance reversing properties of the extracts and bioactive compounds from traditional medicinal plants in different leukemia cell lines. Further mechanistic studies will pave the road to establish the anticancer potential of plant-derived natural compounds.
基金Supported by Innovation Fund of Fujian Province,No.2007-CXB-7Key Science and Technology Project of Xiamen,No.3502Z20077045
文摘AIM: To study the expression and phosphorylation of extracellular signal-regulated kinase (ERK) i and ERK2 in multidrug resistant (MDR) hepatocellular carcinoma (HCC) cells.METHODS: MDR HCC cell lines, HepG2/adriamycin (ADM) and SMMC7721/ADM, were developed by exposing parental cells to stepwise increasing concentrations of ADM. MTT assay was used to determine drug sensitivity. Flow cytometry was employed to analyze cell cycle distribution and measure cell P-glycoprotein (P-gp) and multidrug resistant protein 1 (MRP1) expression levels. ERK1 and ERK2 mRNA expression lev-ls were measured by quantitative real-time PCR (QRTPCR). Expression and phosphorylation of ERK1 and ERK2 were analyzed by Western blot.RESULTS: MTT assay showed that HepG2/ADM andSMMC7721/ADM were resistant not only to ADM, but also to multiple anticancer drugs. The P-gp expression was over 10-fold higher in HepG2/ADM cells than in HepG2 cells (8.92% ±0.22% vs 0.88% ± 0.05%, P 〈 0.001) and over 4-fold higher in SMMC7721/ADM cells than in SMMC7721 cells (7.37% ± 0.26% vs 1.74% ± 0.25%, P 〈 0.001). However, the MRP1 expression was not significantly higher in HepG2/ADM and SMMC7721/ADM cells than in parental cells. In addition, the percentage of MDR HepG2/ADM and SMMC7721/ADM cells was significantly decreased in the G0/G1 phase and increased in the the S phase or G2/M phase. QRT-PCR analysis demonstrated that the ERK1 and ERK2 mRNA expression increased apparently in HepG2/ADM cells and decreased significantly in SMMC7721/ADM cells. Compared with the expression of parental cells, ERK1 and ERK2 protein expressions were markedly decreased in SMMC7721/ADM cells. However, ERK2 protein expression was markedly increased while ERK1 protein expression had no significant change in HepG2/ADM cells. Phosphorylation of ERK1 and ERK2 was markedly decreased in both HepG2/ADM and SMMC7721/ADM MDR cells.CONCLUSION: ERK1 and ERK2 activities are downregulated in P-gp-mediated MDR HCC cells. ERK1 or ERK2 might be a potential drug target for circumventing MDR HCC cells,
基金Peking Union Medical College(PUMC)Youth Fund and the Fundamental Research Funds for the Central Universities,China(Grant No.333203084)
文摘Silver nitrate could inhibit the clinical multidrug resistant isolates at high concentrations(with minimal inhibitory concentrations(MICs) from 32 μM to 64 μM). The activities of amikacin in the presence of sub-lethal silver nitrate(15 μM) were tested for the combinational effects against multidrug resistant clinical isolates in vitro. Silver nitrate restored the susceptibility of drug-resistant Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus to amikacin. It lowered the MICs of amikacin from 〉128 μg/mL to(2–16) μg/mL and 32 μg/mL, respectively, and lowered the MICs of amikacin on extended spectrum β-lactamase-producing Pseudomonas aeruginosa and Escherichia coli from(16–32) μg/mL and 16 μg/mL to(〈1–4) μg/mL and 〈1 μg/mL, respectively.
文摘Studies on structure-activity relationship of phenothiazines (PTZs) forinhibition of protein kinase C (PKC) and reversal of multidrug resistance (MDR) has been made invitro. The results showed that the order of potency of reversal effect of PTZs on MDR is as follows:2-COC_3 H_7 > 2-CF_3 > 2-COCH_3 > H. The type of piperazinyl substitution also significantlyaffected potency against MDR. The results show the order: CH_3 > COOC_2 H_5 > C_2 H_4 OH. Inaddition, PKC plays a marked role in diverse cellular process including MDR. Some derivatives of PTZwas tested for inhibition of PKC, of which PTZ11 showed the highest inhibitory effect of MDR andPKC, implying a potential reversal agent of MDR for tumor therapy in the future. We also tried toexplore the possible binding model of PTZs to PKC. Our molecular-modeling study preliminarilysuggests how these PTZs bind to PKC and provides a structural basis for the design of high affinityPKC-modulator. The infor-mation may be used in the rational design of more effective drugs.
文摘To establish a method to evaluate the effects of chemosensitizer onP-glycoprotein using ^(99m)Tc-MIBI, and observe the changes of ^(99m)Tc-MIBI uptake kinetics andP-glycoprotein levels after using verapamil in MDR human breast cells MCF-7/Adr. Methods: MDR breastcarcinoma cells, MCF-7/Adr, were incubated and different protocols were performed. Protocol Ⅰ: achemosensitizer, verapamil (10 μmol/L), was added into cell culture medium, while in control group,the same volume of DMEM was given. Cells were harvested after 2 h incubation with ^(99m)Tc-MIBI.Protocol Ⅱ: Verapamil (10 μmol/L) was added into cell culture medium and incubated for 20 min, 40min, 60 min, 80 min, 8 h, 24 h, 48 h and 72 h respectively. Cells were harvested after 2 hincubation with ^(99m)Tc-MIBI. The radioactivity of the cells was measured and P-glycoproteinexpression levels were determined with immunohistochemical stain. Results: Protocol Ⅰ: After 2hincubation with verapamil the cellular uptake of ^(99m)Tc-MIBI was remarkably higher than controlgroup (t=2.33, P 【 0.05), but there was no difference in P-glycoprotein expression levels betweentwo groups (P 】 0.05). Protocol Ⅱ: In verapamil group, ^(99m)Tc-MIBI uptake was increased withincubation time prolonging (F=58.2, P 【 0.05). When verapamil incubation time surpassed 8 h the^(99m)Tc-MIBI uptake negatively correlated to the P-glycoprotein expression levels (r=-0.73, P 【0.01). However, when incubation time was less than 80 min, there was no correlation between^(99m)Tc-MIBI accumulation and P-glycoprotein levels (r=0.16, P 】 0.05). Conclusion: ^(99m)Tc-MIBImay be used to evaluate the qualitative as well as quantitative change of P-glycoprotein expressionlevels induced by the chemosensitizer, verapamil.
文摘Objective: To study the reversal effect of neferine on adriamycin (ADM) resistant human breast cancer cell line MCF-7/ADM. Methods: The cytotoxic effect of Nef or ADM was determined by 3-[4, 5-dimethylthiazol-2.-yl], 5-diphenyl tetraxolium bromid (MTT) assay. Apoptosis and the expression of P-glycoprotein (P-gp) were detected by flow cytometry (FCM). The intracellular ADM concentration was measured by HPLC. Results: Nef at 1, 5, 10 mol/L decreased the IC50 of ADM to MCF-7/ADM from 11.63 g/mL to 4.59, 2.44, 0.27 g/mL respectively. MCF-7/ADM could resist the apoptosis induced by ADM while Nef (1-10 mol/L) could augment ADR-mediated apoptosis. Nef (10 mol/L) increased the accumulation of ADM up to 2.88 fold in MCF-7/ADM but not in sensitive cells MCF-7/S and reduced the expression of P-gp in MCF-7/ADM cells. Conclusion: Nef can circumvent multidrug resistance (MDR) of MCF-7/ADM cells and the mechanism was associated with the increase of intracellular accumulation of ADM and the reduced expression of P-gp in MCF-7/ADM cells.
文摘Objective: To evaluate the expression and clinical significance of multidrug resistance gene (mdr1) and multidrug resistance-associated protein (MRP) gene in acute leukemia. Methods: The expression of mdr1 and MRP assay in 55 patients with acute leukemia (AL) by reverse transcription polymerase chain reaction (RT-PCR). Results: The mdr1 and MRP gene expression levels in the relapsed AL and the blastic plastic phases of CML were significantly higher than those in the newly diagnostic AL and controls. The mdr1 and MRP gene expression levels in the clinical drug-resistant group were significantly higher than those in the non-drug-resistant group. The complete remission (CR) rate in patients with high mdr1 expression (14.3%) was significantly lower than that with low mdr1 expression (57.5%); similarly the CR rate in patients with high MRP level was also lower than that with low MRP level. Using both high expression of mdr1 and MRP gene as the indicator for evaluating multidrug resistance (MDR), the positive predictive value and accuracy increased in comparison with single gene high expression. Conclusion: Elevated level of mdr1 or MRP gene expression might be unfavorable prognostic factors for AL patient and may be used as an important index for predicting drug-resistance and relapse in AL patient. Measuring both mdr1 and MRP gene expression would increase accuracy and sensibility of evaluating MDR in acute leukemia.
文摘The ability of two dihydrostilbene derivatives erianin and chrysotoxine from Dendrobium chrysotoxum to reverse multidrug resistant (MDR) cells was investigated using murine B16 melanoma cells transfected with the human MDR 1 gene and crossresistant to vinblastine and adriamycin (B16/h MDR 1 cells). Both of the two compounds were shown to increase the accumulation of adriamycin, the P glycoprotein (P gp) substrate, in B16/h MDR 1 transfectants.
文摘Overexpression of P-glycoprotein (P-gp) encoded by the multidrug resistance gene-1 (MDR-1) is the main mechanism responsible for multidrug resistance (MDR) in a majority of cancer cells. However, the mechanism by which cancer cells acquire high levels of P-gp has not been well defined. Accumulating evidence suggests that nuclear receptors (NRs), especially human pregnane X receptor (PXR), play a crucial role in multidrug resistance. It has been shown that chemotherapeutic drug activates PXR and then enhances P-gp expression. Genetic knockdown or pharmacologic inhibition of PXR led to attenuation of drug-induced MDR1 over expression, implying that NRs may be an effective target to reverse multidrug resistance. Recent investigations suggested that transcriptional activity of NRs is mediated by methylases, the important enzymes involved in epigenetic regulation. Other epigenetic modifications, such as promoter methylation, histone deacetylases and microRNAs, were also found to be involved in activation of MDR1 promoter, though the underlying mechanisms are not thoroughly known. In this review, we summarized recent researches in the regulation of P-gp expression, with particular focus on NRs and epigenetics, aiming to provide references and options to reverse and/or prevent MDR in cancer treatment.
基金supported by the National Natural Science Foundation of China(21761142002 and 31801975)Chinese Academy of Sciences(XDB31000000,SAJC201606,KFZD-SW-219-2,KFJ-BRP-008,and KGFZD-135-17-011)Yunnan Province Grant(2015HA023)
文摘The discovery of antibiotics marked a golden age in the revolution of human medicine. However,decades later, bacterial infections remain a global healthcare threat, and a return to the pre-antibiotic era seems inevitable if stringent measures are not adopted to curb the rapid emergence and spread of multidrug resistance and the indiscriminate use of antibiotics. In hospital settings, multidrug resistant(MDR) pathogens, including carbapenem-resistant Pseudomonas aeruginosa, vancomycin-resistant enterococci(VRE), methicillin-resistant Staphylococcus aureus(MRSA), and extendedspectrum β-lactamases(ESBL) bearing Acinetobacter baumannii, Escherichia coli, and Klebsiella pneumoniae are amongst the most problematic due to the paucity of treatment options,increased hospital stay, and exorbitant medical costs. Antimicrobial peptides(AMPs) provide an excellent potential strategy for combating these threats. Compared to empirical antibiotics, they show low tendency to select for resistance, rapid killing action, broad-spectrum activity, and extraordinary clinical efficacy against several MDR strains. Therefore, this review highlights multidrug resistance among nosocomial bacterial pathogens and its implications and reiterates the importance of AMPs as next-generation antibiotics for combating MDR superbugs.
基金Supported by Grants from Guangxi Key Discipline Fund(Pathogenic Microbiology),No.[2013]16Key Laboratory Fund of Colleges and Universities in Guangxi,No.Gui Jiao Ke Yan[2014]6+1 种基金National Natural Science Foundation of China,No.31460023Natural Science Foundation of Guangxi,No.2014GXNSFAA118206
文摘AIM: To investigate the inhibitory effects of emodin, baicalin, etc.on the hefA gene of multidrug resistance(MDR) in Helicobacter pylori(H.pylori).METHODS: The double dilution method was used to screen MDR H.pylori strains and determine the minimum inhibitory concentrations(MICs) of emodin, baicalin, schizandrin, berberine, clarithromycin, metronidazole, tetracycline, amoxicillin and levofloxacin against H.pylori strains.After the screened MDR stains were treated with emodin, baicalin, schizandrin or berberine at a 1/2 MIC concentration for 48 h, changes in MICs of amoxicillin, tetracycline, levofloxacin, metronidazole and clarithromycin were determined.MDR strains with reduced MICs of amoxicillin were selected to detect the hefA mR NA expression by realtime quantitative PCR.RESULTS: A total of four MDR H.pylori strains were screened.Treatment with emodin, baicalin, schizandrin and berberine significantly decreased the MICs of amoxicillin and tetracycline against some strains, decreased by 1 to 2 times, but did not significantly change the MICs of clarithromycin, levofloxacin, and metronidazole against MDR strains.In the majority of strains with reduced MICs of amoxicillin, hef A m RNA expression was decreased; one-way ANOVA(SPSS 12.0) used for comparative analysis, P < 0.05.CONCLUSION: Emodin, baicalin, schizandrin and berberine significantly decreased the MICs of amoxicillin and tetracycline against some H.pylori strains, possibly by mechanisms associated with decreasing hefA mR NA expression.