Multicomponent(Hf-Zr-Ta)B_(2)potentially provides improved ablation resistance compared with silicon-based ceramics.Here we deposited(Hf_(0.5-x/2)Zr_(0.5-x/2)Ta_(x))B_(2)(x=0,0.1,and 0.2)coatings onto C/C com-posites,...Multicomponent(Hf-Zr-Ta)B_(2)potentially provides improved ablation resistance compared with silicon-based ceramics.Here we deposited(Hf_(0.5-x/2)Zr_(0.5-x/2)Ta_(x))B_(2)(x=0,0.1,and 0.2)coatings onto C/C com-posites,and investigated their ablation behaviors under an oxyacetylene torch with a heat flux of 2.4 MW m^(-2).It was observed that the x=0.1 oxide scale bulged but was denser,and the x=0.2 oxide scale was blown away due to the formation of excessive liquid.Based on these findings,we further de-veloped a duplex(Hf-Zr-Ta)B_(2)coating that showed a linear recession rate close to zero(0.11μm s^(-1))after two 120-s ablation cycles.It is identified that the resulting oxide scale is mainly composed of(Hf,Zr)_(6)Ta_(2)O_(17)and(Hf,Zr,Ta)O_(2)by performing aberration-corrected(scanning)transmission electron microscopy.The protective mechanism is related to the peritectic transformation of orthorhombic-(Hf,Zr)_(6)Ta_(2)O_(17)to tetragonal-(Hf,Zr,Ta)O_(2)plus Ta-dominated liquid.This study contributes to the develop-ment of Ta-containing multicomponent UHTC bulk and coatings for ultra-high temperature applications.展开更多
Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated therma...Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated thermal conditions,sluggish dehydrogena-tion kinetics,and high thermodynamic stability,limit its practical application.One effective method of addressing these challenges is cata-lyst doping,which effectively boosts the hydrogen storage capability of Mg-based materials.Herein,we review recent advancements in catalyst-doped MgH_(2) composites,with particular focus on multicomponent and high-entropy catalysts.Structure-property relationships and catalytic mechanisms in these doping strategies are also summarized.Finally,based on existing challenges,we discuss future research directions for the development of Mg-based hydrogen storage systems.展开更多
Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structur...Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structural studies of other physicochemical properties are con-ducted on a series of materials obtained by the sol-gel method with different ratios of Gd and Sm cations.It is documented that changing the x value,and the resulting adjustment of the average ionic radius,have a significant impact on the crystal structure,stability,as well as on the total conductivity and thermomechanical properties of the materials,with the best results obtained for the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)composition.Oxygen electrodes are prepared using the selected compound,allowing to obtain low polarization resistance values,such as 0.086Ω·cm^(2)at 800℃.Systematic studies of electrocatalytic activity are conducted using La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(_(0.2))O_(3−δ)as the electrolyte for all electrodes,and Ce_(0.8)Gd_(0.2)O_(2−δ)electrolyte for the best performing Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes.The electrochemical data are analyzed using the distribution of relaxation times method.Also,the influence of the preparation method of the electrode material is in-ve`stigated using the electrospinning technique.Finally,the performance of the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes is tested in a Ni-YSZ(yttria-stabilized zirconia)anode-supported cell with a Ce_(0.8)Gd_(0.2)O_(2−δ)buffer layer,in the fuel cell and electrolyzer operating modes.With the electrospun electrode,a power density of 462 mW·cm^(−2)is obtained at 700℃,with a current density of ca.0.2 A·cm^(−2)at 1.3 V for the electrolysis at the same temperature,indicating better performance compared to the sol-gel-based electrode.展开更多
Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance...Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance.Multicomponent sulfides are demonstrated as promising catalysts for accelerating I^(-)/I_(3)^(-) redox reactions.Concurrently,the enhanced configurational entropy arising from multinary compositions drives synergistic effects among constituent elements,establishing a viable pathway to optimize catalytic performance.Building on these foundations,this work introduces a targeted orbital hybridization-optimized electron density strategy to enhance the catalytic activity.Implementing this concept,we developed an in-situ solvothermal synthesis process for an entropy-enhanced AgCuZnSnS_(4) loaded graphite felt(ACZTS/GF)electrode.The engineered electrode demonstrates exceptional electrocatalytic performance with improved bulk conductivity and interfacial charge transfer kinetics within a SIFB.The cell achieves a high energy efficiency of 88.5%at 20 mA·cm^(−2) with 10%state-of-charge.Furthermore,the battery delivers a maximum power density of 119.8 mW·cm^(−2) and exhibits excellent long-term cycling stability.These significant results stem from orbital hybridization-driven electronic state optimization and entropy effect-induced synergistic catalysis.展开更多
Objectives:To assess the effects of a wearable-sensorassisted multicomponent exercise program on physical fitness,cognition and quality of life in a practical setting involving frail older adults.Methods:Frail older a...Objectives:To assess the effects of a wearable-sensorassisted multicomponent exercise program on physical fitness,cognition and quality of life in a practical setting involving frail older adults.Methods:Frail older adults(n=130)were randomly divided into a control(CG,n=68)group and an exercise group(EG,n=62)in a 12-week intervention,which included stride gait training with wearable sensors;aerobic exercise;and resistance,flexibility,balance,and cognitive training.Primary outcomes(physical fitness)were evaluated via the SPPB and SFT.Secondary outcomes(cognitive ability,quality of life and frailty)were evaluated via the MoCA-BC,SF-36 and Fried frailty criteria,respectively.Results:After the 12-week intervention,the EG demonstrated significant improvements(p<0.05)vs.the CG in gait speed(β_(3)=0.424,coefficient of interaction effect between group and time from the generalized linear mixed model),chair stand(β_(3)=0.501)and total score(β_(3)=65.466)of SPPB and all SFT components including 6MWT(walked distance,β_(3)=1.098;walking speed,β_(3)=0.105;stride length,β_(3)=0.041),back scratch(β_(3)=4.926),chair sit and reach(β_(3)=3.762),30s arm curl(β_(3)=6.124),30s sit-to-stand(β_(3)=3.04),and TUG(β_(3)=−6.712).The MoCA-BC total,verbal fluency and delayed recall scores;the physical function,general health,vitality,and mental health scores of the SF-36;and the frailty phenotype in the EG were significantly improved compared with those of the CG.Conclusions:The progressive wearable-sensor-assisted multicomponent exercise program designed in this study enhanced physical fitness,cognitive ability and quality of life and slowed down the progression of frailty in frail older adults,supporting its potential as a feasible communitybased health intervention.展开更多
Inflammation is often accompanied by glioblastoma cells(GBMs)and is considered a key factor for GBM growth.This feature is believed to be connected with the tryptophan pathway mainly affected by intestinal microbes si...Inflammation is often accompanied by glioblastoma cells(GBMs)and is considered a key factor for GBM growth.This feature is believed to be connected with the tryptophan pathway mainly affected by intestinal microbes since the concept of gut-brain axis(GBA)has been proposed.Here we present a microchip model co-culturing intestinal cells(Caco2),microbes(E.coli),and GBM cells(U87)to study inflammatory responses of GBM by investigating the tryptophan metabolism.E.coli after encapsulating with alginate hydrogel microparticles(AHMPs)was seeded in the microchip where Caco2 was located,forming the simulated system of intestinal physiology and avoiding excessive reproduction of microbes.Continuous flow was applied to maintain the cell viability,induce the morphogenesis,and simulate the tryptophan transportation in GBA.The morphological alterations of Caco2 and U87 were characterized by fluorescence imaging and the tryptophan metabolism,especially the tryptophan-kynurenine pathway,was analyzed by LC-MS.Above these results of molecular analysis and cell behavior,we can conclude that GBM inflammation is induced by tryptophan accumulation.This microchip-based model generally provides an alternative method for in vitro research of interactions in GBA.展开更多
To develop ultra-strong high-density bulk materials with large deformability,we introduce a multiphase design strategy in a WMoVFeNi multicomponent alloy(MCA)system,and demonstrate it by investigating two prototype MC...To develop ultra-strong high-density bulk materials with large deformability,we introduce a multiphase design strategy in a WMoVFeNi multicomponent alloy(MCA)system,and demonstrate it by investigating two prototype MCAs,i.e.,W_(50)Mo_(10)V_(5)(Fe_(64)Ni_(36))_(35)and W_(55)Mo_(15)V_(5)(Fe_(64)Ni_(36))_(25)(at.%).The two bulk MCAs were fabricated by mechanical alloying(MA)plus spark plasma sintering,and systematically analyzed in terms of elemental distribution,phase structure evolution,mechanical properties,and deformation mechanisms.The nanocrystalline powders are mainly composed of body-centered cubic(BCC)and face-centered cubic(FCC)phases after the MA process for 15 h.Upon sintering,the bulk MCAs show a multiphase structure consisting of a fine-grained BCC matrix,two different FCC phases,and a minor V-rich BCC phase.Particularly,the bulk W_(50)Mo_(10)V_(5)(Fe_(64)Ni_(36))_(35)MCA sintered at 1250℃for 10 min exhibits an average mass density of 14.94 g·cm^(-3),compressive yield strength of 1255 MPa,ultimate strength of 2639 MPa,and fracture strain of 32%at room temperature.Apart from the massive substitutional solid solution strengthening,the multiphase structure contributes significantly to the enhanced strength and deformability.The work thus provides a promising approach for the development of strong and tough high-density materials.展开更多
Foreword It is our great privilege,as vip Editors of the International Journal of Minerals,Metallurgy and Materials(IJMMM),to present this special issue on“High-Entropy and Multicomponent-Doped Materials for Energy...Foreword It is our great privilege,as vip Editors of the International Journal of Minerals,Metallurgy and Materials(IJMMM),to present this special issue on“High-Entropy and Multicomponent-Doped Materials for Energy Applications:Innovations in Energy Conversion and Storage.”This collection highlights the latest research developments in the preparation,optimizing properties,and exploring potential applications of high-entropy materials(HEMs)and other com-pounds with increased configurational entropy.展开更多
Premature adiabatic shear localization caused by strain softening is a roadblock for the application of body-centered cubic(BCC)structured high-entropy alloy(HEAs)in the impact field.A micron-scale orthorhombic-phase(...Premature adiabatic shear localization caused by strain softening is a roadblock for the application of body-centered cubic(BCC)structured high-entropy alloy(HEAs)in the impact field.A micron-scale orthorhombic-phase(O-phase)strengthened TiZrVNbAl alloy was developed to delay adiabatic shear failure and enhance dynamic ductility.The O-phase can not only reduce the slip length,but also promote the pinning and tangling of the dislocations near the phase boundaries.The introduction of the O-phase transformed the strain hardening rate from negative to positive,resulting in a significantly improved dynamic shear resistance.Meanwhile,slip transfer across the O-phase via dislocation cutting mechanisms and a reduction of slip band spacing guaranteed dynamic deformation uniformity.Benefiting from the introduction of the O-phase,the alloy exhibits an excellent stored energy density(∼446 J/cm^(3),surpass the reported BCC-HEAs and typical titanium alloys),a large dynamic fracture strain(∼42%)and a considerable dynamic specific yield strength(∼241 MPa cm^(3)g^(-1)).The present study presents an effective approach for developing BCC-HEAs with excellent dynamic shear resistance and plasticity.展开更多
Bubbles are prevalent defects on the oxidized surfaces of ultra-high temperature carbides,compromis-ing structural stability and oxidation resistance.Despite their significance,the formation mechanisms and microstruct...Bubbles are prevalent defects on the oxidized surfaces of ultra-high temperature carbides,compromis-ing structural stability and oxidation resistance.Despite their significance,the formation mechanisms and microstructural evolution of bubbles during ultra-high temperature oxidation remain inadequately understood.To address this gap,the bubble behaviors of multicomponent carbides,including(Hf,Ti)C,(Hf,Zr,Ti)C,(Hf,Zr,Ti,Ta)C,and(Hf,Zr,Ti,Nb)C,were investigated under oxidation conditions at 2500℃.The roles of various elements were elucidated through first-principles calculations.Results show that the for-mation of a dense composite oxide layer is essential for bubble generation,with the release of gaseous products serving as the primary driving force.The microstructure of the bubbles is influenced by the ma-trix composition.The addition of Ti,Ta,and Nb significantly lowers the surface energy of the shell oxides,providing preferential nucleation sites for bubbles.The progressive oxidation of Ti leads to the formation of a“TiO_(2)-TiO-HfO_(2)”multilayerstructureat thebubbletop,which evolvesintoadendriticstructurewith prolonged oxidation.Ta and Nb further modulate the size and number of bubbles by altering the compo-sition and surface energy of the shell oxides.展开更多
Functional hyperbranched polymers,as an important class of materials,are widely applied in diverse areas.Therefore,the development of simple and efficient reactions to prepare hyperbranched polymers is of great signif...Functional hyperbranched polymers,as an important class of materials,are widely applied in diverse areas.Therefore,the development of simple and efficient reactions to prepare hyperbranched polymers is of great significance.In this work,trialdehydes,diamines,and trimethylsilyl cyanide could easily undergo multicomponent polymerization under mild conditions,producing hyperbranched poly(α-aminonitrile)s with high molecular weights(M_(w) up to 4.87×10^(4))in good yields(up to 85%).The hyperbranched poly(α-aminonitrile)s have good solubility in commonly used organic solvents,high thermal stability as well as morphological stability.Furthermore,due to the numerous aldehyde groups in their branched chains,these hb-poly(α-aminonitrile)s can undergo one-pot,two-step,four-component post-polymerization with high efficiency.This work not only confirms the efficiency of our established catalyst-free multicomponent polymerization of aldehydes,amines and trimethylsilyl cyanide,but also provides a versatile and powerful platform for the preparation of functional hyperbranched polymeric materials.展开更多
Exploration of new green polymerization strategies for the construction of conjugated polymers is important but challengeable.In this work,a multicomponent polymerization of acetylarenes,alkynones and ammonium acetate...Exploration of new green polymerization strategies for the construction of conjugated polymers is important but challengeable.In this work,a multicomponent polymerization of acetylarenes,alkynones and ammonium acetate for in situ construction of conjugated poly(triarylpyridine)s was developed.The polymerization reactions of diacetylarenes,aromatic dialkynones and NH_(4)OAc were performed in dimethylsulfoxide(DMSO)under heating in the presence of potassium tert-butoxide(t-BuOK),affording four conjugated poly(2,4,6-triarylpyridine)s(PTAPs)in satisfactory yields.The resulting PTAPs have good solubility in common organic solvents and high thermal stability with 5%weight loss temperatures reaching up to 460℃.They are also electrochemically active.The PTAPs incorporating tetraphenylethene units manifest aggregation-induced emission features.Moreover,through simply being doped into poly(vinyl alcohol)(PVA)matrix,the polymer and model compound containing triphenylamine moieties exhibit room-temperature phosphorescence properties with ultralong lifetimes up to 696.2 ms and high quantum yields up to 28.7%.This work not only provides a facile green synthetic route for conjugated polymers but also offers new insights into the design of advanced materials with unique photophysical properties.展开更多
With the evolution of nickel-based single crystal superalloys,there is an increase in heavy elements such as Re and Ru.This has made solutal convection more pronounced during the directional solidification process,lea...With the evolution of nickel-based single crystal superalloys,there is an increase in heavy elements such as Re and Ru.This has made solutal convection more pronounced during the directional solidification process,leading to solute redistribution and increasing the risk of casting defects such as low-angle grain boundaries.To avoid casting defects,downward directional solidification(DWS)method is adopted to eliminate solutal convection and change solute redistribution.However,there is currently no in-situ characterization or quantitative simulation studying the solute redistribution during DWS and upward directional solidification(UWS)processes.A multicomponent phase field simulation coupled with lattice Boltzmann method was employed to quantitatively investigate changes in dendrite morphology,solutal convection and deviation of dendrite tips from the perspective of solute redistribution during UWS and DWS processes.The simulation of microstructure agrees well with the experimental results.The mechanism that explains how solutal convection affects side branching behavior is depicted.A novel approach is introduced to characterize dendrite deviation,elucidating the reasons why defects are prone to occur under the influence of natural convection and solute redistribution.展开更多
Face-centered cubic(FCC)-structured multicomponent alloys typically exhibit good ductility but low strength.To simultaneously improve strength and ductility,a multicomponent alloy,Ni_(43.9)Co_(22.4)Fe_(8.8)Al_(10.7)Ti...Face-centered cubic(FCC)-structured multicomponent alloys typically exhibit good ductility but low strength.To simultaneously improve strength and ductility,a multicomponent alloy,Ni_(43.9)Co_(22.4)Fe_(8.8)Al_(10.7)Ti_(11.7)B_(2.5)(at%)with a unique microstructure was developed in this work.The microstructure,which includes 17.8%nanosized L12 precipitates and 26.6%micron-sized annealing twins distributed within~8μm fine FCC grains,was achieved through cryogenic rolling and subsequent annealing.The alloy exhibits a yield strength(YS)of 1063 MPa,ultimate tensile strength(UTS)of 1696 MPa,and excellent elongation of~26%.The L1_(2) precipitates and high-density grain boundaries act as a barrier to the dislocation movement,resulting in a substantial strengthening effect.In addition,the dislocations can cut through the L1_(2) precipitates that are coherent with the FCC matrix,whereas the twin boundaries can effectively absorb and store dislocations,leading to a high work-hardening rate.Furthermore,the stacking faults,Lomer-Cottrell locks,and 9-layer rhombohedral stacking sequence(9R)structures formed during tensile deformation significantly enhance strain hardening by blocking dislocation movement and accumulating dislocations,resulting in excellent comprehensive tensile properties.Theoretical calculations reveal that the grain boundaries,L1_(2)precipitates,and twin boundaries contribute the strengths of 263.8,412.6,and 68.7 MPa,respectively,accounting for 71.9%of the YS.This study introduces a promising strategy for developing multicomponent alloys with significant strength-ductility synergies.展开更多
Background Both medication and non-medication therapies are effective approaches to control blood pressure (BP) in hypertension patients.However,the association of joint changes in antihypertensive medication use and ...Background Both medication and non-medication therapies are effective approaches to control blood pressure (BP) in hypertension patients.However,the association of joint changes in antihypertensive medication use and healthy lifestyle index (HLI)with BP control among hypertension patients is seldom reported,which needs to provide more evidence by prospective intervention studies.We examined the association of antihypertensive medication use and HLI with BP control among employees with hypertension in China based on a workplace-based multicomponent intervention program.Methods Between January 2013 and December 2014,a cluster randomized clinical trial of a workplace-based multicomponent intervention program was conducted in 60 workplaces across 20 urban areas in China.Workplaces were randomly divided into intervention (n=40) and control (n=20) groups.Basic information on employees at each workplace was collected by trained professionals,including sociodemographic characteristics,medical history,family history,lifestyle behaviors,medication status and physical measurements.After baseline,the intervention group received a 2-year intervention to achieve BP control,which included:(1) a workplace wellness program for all employees;(2) a guidelines-oriented hypertension management protocol.HLI including nonsmoking,nondrinking,adequate physical activity,weight within reference range and balanced diet,were coded on a 5-point scale (range:0-5,with higher score indicating a healthier lifestyle).Antihypertensive medication use was defined as taking drug within the last 2 weeks.Changes in HLI,antihypertensive medication use and BP control from baseline to 24 months were measured after the intervention.Results Overall,4655 employees were included (age:46.3±7.6 years,men:3547 (82.3%)).After 24 months of the intervention,there was a significant improvement in lifestyle[smoking (OR=0.65,95%CI:0.43-0.99;P=0.045),drinking (OR=0.52,95%CI:0.40-0.68;P<0.001),regular exercise (OR=3.10,95%CI:2.53-3.78;P<0.001),excessive intake of fatty food (OR=0.17,95%CI:0.06-0.52;P=0.002),restrictive use of salt (OR=0.26,95%CI:0.12-0.56;P=0.001)].Compare to employees with a deteriorating lifestyle after the intervention,those with an improved lifestyle had a higher BP control.In the intervention group,compared with employees not using antihypertensive medication,those who consistent used (OR=2.34;95%CI:1.16-4.72;P=0.017) or changed from not using to using antihypertensive medication (OR=2.24;95%CI:1.08-4.62;P=0.030) had higher BP control.Compared with those having lower HLI,participants with a same (OR=1.38;95%CI:0.99-1.93;P=0.056) or high (OR=1.79;95%CI:1.27~2.53;P<0.001) HLI had higher BP control.Those who used antihypertensive medication and had a high HLI had the highest BP control (OR=1.88;95%CI:1.32-2.67,P<0.001).Subgroup analysis also showed the consistent effect as the above.Conclusion These findings suggest that adherence to antihypertensive medication treatment and healthy lifestyle were associated with a significant improvement in BP control among employees with hypertension.展开更多
Heavy metal-contaminated sites are primarily treated via solidification and adsorption.Calcium silicate hydrate(C-S-H)is generated during the soil stabilization process and contributes significantly to the strength an...Heavy metal-contaminated sites are primarily treated via solidification and adsorption.Calcium silicate hydrate(C-S-H)is generated during the soil stabilization process and contributes significantly to the strength and durability of the stabilized soil.To understand how the soil moisture content and heavy metal concentration affect the transport of heavy metals and the tensile strength of C-S-H,this study performed molecular dynamics(MD)simulations under different moisture and concentration levels.The results showed that Pb2+presented the highest adsorption to the surface of C-S-H due to its strong electrostatic interaction energy.The adsorption density peaks of Pb2+were 1.5–5 times greater than those of Cd2+and Zn2+.Zn2+and Cd2+ions were more likely to be adsorbed onto water molecules and form a larger hydrated radius than Pb2+.The adsorption of heavy metals onto C-S-H initially increased as the metal concentration increased and then decreased because of the limited sorption sites on C-S-H.The diffusion coefficients of the multicomponent metals in C-S-H showed no consistent trends.The maximum tensile strength of C-S-H decreased with increasing soil moisture and heavy metal concentrations.The tensile stress increased approximately linearly with strain until it reached a peak,after which it gradually declined but remained above zero,indicating good ductility and toughness under unsaturated conditions.These findings offer valuable molecular insights into the interactions between C-S-H and heavy metals and soil moisture,thereby advancing our understanding of their combined effects on soil stabilization.展开更多
Hollow engineering plays a crucial role in enhancing interfacial polarization,which is an essential factor in microwave absorption.Herein,an in-situ growth approach was adopted to successively coating C layer and WS_(...Hollow engineering plays a crucial role in enhancing interfacial polarization,which is an essential factor in microwave absorption.Herein,an in-situ growth approach was adopted to successively coating C layer and WS_(2) nanosheets on the surface SiO_(2) nanosphere.The obtained results suggested that the formed SiO_(2)@Void@C@WS_(2) multi-component nanocomposites(MCNCs)reveal a representative flower-like yolk-shell structure,which were manufactured massively through a simple channel.Additionally,the obtained SiO_(2)@Void@C@WS_(2) MCNCs presented a more and more obvious yolk-shell structure and reduced WS_(2) content with decreasing the addition of SiO_(2)@C or tungsten and sulfur sources.Because of their distinc-tive structures and remarkable cooperative effects,the SiO_(2)@Void@C@WS_(2) displayed excellent microwave absorption performances.Through the majorization of hollow structure and WS_(2),improved properties of SiO_(2)@Void@C@WS_(2) MCNCs could be acquired owing to their boosted polarization and conductive loss capabilities.Amongst,the resulting SiO_(2)@Void@C@WS_(2) MCNCs exhibited the effective absorption band and minimum reflection loss values of 5.40 GHz and−45.50 dB with matching thicknesses of 1.78 and 1.55 mm,respectively.Therefore,our findings employed hollow engineering and optimization strategies for components to design and fabricate the yolk-shell structure flower-like MCNCs,which acted as highly efficient wide-band microwave absorbing materials.展开更多
Dimethyl sulfoxide(DMSO)possessing strong solvency and high boiling point is a very important aprotic polar solvent in organic and polymer synthesis.Notably,it is also a useful synthon in organic chemistry.However,the...Dimethyl sulfoxide(DMSO)possessing strong solvency and high boiling point is a very important aprotic polar solvent in organic and polymer synthesis.Notably,it is also a useful synthon in organic chemistry.However,the direct incorporation of DMSO in polymer synthesis remains challenging.In this work,DMSO was successfully converted to nitrogen-containing heterocyclic polymers as a monomer via multicomponent polymerizations(MCPs)with dialdehydes and diamines in the presence of K_(2)S_(2)O_(8)/t-BuOK at 120℃in 6 h.A series of poly(phenylquinoline)s with high M_(w)values(up to 5.11×10^(4))were obtained in satisfactory yields(up to 82%),performing good solubility,good thermal and morphological stability as well as excellent film-forming ability.The thin films of poly(phenylquinoline)s exhibit high refractive index value in a wide wavelength range of 400–1700 nm.Thus,this work not only enriches the family of MCPs but also provides an efficient strategy for the conversion of DMSO into functional polymeric materials that are potentially applicable in diverse areas.展开更多
In order to quantitively model the real solidification process of industrial multicomponent alloys, a non-isothermal phase field model was studied for multicomponent alloy fully coupled with thermodynamic and diffusio...In order to quantitively model the real solidification process of industrial multicomponent alloys, a non-isothermal phase field model was studied for multicomponent alloy fully coupled with thermodynamic and diffusion mobility database, which can accurately predict the phase equilibrium, solute diffusion coefficients, specific heat capacity and latent heat release in the whole system. The results show that these parameters are not constants and their values depend on local concentration and temperature. Quantitative simulation of solidification in multicomponent alloys is almost impossible without such parameters available. In this model, the interfacial region is assumed to be a mixture of solid and liquid with the same chemical potentials, but with different composition. The anti-trapping current is also considered in the model. And this model was successfully applied to industrial A1-Cu-Mg alloy for the free equiaxed dendrite solidification process.展开更多
We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular...We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.展开更多
基金supported by the National Key R&D Pro-gram of China(Grant No.2021YFA0715803)the National Natural Science Foundation of China(Grant Nos.52293373,52130205,and 52302091)+1 种基金the Joint Fund of Henan Province Science and Technol-ogy R&D Program(No.225200810002)the ND Basic Research Funds of Northwestern Polytechnical University(No.G2022WD).
文摘Multicomponent(Hf-Zr-Ta)B_(2)potentially provides improved ablation resistance compared with silicon-based ceramics.Here we deposited(Hf_(0.5-x/2)Zr_(0.5-x/2)Ta_(x))B_(2)(x=0,0.1,and 0.2)coatings onto C/C com-posites,and investigated their ablation behaviors under an oxyacetylene torch with a heat flux of 2.4 MW m^(-2).It was observed that the x=0.1 oxide scale bulged but was denser,and the x=0.2 oxide scale was blown away due to the formation of excessive liquid.Based on these findings,we further de-veloped a duplex(Hf-Zr-Ta)B_(2)coating that showed a linear recession rate close to zero(0.11μm s^(-1))after two 120-s ablation cycles.It is identified that the resulting oxide scale is mainly composed of(Hf,Zr)_(6)Ta_(2)O_(17)and(Hf,Zr,Ta)O_(2)by performing aberration-corrected(scanning)transmission electron microscopy.The protective mechanism is related to the peritectic transformation of orthorhombic-(Hf,Zr)_(6)Ta_(2)O_(17)to tetragonal-(Hf,Zr,Ta)O_(2)plus Ta-dominated liquid.This study contributes to the develop-ment of Ta-containing multicomponent UHTC bulk and coatings for ultra-high temperature applications.
基金financially supported by the National Key Research and Development Program of China (No. 2021YFB4000604)the National Natural Science Foundation of China (No. 52271220)+2 种基金the 111 Project (No. B12015)the Fundamental Research Funds for the Central UniversitiesHaihe Laboratory of Sustainable Chemical Transformations, Guangxi Collaborative Innovation Centre of Structure and Property for New Energy and Materials, Science Research and Technology Development Project of Guilin (No. 20210102-4)
文摘Novel hydrogen storage materials have propelled progress in hydrogen storage technologies.Magnesium hydride(MgH_(2))is a highly promising candidate.Nevertheless,several drawbacks,including the need for elevated thermal conditions,sluggish dehydrogena-tion kinetics,and high thermodynamic stability,limit its practical application.One effective method of addressing these challenges is cata-lyst doping,which effectively boosts the hydrogen storage capability of Mg-based materials.Herein,we review recent advancements in catalyst-doped MgH_(2) composites,with particular focus on multicomponent and high-entropy catalysts.Structure-property relationships and catalytic mechanisms in these doping strategies are also summarized.Finally,based on existing challenges,we discuss future research directions for the development of Mg-based hydrogen storage systems.
基金funded by the National Science Centre,Poland,on the basis of the decision number UMO-2020/37/B/ST8/02097supported by the program“Excellence Initiative-Research University”for the AGH University of Krakow(IDUB AGH,No.501.696.7996,Action 4,ID 9880).
文摘Multicomponent Gd_(1−x)Sm_(x)Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)double perovskites are optimized for application in terms of chemical composi-tion and morphology for the use as oxygen electrodes in solid oxide cells.Structural studies of other physicochemical properties are con-ducted on a series of materials obtained by the sol-gel method with different ratios of Gd and Sm cations.It is documented that changing the x value,and the resulting adjustment of the average ionic radius,have a significant impact on the crystal structure,stability,as well as on the total conductivity and thermomechanical properties of the materials,with the best results obtained for the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)composition.Oxygen electrodes are prepared using the selected compound,allowing to obtain low polarization resistance values,such as 0.086Ω·cm^(2)at 800℃.Systematic studies of electrocatalytic activity are conducted using La_(0.8)Sr_(0.2)Ga_(0.8)Mg_(_(0.2))O_(3−δ)as the electrolyte for all electrodes,and Ce_(0.8)Gd_(0.2)O_(2−δ)electrolyte for the best performing Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes.The electrochemical data are analyzed using the distribution of relaxation times method.Also,the influence of the preparation method of the electrode material is in-ve`stigated using the electrospinning technique.Finally,the performance of the Gd_(0.75)Sm_(0.2)5Ba_(0.5)Sr_(0.5)CoCuO_(5+δ)electrodes is tested in a Ni-YSZ(yttria-stabilized zirconia)anode-supported cell with a Ce_(0.8)Gd_(0.2)O_(2−δ)buffer layer,in the fuel cell and electrolyzer operating modes.With the electrospun electrode,a power density of 462 mW·cm^(−2)is obtained at 700℃,with a current density of ca.0.2 A·cm^(−2)at 1.3 V for the electrolysis at the same temperature,indicating better performance compared to the sol-gel-based electrode.
基金supported by the National Natural Science Foundation of China(Nos.22171180,22461142137,and 22478242)the Shanghai Municipal Science and Technology Major Project,China.
文摘Despite their attractive features of high energy density,low cost,and safety,polysulfide/iodide flow batteries(SIFBs)are hampered by the sluggish kinetics of the iodide redox couple,which restricts overall performance.Multicomponent sulfides are demonstrated as promising catalysts for accelerating I^(-)/I_(3)^(-) redox reactions.Concurrently,the enhanced configurational entropy arising from multinary compositions drives synergistic effects among constituent elements,establishing a viable pathway to optimize catalytic performance.Building on these foundations,this work introduces a targeted orbital hybridization-optimized electron density strategy to enhance the catalytic activity.Implementing this concept,we developed an in-situ solvothermal synthesis process for an entropy-enhanced AgCuZnSnS_(4) loaded graphite felt(ACZTS/GF)electrode.The engineered electrode demonstrates exceptional electrocatalytic performance with improved bulk conductivity and interfacial charge transfer kinetics within a SIFB.The cell achieves a high energy efficiency of 88.5%at 20 mA·cm^(−2) with 10%state-of-charge.Furthermore,the battery delivers a maximum power density of 119.8 mW·cm^(−2) and exhibits excellent long-term cycling stability.These significant results stem from orbital hybridization-driven electronic state optimization and entropy effect-induced synergistic catalysis.
基金supported by the project of Guangzhou Sports Science and Technology Collaborative Innovation Center(No.SL2022B04J00034)National Key Research and Development Program of China(No.2020YFC2002900)。
文摘Objectives:To assess the effects of a wearable-sensorassisted multicomponent exercise program on physical fitness,cognition and quality of life in a practical setting involving frail older adults.Methods:Frail older adults(n=130)were randomly divided into a control(CG,n=68)group and an exercise group(EG,n=62)in a 12-week intervention,which included stride gait training with wearable sensors;aerobic exercise;and resistance,flexibility,balance,and cognitive training.Primary outcomes(physical fitness)were evaluated via the SPPB and SFT.Secondary outcomes(cognitive ability,quality of life and frailty)were evaluated via the MoCA-BC,SF-36 and Fried frailty criteria,respectively.Results:After the 12-week intervention,the EG demonstrated significant improvements(p<0.05)vs.the CG in gait speed(β_(3)=0.424,coefficient of interaction effect between group and time from the generalized linear mixed model),chair stand(β_(3)=0.501)and total score(β_(3)=65.466)of SPPB and all SFT components including 6MWT(walked distance,β_(3)=1.098;walking speed,β_(3)=0.105;stride length,β_(3)=0.041),back scratch(β_(3)=4.926),chair sit and reach(β_(3)=3.762),30s arm curl(β_(3)=6.124),30s sit-to-stand(β_(3)=3.04),and TUG(β_(3)=−6.712).The MoCA-BC total,verbal fluency and delayed recall scores;the physical function,general health,vitality,and mental health scores of the SF-36;and the frailty phenotype in the EG were significantly improved compared with those of the CG.Conclusions:The progressive wearable-sensor-assisted multicomponent exercise program designed in this study enhanced physical fitness,cognitive ability and quality of life and slowed down the progression of frailty in frail older adults,supporting its potential as a feasible communitybased health intervention.
基金supported by the National Key R&D Program of China(No.2021YFF0600700)the National Natural Science Foundation of China(No.22034005)+1 种基金Research Projects of Putian University(No.2024172)the Startup Fund for Advanced Talents of Putian University(No.2024046)。
文摘Inflammation is often accompanied by glioblastoma cells(GBMs)and is considered a key factor for GBM growth.This feature is believed to be connected with the tryptophan pathway mainly affected by intestinal microbes since the concept of gut-brain axis(GBA)has been proposed.Here we present a microchip model co-culturing intestinal cells(Caco2),microbes(E.coli),and GBM cells(U87)to study inflammatory responses of GBM by investigating the tryptophan metabolism.E.coli after encapsulating with alginate hydrogel microparticles(AHMPs)was seeded in the microchip where Caco2 was located,forming the simulated system of intestinal physiology and avoiding excessive reproduction of microbes.Continuous flow was applied to maintain the cell viability,induce the morphogenesis,and simulate the tryptophan transportation in GBA.The morphological alterations of Caco2 and U87 were characterized by fluorescence imaging and the tryptophan metabolism,especially the tryptophan-kynurenine pathway,was analyzed by LC-MS.Above these results of molecular analysis and cell behavior,we can conclude that GBM inflammation is induced by tryptophan accumulation.This microchip-based model generally provides an alternative method for in vitro research of interactions in GBA.
基金supports from the Science and Technology Innovation Program of Hunan Province(No.2023RC1013)the Major Fundamental Research Program of Hunan Province(No.2024JC0003)the National Natural Science Foundation of China(No.51971248).
文摘To develop ultra-strong high-density bulk materials with large deformability,we introduce a multiphase design strategy in a WMoVFeNi multicomponent alloy(MCA)system,and demonstrate it by investigating two prototype MCAs,i.e.,W_(50)Mo_(10)V_(5)(Fe_(64)Ni_(36))_(35)and W_(55)Mo_(15)V_(5)(Fe_(64)Ni_(36))_(25)(at.%).The two bulk MCAs were fabricated by mechanical alloying(MA)plus spark plasma sintering,and systematically analyzed in terms of elemental distribution,phase structure evolution,mechanical properties,and deformation mechanisms.The nanocrystalline powders are mainly composed of body-centered cubic(BCC)and face-centered cubic(FCC)phases after the MA process for 15 h.Upon sintering,the bulk MCAs show a multiphase structure consisting of a fine-grained BCC matrix,two different FCC phases,and a minor V-rich BCC phase.Particularly,the bulk W_(50)Mo_(10)V_(5)(Fe_(64)Ni_(36))_(35)MCA sintered at 1250℃for 10 min exhibits an average mass density of 14.94 g·cm^(-3),compressive yield strength of 1255 MPa,ultimate strength of 2639 MPa,and fracture strain of 32%at room temperature.Apart from the massive substitutional solid solution strengthening,the multiphase structure contributes significantly to the enhanced strength and deformability.The work thus provides a promising approach for the development of strong and tough high-density materials.
文摘Foreword It is our great privilege,as vip Editors of the International Journal of Minerals,Metallurgy and Materials(IJMMM),to present this special issue on“High-Entropy and Multicomponent-Doped Materials for Energy Applications:Innovations in Energy Conversion and Storage.”This collection highlights the latest research developments in the preparation,optimizing properties,and exploring potential applications of high-entropy materials(HEMs)and other com-pounds with increased configurational entropy.
基金supported by the YEQISUN Joint Funds of the National Natural Science Foundation of China(Grant No.U2241234)the National Natural Science Foundation of China(Grant No.52301127).
文摘Premature adiabatic shear localization caused by strain softening is a roadblock for the application of body-centered cubic(BCC)structured high-entropy alloy(HEAs)in the impact field.A micron-scale orthorhombic-phase(O-phase)strengthened TiZrVNbAl alloy was developed to delay adiabatic shear failure and enhance dynamic ductility.The O-phase can not only reduce the slip length,but also promote the pinning and tangling of the dislocations near the phase boundaries.The introduction of the O-phase transformed the strain hardening rate from negative to positive,resulting in a significantly improved dynamic shear resistance.Meanwhile,slip transfer across the O-phase via dislocation cutting mechanisms and a reduction of slip band spacing guaranteed dynamic deformation uniformity.Benefiting from the introduction of the O-phase,the alloy exhibits an excellent stored energy density(∼446 J/cm^(3),surpass the reported BCC-HEAs and typical titanium alloys),a large dynamic fracture strain(∼42%)and a considerable dynamic specific yield strength(∼241 MPa cm^(3)g^(-1)).The present study presents an effective approach for developing BCC-HEAs with excellent dynamic shear resistance and plasticity.
基金financially supported by National Natural Science Foundation of China(No.52072410).
文摘Bubbles are prevalent defects on the oxidized surfaces of ultra-high temperature carbides,compromis-ing structural stability and oxidation resistance.Despite their significance,the formation mechanisms and microstructural evolution of bubbles during ultra-high temperature oxidation remain inadequately understood.To address this gap,the bubble behaviors of multicomponent carbides,including(Hf,Ti)C,(Hf,Zr,Ti)C,(Hf,Zr,Ti,Ta)C,and(Hf,Zr,Ti,Nb)C,were investigated under oxidation conditions at 2500℃.The roles of various elements were elucidated through first-principles calculations.Results show that the for-mation of a dense composite oxide layer is essential for bubble generation,with the release of gaseous products serving as the primary driving force.The microstructure of the bubbles is influenced by the ma-trix composition.The addition of Ti,Ta,and Nb significantly lowers the surface energy of the shell oxides,providing preferential nucleation sites for bubbles.The progressive oxidation of Ti leads to the formation of a“TiO_(2)-TiO-HfO_(2)”multilayerstructureat thebubbletop,which evolvesintoadendriticstructurewith prolonged oxidation.Ta and Nb further modulate the size and number of bubbles by altering the compo-sition and surface energy of the shell oxides.
基金financially supported by the Scientific Research Start-up Fund Project of Anhui Polytechnic University for Introducing Talents(No.2022YQQ081)Natural Science Research Project of Anhui Educational Committee(No.2024AH050133)the National Natural Science Foundation of China(No.22001078).
文摘Functional hyperbranched polymers,as an important class of materials,are widely applied in diverse areas.Therefore,the development of simple and efficient reactions to prepare hyperbranched polymers is of great significance.In this work,trialdehydes,diamines,and trimethylsilyl cyanide could easily undergo multicomponent polymerization under mild conditions,producing hyperbranched poly(α-aminonitrile)s with high molecular weights(M_(w) up to 4.87×10^(4))in good yields(up to 85%).The hyperbranched poly(α-aminonitrile)s have good solubility in commonly used organic solvents,high thermal stability as well as morphological stability.Furthermore,due to the numerous aldehyde groups in their branched chains,these hb-poly(α-aminonitrile)s can undergo one-pot,two-step,four-component post-polymerization with high efficiency.This work not only confirms the efficiency of our established catalyst-free multicomponent polymerization of aldehydes,amines and trimethylsilyl cyanide,but also provides a versatile and powerful platform for the preparation of functional hyperbranched polymeric materials.
基金supported by the National Natural Science Foundation of China(No.22071166)the Priority Academic Program Development of Jiangsu High Education Institutions(PAPD).
文摘Exploration of new green polymerization strategies for the construction of conjugated polymers is important but challengeable.In this work,a multicomponent polymerization of acetylarenes,alkynones and ammonium acetate for in situ construction of conjugated poly(triarylpyridine)s was developed.The polymerization reactions of diacetylarenes,aromatic dialkynones and NH_(4)OAc were performed in dimethylsulfoxide(DMSO)under heating in the presence of potassium tert-butoxide(t-BuOK),affording four conjugated poly(2,4,6-triarylpyridine)s(PTAPs)in satisfactory yields.The resulting PTAPs have good solubility in common organic solvents and high thermal stability with 5%weight loss temperatures reaching up to 460℃.They are also electrochemically active.The PTAPs incorporating tetraphenylethene units manifest aggregation-induced emission features.Moreover,through simply being doped into poly(vinyl alcohol)(PVA)matrix,the polymer and model compound containing triphenylamine moieties exhibit room-temperature phosphorescence properties with ultralong lifetimes up to 696.2 ms and high quantum yields up to 28.7%.This work not only provides a facile green synthetic route for conjugated polymers but also offers new insights into the design of advanced materials with unique photophysical properties.
基金supported by the stable support project and the Major National Science and Technology Project(2017-VII-0008-0101).
文摘With the evolution of nickel-based single crystal superalloys,there is an increase in heavy elements such as Re and Ru.This has made solutal convection more pronounced during the directional solidification process,leading to solute redistribution and increasing the risk of casting defects such as low-angle grain boundaries.To avoid casting defects,downward directional solidification(DWS)method is adopted to eliminate solutal convection and change solute redistribution.However,there is currently no in-situ characterization or quantitative simulation studying the solute redistribution during DWS and upward directional solidification(UWS)processes.A multicomponent phase field simulation coupled with lattice Boltzmann method was employed to quantitatively investigate changes in dendrite morphology,solutal convection and deviation of dendrite tips from the perspective of solute redistribution during UWS and DWS processes.The simulation of microstructure agrees well with the experimental results.The mechanism that explains how solutal convection affects side branching behavior is depicted.A novel approach is introduced to characterize dendrite deviation,elucidating the reasons why defects are prone to occur under the influence of natural convection and solute redistribution.
基金supported by the Major Science and Technology Project of Gansu Province(Nos.23ZDGA010 and 22ZD6GA008)the National Natural Science Foundation of China(No.51564035).
文摘Face-centered cubic(FCC)-structured multicomponent alloys typically exhibit good ductility but low strength.To simultaneously improve strength and ductility,a multicomponent alloy,Ni_(43.9)Co_(22.4)Fe_(8.8)Al_(10.7)Ti_(11.7)B_(2.5)(at%)with a unique microstructure was developed in this work.The microstructure,which includes 17.8%nanosized L12 precipitates and 26.6%micron-sized annealing twins distributed within~8μm fine FCC grains,was achieved through cryogenic rolling and subsequent annealing.The alloy exhibits a yield strength(YS)of 1063 MPa,ultimate tensile strength(UTS)of 1696 MPa,and excellent elongation of~26%.The L1_(2) precipitates and high-density grain boundaries act as a barrier to the dislocation movement,resulting in a substantial strengthening effect.In addition,the dislocations can cut through the L1_(2) precipitates that are coherent with the FCC matrix,whereas the twin boundaries can effectively absorb and store dislocations,leading to a high work-hardening rate.Furthermore,the stacking faults,Lomer-Cottrell locks,and 9-layer rhombohedral stacking sequence(9R)structures formed during tensile deformation significantly enhance strain hardening by blocking dislocation movement and accumulating dislocations,resulting in excellent comprehensive tensile properties.Theoretical calculations reveal that the grain boundaries,L1_(2)precipitates,and twin boundaries contribute the strengths of 263.8,412.6,and 68.7 MPa,respectively,accounting for 71.9%of the YS.This study introduces a promising strategy for developing multicomponent alloys with significant strength-ductility synergies.
基金supported by grant 2011BAI11B01 from the Projects in the Chinese National Science and Technology Pillar Program during the 12th Five-year Plan Periodby grant 2017-I2M-1-004 from the Chinese Academy of Medical Science Innovation Fund for Medical Sciencesby the Major science and technology special plan project of Yunnan Province (202302AA310045)。
文摘Background Both medication and non-medication therapies are effective approaches to control blood pressure (BP) in hypertension patients.However,the association of joint changes in antihypertensive medication use and healthy lifestyle index (HLI)with BP control among hypertension patients is seldom reported,which needs to provide more evidence by prospective intervention studies.We examined the association of antihypertensive medication use and HLI with BP control among employees with hypertension in China based on a workplace-based multicomponent intervention program.Methods Between January 2013 and December 2014,a cluster randomized clinical trial of a workplace-based multicomponent intervention program was conducted in 60 workplaces across 20 urban areas in China.Workplaces were randomly divided into intervention (n=40) and control (n=20) groups.Basic information on employees at each workplace was collected by trained professionals,including sociodemographic characteristics,medical history,family history,lifestyle behaviors,medication status and physical measurements.After baseline,the intervention group received a 2-year intervention to achieve BP control,which included:(1) a workplace wellness program for all employees;(2) a guidelines-oriented hypertension management protocol.HLI including nonsmoking,nondrinking,adequate physical activity,weight within reference range and balanced diet,were coded on a 5-point scale (range:0-5,with higher score indicating a healthier lifestyle).Antihypertensive medication use was defined as taking drug within the last 2 weeks.Changes in HLI,antihypertensive medication use and BP control from baseline to 24 months were measured after the intervention.Results Overall,4655 employees were included (age:46.3±7.6 years,men:3547 (82.3%)).After 24 months of the intervention,there was a significant improvement in lifestyle[smoking (OR=0.65,95%CI:0.43-0.99;P=0.045),drinking (OR=0.52,95%CI:0.40-0.68;P<0.001),regular exercise (OR=3.10,95%CI:2.53-3.78;P<0.001),excessive intake of fatty food (OR=0.17,95%CI:0.06-0.52;P=0.002),restrictive use of salt (OR=0.26,95%CI:0.12-0.56;P=0.001)].Compare to employees with a deteriorating lifestyle after the intervention,those with an improved lifestyle had a higher BP control.In the intervention group,compared with employees not using antihypertensive medication,those who consistent used (OR=2.34;95%CI:1.16-4.72;P=0.017) or changed from not using to using antihypertensive medication (OR=2.24;95%CI:1.08-4.62;P=0.030) had higher BP control.Compared with those having lower HLI,participants with a same (OR=1.38;95%CI:0.99-1.93;P=0.056) or high (OR=1.79;95%CI:1.27~2.53;P<0.001) HLI had higher BP control.Those who used antihypertensive medication and had a high HLI had the highest BP control (OR=1.88;95%CI:1.32-2.67,P<0.001).Subgroup analysis also showed the consistent effect as the above.Conclusion These findings suggest that adherence to antihypertensive medication treatment and healthy lifestyle were associated with a significant improvement in BP control among employees with hypertension.
基金supported by the National Natural Science Foundation of China(Grant Nos.42030710 and 52308345)the National Key Research and Development Program of China(Grant No.2023YFC3707903).
文摘Heavy metal-contaminated sites are primarily treated via solidification and adsorption.Calcium silicate hydrate(C-S-H)is generated during the soil stabilization process and contributes significantly to the strength and durability of the stabilized soil.To understand how the soil moisture content and heavy metal concentration affect the transport of heavy metals and the tensile strength of C-S-H,this study performed molecular dynamics(MD)simulations under different moisture and concentration levels.The results showed that Pb2+presented the highest adsorption to the surface of C-S-H due to its strong electrostatic interaction energy.The adsorption density peaks of Pb2+were 1.5–5 times greater than those of Cd2+and Zn2+.Zn2+and Cd2+ions were more likely to be adsorbed onto water molecules and form a larger hydrated radius than Pb2+.The adsorption of heavy metals onto C-S-H initially increased as the metal concentration increased and then decreased because of the limited sorption sites on C-S-H.The diffusion coefficients of the multicomponent metals in C-S-H showed no consistent trends.The maximum tensile strength of C-S-H decreased with increasing soil moisture and heavy metal concentrations.The tensile stress increased approximately linearly with strain until it reached a peak,after which it gradually declined but remained above zero,indicating good ductility and toughness under unsaturated conditions.These findings offer valuable molecular insights into the interactions between C-S-H and heavy metals and soil moisture,thereby advancing our understanding of their combined effects on soil stabilization.
基金supported by the Guizhou Provincial Science and Technology Projects for Platform and Talent Team Plan(No.GCC[2023]007)the Innovation Group of Guizhou University([2024]08)+1 种基金Fok Ying Tung Education Foundation(No.171095)the National Natural Science Foundation of China(No.11964006).
文摘Hollow engineering plays a crucial role in enhancing interfacial polarization,which is an essential factor in microwave absorption.Herein,an in-situ growth approach was adopted to successively coating C layer and WS_(2) nanosheets on the surface SiO_(2) nanosphere.The obtained results suggested that the formed SiO_(2)@Void@C@WS_(2) multi-component nanocomposites(MCNCs)reveal a representative flower-like yolk-shell structure,which were manufactured massively through a simple channel.Additionally,the obtained SiO_(2)@Void@C@WS_(2) MCNCs presented a more and more obvious yolk-shell structure and reduced WS_(2) content with decreasing the addition of SiO_(2)@C or tungsten and sulfur sources.Because of their distinc-tive structures and remarkable cooperative effects,the SiO_(2)@Void@C@WS_(2) displayed excellent microwave absorption performances.Through the majorization of hollow structure and WS_(2),improved properties of SiO_(2)@Void@C@WS_(2) MCNCs could be acquired owing to their boosted polarization and conductive loss capabilities.Amongst,the resulting SiO_(2)@Void@C@WS_(2) MCNCs exhibited the effective absorption band and minimum reflection loss values of 5.40 GHz and−45.50 dB with matching thicknesses of 1.78 and 1.55 mm,respectively.Therefore,our findings employed hollow engineering and optimization strategies for components to design and fabricate the yolk-shell structure flower-like MCNCs,which acted as highly efficient wide-band microwave absorbing materials.
基金supported by the Scientific Research Start-up Fund Project of Anhui Polytechnic University for Introducing Talents(No.2022YQQ081)Natural Science Research Project of the Anhui Educational Committee(No.2024AH050133)the National Natural Science Foundation of China(No.22101088)。
文摘Dimethyl sulfoxide(DMSO)possessing strong solvency and high boiling point is a very important aprotic polar solvent in organic and polymer synthesis.Notably,it is also a useful synthon in organic chemistry.However,the direct incorporation of DMSO in polymer synthesis remains challenging.In this work,DMSO was successfully converted to nitrogen-containing heterocyclic polymers as a monomer via multicomponent polymerizations(MCPs)with dialdehydes and diamines in the presence of K_(2)S_(2)O_(8)/t-BuOK at 120℃in 6 h.A series of poly(phenylquinoline)s with high M_(w)values(up to 5.11×10^(4))were obtained in satisfactory yields(up to 82%),performing good solubility,good thermal and morphological stability as well as excellent film-forming ability.The thin films of poly(phenylquinoline)s exhibit high refractive index value in a wide wavelength range of 400–1700 nm.Thus,this work not only enriches the family of MCPs but also provides an efficient strategy for the conversion of DMSO into functional polymeric materials that are potentially applicable in diverse areas.
基金Project(2011CB606306) supported by the National Basic Research Program of ChinaProject(51101014) supported by the National Natural Science Foundation of China
文摘In order to quantitively model the real solidification process of industrial multicomponent alloys, a non-isothermal phase field model was studied for multicomponent alloy fully coupled with thermodynamic and diffusion mobility database, which can accurately predict the phase equilibrium, solute diffusion coefficients, specific heat capacity and latent heat release in the whole system. The results show that these parameters are not constants and their values depend on local concentration and temperature. Quantitative simulation of solidification in multicomponent alloys is almost impossible without such parameters available. In this model, the interfacial region is assumed to be a mixture of solid and liquid with the same chemical potentials, but with different composition. The anti-trapping current is also considered in the model. And this model was successfully applied to industrial A1-Cu-Mg alloy for the free equiaxed dendrite solidification process.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.41304082)the China Postdoctoral Science Foundation(No.2016M590731)+2 种基金the Young Scientists Fund of the Natural Science Foundation of Hebei Province(No.D2014403011)the Program for Young Excellent Talents of Higher Education Institutions of Hebei Province(No.BJ2016046)the Geological survey project of China Geological Survey(No.1212011121197)
文摘We calculate the multicomponent responses of surface-hole transient electromagnetic method. The methods and models are unsuitable as geoelectric models of conductive surrounding rocks because they are based on regular local targets. We also propose a calculation and analysis scheme based on numerical simulations of the subsurface transient electromagnetic fields. In the modeling of the electromagnetic fields, the forward modeling simulations are performed by using the finite-difference time-domain method and the discrete image method, which combines the Gaver–Stehfest inverse Laplace transform with the Prony method to solve the initial electromagnetic fields. The precision in the iterative computations is ensured by using the transmission boundary conditions. For the response analysis, we customize geoelectric models consisting of near-borehole targets and conductive wall rocks and implement forward modeling simulations. The observed electric fields are converted into induced electromotive force responses using multicomponent observation devices. By comparing the transient electric fields and multicomponent responses under different conditions, we suggest that the multicomponent-induced electromotive force responses are related to the horizontal and vertical gradient variations of the transient electric field at different times. The characteristics of the response are determined by the varying the subsurface transient electromagnetic fields, i.e., diffusion, attenuation and distortion, under different conditions as well as the electromagnetic fields at the observation positions. The calculation and analysis scheme of the response consider the surrounding rocks and the anomalous field of the local targets. It therefore can account for the geological data better than conventional transient field response analysis of local targets.