As the cornerstone of future information security,quantum key distribution(QKD)is evolving towards large-scale hybrid discrete-variable/continuous-variable(DV/CV)multi-domain quantum networks.Meanwhile,multicast-orien...As the cornerstone of future information security,quantum key distribution(QKD)is evolving towards large-scale hybrid discrete-variable/continuous-variable(DV/CV)multi-domain quantum networks.Meanwhile,multicast-oriented multi-party key negotiation is attracting increasing attention in quantum networks.However,the efficient key provision for multicast services over hybrid DV/CV multi-domain quantum networks remains challenging,due to the limited probability of service success and the inefficient utilization of key resources.Targeting these challenges,this study proposes two key-resource-aware multicast-oriented key provision strategies,namely the link distance-resource balanced key provision strategy and the maximum shared link key provision strategy.The proposed strategies are applicable to hybrid DV/CV multi-domain quantum networks,which are typically implemented by GG02-based intra-domain connections and BB84-based inter-domain connections.Furthermore,the multicast-oriented key provision model is formulated,based on which two heuristic algorithms are designed,i.e.,the shared link distance-resource(SLDR)dependent and the maximum shared link distance-resource(MSLDR)dependent multicast-oriented key provision algorithms.Simulation results verify the applicability of the designed algorithms across different multi-domain quantum networks,and demonstrate their superiority over the benchmark algorithms in terms of the success probability of multicast service requests,the number of shared links,and the key resource utilization.展开更多
To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With th...To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.展开更多
Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,esp...Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,especially for short-distance optical interconnects,light-carrying OAM has proved its great potential to improve transmission capacity and spectral efficiency in the space-division multiplexing system due to its orthogonality,security,and compatibility with other techniques.Meanwhile,100-m freespace optical interconnects become an alternative solution for the“last mile”problem and provide interbuilding communication.We experimentally demonstrate a 260-m secure optical interconnect using OAM multiplexing and 16-ary quadrature amplitude modulation(16-QAM)signals.We study the beam wandering,power fluctuation,channel cross talk,bit-error-rate performance,and link security.Additionally,we also investigate the link performance for 1-to-9 multicasting at the range of 260 m.Considering that the power distribution may be affected by atmospheric turbulence,we introduce an offline feedback process to make it flexibly controllable.展开更多
Effective propagation of information among multiple users is the purpose of realizing large-scale quantum communication networks. In this paper, multicast protocols for any single, two and three qubits with real ampli...Effective propagation of information among multiple users is the purpose of realizing large-scale quantum communication networks. In this paper, multicast protocols for any single, two and three qubits with real amplitude and complex phase information are presented. They were realized using a composite of Greenberger–Horne–Zeilinger states as shared channels. Joint remote state preparation was the main method for completing quantum multicast. At the same time, quantum state tomography of the schemes was carried out on the IBM Quantum platform.The obtained states were compared with the target states by fidelity. The analysis of communication efficiency and noise effects shows that our protocol has advantages in the case of complex coefficients.展开更多
The performance of Rayleigh fading channels is substantially impacted by the impacts of relays, antennas, and the number of branches. Opportunistic relaying is a potent technique for enhancing the effects of the afore...The performance of Rayleigh fading channels is substantially impacted by the impacts of relays, antennas, and the number of branches. Opportunistic relaying is a potent technique for enhancing the effects of the aforementioned factors while enhancing the performance of fading channels. Due to these issues, a secure wireless multicasting scenario using opportunistic relaying over Rayleigh fading channel in the presence of multiple wiretappers is taken into consideration in this study. So the investigation of a secure wireless multicasting scenario using opportunistic relaying over Rayleigh fading channel in the presence of multiple wiretappers is the focus of this paper. The primary goals of this study are to maximize security in wireless multicasting while minimizing security loss caused by the effects of relays, branches at destinations and wiretappers, as well as multicast users and wiretappers through opportunistic relaying. To comprehend the insight effects of prior parameters, the closed form analytical expressions are constructed for the probability of non-zero secrecy multicast capacity (PNSMC), ergodic secrecy multicast capacity (ESMC), and secure outage probability for multicasting (SOPM). The findings demonstrate that opportunistic relaying is a successful method for reducing the loss of security in multicasting.展开更多
The capacity of wireless networks is fundamentally limited by interference. A few research has focused on the study of the simultaneous effect of interference and correlation, and less attention has been paid to the t...The capacity of wireless networks is fundamentally limited by interference. A few research has focused on the study of the simultaneous effect of interference and correlation, and less attention has been paid to the topic of canceling simultaneous effect of interference and correlation until recently. This paper considers a secure wireless multicasting scenario through multicellular networks over spatially correlated Nakagami-<i>m</i> fading channel in the presence of multiple eavesdroppers. Authors are interested to protect the desired signals from eavesdropping considering the impact of perfect channel estimation (PCE) with interference and correlation. The protection of eavesdropping is also made strong reducing the simultaneous impact of interference and correlation on the secrecy multicast capacity employing opportunistic relaying technique. In terms of the signal-to-interference plus noise ratio (SINR), fading parameter, correlation coefficient, the number of multicast users and eavesdroppers and the number of antennas at the multicast users and eavesdroppers, the closed-form analytical expressions are derived for the probability of non-zero secrecy multicast capacity and the secure outage probability for multicasting to understand the insight of the effects of aforementioned parameters. The results show that the simultaneous effects of correlation and interference at the multicast users degrade security in multicasting. Moreover, the security in multicasting degrades with the intensity of fading and the number of multicast users, eavesdroppers and antennas at the eavesdroppers. The effects of these parameters on the security in multicasting can be significantly reduced by using opportunistic relaying technique with PCE. Finally, the analytical results are verified via Monte-Carlo simulation to justify the validity of derived closed-form analytical expressions.展开更多
The effects of scatterers, fluctuation parameter and propagation clusters significantly affect the performance of κ-μ shadowed fading channel. On the other hand, opportunistic relaying is an efficient technique to i...The effects of scatterers, fluctuation parameter and propagation clusters significantly affect the performance of κ-μ shadowed fading channel. On the other hand, opportunistic relaying is an efficient technique to improve the performance of fading channels reducing the effects of aforementioned parameters. Motivated by these issues, in this paper, a secure wireless multicasting scenario through κ-μ shadowed fading channel is considered in the presence of multiple eavesdroppers with opportunistic relaying. The main purpose of this paper is to ensure the security level in wireless multicasting compensating the loss of security due to the effects of power ratio between dominant and scattered waves, fluctuation parameter, and the number of propagation clusters, multicast users and eavesdroppers, by opportunistic relaying technique. The closed-form analytical expressions are derived for the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multicasting (SOPM) to understand the insight of the effects of above parameters. The results show that the loss of security in multicasting through κ-μ shadowed fading channel can be significantly enhanced using opportunistic relaying technique by compensating the effects of scatterers, fluctuation parameter, and the number of propagation clusters, multicast users and eavesdroppers.展开更多
Beginning with the simple introduction of socket which is the most commonly used application program interfaces in UNIX/LINUX communication domain, the concrete programming procedures to realize multicast and broadcas...Beginning with the simple introduction of socket which is the most commonly used application program interfaces in UNIX/LINUX communication domain, the concrete programming procedures to realize multicast and broadcast based on socket is provided, according to TCP/IP protocol in LINUX system. The acquiring and converting of broadcast destination address and multicast address, the setting of multicast options, the joining in and withdrawing from the multicast group, and the receiving and sending of datagram are all demonstrated in it, the related system calls and simple explication of C programming are also included.展开更多
In the distributed networks,many applications send information from a source node to multiple destination nodes.To support these applications requirements,the paper presents a multi-objective algorithm based on ant co...In the distributed networks,many applications send information from a source node to multiple destination nodes.To support these applications requirements,the paper presents a multi-objective algorithm based on ant colonies to construct a multicast tree for data transmission in a computer network.The proposed algorithm simultaneously optimizes total weight(cost,delay and hop)of the multicast tree.Experimental results prove the proposed algorithm outperforms a recently published Multi-objective Multicast Algorithm specially designed for solving the multicast routing problem.Also,it is able to find a better solution with fast convergence speed and high reliability.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62201276,62350001,U22B2026,and 62425105)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0300701)the Key R&D Program(Industry Foresight and Key Core Technologies)of Jiangsu Province(Grant No.BE2022071)。
文摘As the cornerstone of future information security,quantum key distribution(QKD)is evolving towards large-scale hybrid discrete-variable/continuous-variable(DV/CV)multi-domain quantum networks.Meanwhile,multicast-oriented multi-party key negotiation is attracting increasing attention in quantum networks.However,the efficient key provision for multicast services over hybrid DV/CV multi-domain quantum networks remains challenging,due to the limited probability of service success and the inefficient utilization of key resources.Targeting these challenges,this study proposes two key-resource-aware multicast-oriented key provision strategies,namely the link distance-resource balanced key provision strategy and the maximum shared link key provision strategy.The proposed strategies are applicable to hybrid DV/CV multi-domain quantum networks,which are typically implemented by GG02-based intra-domain connections and BB84-based inter-domain connections.Furthermore,the multicast-oriented key provision model is formulated,based on which two heuristic algorithms are designed,i.e.,the shared link distance-resource(SLDR)dependent and the maximum shared link distance-resource(MSLDR)dependent multicast-oriented key provision algorithms.Simulation results verify the applicability of the designed algorithms across different multi-domain quantum networks,and demonstrate their superiority over the benchmark algorithms in terms of the success probability of multicast service requests,the number of shared links,and the key resource utilization.
基金The Natural Science Foundation of Zhejiang Province(No.Y1090232)
文摘To meet the bandwidth requirement for the multicasting data flow in ad hoc networks, a distributed on- demand bandwidth-constrained multicast routing (BCMR) protocol for wireless ad hoc networks is proposed. With this protocol, the resource reservation table of each node will record the bandwidth requirements of data flows, which access itself, its neighbor nodes and hidden nodes, and every node calculates the remaining available bandwidth by deducting the bandwidth reserved in the resource reservation table from the total available bandwidth of the node. Moreover, the BCMR searches in a distributed manner for the paths with the shortest delay conditioned by the bandwidth constraint. Simulation results demonstrate the good performance of BCMR in terms of packet delivery reliability and the delay. BCMR can meet the requirements of real time communication and can be used in the multicast applications with low mobility in wireless ad hoc networks.
基金supported by the National Natural Science Foundation of China (Grant Nos.62125503,62261160388,and 62101198)the Natural Science Foundation of Hubei Province of China (Grant Nos.2021CFB011 and 2023AFA028)+2 种基金the Key R&D Program of Hubei Province of China (Grant Nos.2020BAB001 and 2021BAA024)Shenzhen Science and Technology Program (Grant No.JCYJ20200109114018750)the Innovation Project of Optics Valley Laboratory (Grant Nos.OVL2021BG004 and OVL2023ZD004).
文摘Orbital angular momentum(OAM),described by an azimuthal phase term expej lθT,has unbound orthogonal states with different topological charges l.Therefore,with the explosive growth of global communication capacity,especially for short-distance optical interconnects,light-carrying OAM has proved its great potential to improve transmission capacity and spectral efficiency in the space-division multiplexing system due to its orthogonality,security,and compatibility with other techniques.Meanwhile,100-m freespace optical interconnects become an alternative solution for the“last mile”problem and provide interbuilding communication.We experimentally demonstrate a 260-m secure optical interconnect using OAM multiplexing and 16-ary quadrature amplitude modulation(16-QAM)signals.We study the beam wandering,power fluctuation,channel cross talk,bit-error-rate performance,and link security.Additionally,we also investigate the link performance for 1-to-9 multicasting at the range of 260 m.Considering that the power distribution may be affected by atmospheric turbulence,we introduce an offline feedback process to make it flexibly controllable.
基金supported by the National Natural Science Foundation of China (Grant No. 12201300)。
文摘Effective propagation of information among multiple users is the purpose of realizing large-scale quantum communication networks. In this paper, multicast protocols for any single, two and three qubits with real amplitude and complex phase information are presented. They were realized using a composite of Greenberger–Horne–Zeilinger states as shared channels. Joint remote state preparation was the main method for completing quantum multicast. At the same time, quantum state tomography of the schemes was carried out on the IBM Quantum platform.The obtained states were compared with the target states by fidelity. The analysis of communication efficiency and noise effects shows that our protocol has advantages in the case of complex coefficients.
文摘The performance of Rayleigh fading channels is substantially impacted by the impacts of relays, antennas, and the number of branches. Opportunistic relaying is a potent technique for enhancing the effects of the aforementioned factors while enhancing the performance of fading channels. Due to these issues, a secure wireless multicasting scenario using opportunistic relaying over Rayleigh fading channel in the presence of multiple wiretappers is taken into consideration in this study. So the investigation of a secure wireless multicasting scenario using opportunistic relaying over Rayleigh fading channel in the presence of multiple wiretappers is the focus of this paper. The primary goals of this study are to maximize security in wireless multicasting while minimizing security loss caused by the effects of relays, branches at destinations and wiretappers, as well as multicast users and wiretappers through opportunistic relaying. To comprehend the insight effects of prior parameters, the closed form analytical expressions are constructed for the probability of non-zero secrecy multicast capacity (PNSMC), ergodic secrecy multicast capacity (ESMC), and secure outage probability for multicasting (SOPM). The findings demonstrate that opportunistic relaying is a successful method for reducing the loss of security in multicasting.
文摘The capacity of wireless networks is fundamentally limited by interference. A few research has focused on the study of the simultaneous effect of interference and correlation, and less attention has been paid to the topic of canceling simultaneous effect of interference and correlation until recently. This paper considers a secure wireless multicasting scenario through multicellular networks over spatially correlated Nakagami-<i>m</i> fading channel in the presence of multiple eavesdroppers. Authors are interested to protect the desired signals from eavesdropping considering the impact of perfect channel estimation (PCE) with interference and correlation. The protection of eavesdropping is also made strong reducing the simultaneous impact of interference and correlation on the secrecy multicast capacity employing opportunistic relaying technique. In terms of the signal-to-interference plus noise ratio (SINR), fading parameter, correlation coefficient, the number of multicast users and eavesdroppers and the number of antennas at the multicast users and eavesdroppers, the closed-form analytical expressions are derived for the probability of non-zero secrecy multicast capacity and the secure outage probability for multicasting to understand the insight of the effects of aforementioned parameters. The results show that the simultaneous effects of correlation and interference at the multicast users degrade security in multicasting. Moreover, the security in multicasting degrades with the intensity of fading and the number of multicast users, eavesdroppers and antennas at the eavesdroppers. The effects of these parameters on the security in multicasting can be significantly reduced by using opportunistic relaying technique with PCE. Finally, the analytical results are verified via Monte-Carlo simulation to justify the validity of derived closed-form analytical expressions.
文摘The effects of scatterers, fluctuation parameter and propagation clusters significantly affect the performance of κ-μ shadowed fading channel. On the other hand, opportunistic relaying is an efficient technique to improve the performance of fading channels reducing the effects of aforementioned parameters. Motivated by these issues, in this paper, a secure wireless multicasting scenario through κ-μ shadowed fading channel is considered in the presence of multiple eavesdroppers with opportunistic relaying. The main purpose of this paper is to ensure the security level in wireless multicasting compensating the loss of security due to the effects of power ratio between dominant and scattered waves, fluctuation parameter, and the number of propagation clusters, multicast users and eavesdroppers, by opportunistic relaying technique. The closed-form analytical expressions are derived for the probability of non-zero secrecy multicast capacity (PNSMC) and the secure outage probability for multicasting (SOPM) to understand the insight of the effects of above parameters. The results show that the loss of security in multicasting through κ-μ shadowed fading channel can be significantly enhanced using opportunistic relaying technique by compensating the effects of scatterers, fluctuation parameter, and the number of propagation clusters, multicast users and eavesdroppers.
文摘Beginning with the simple introduction of socket which is the most commonly used application program interfaces in UNIX/LINUX communication domain, the concrete programming procedures to realize multicast and broadcast based on socket is provided, according to TCP/IP protocol in LINUX system. The acquiring and converting of broadcast destination address and multicast address, the setting of multicast options, the joining in and withdrawing from the multicast group, and the receiving and sending of datagram are all demonstrated in it, the related system calls and simple explication of C programming are also included.
文摘In the distributed networks,many applications send information from a source node to multiple destination nodes.To support these applications requirements,the paper presents a multi-objective algorithm based on ant colonies to construct a multicast tree for data transmission in a computer network.The proposed algorithm simultaneously optimizes total weight(cost,delay and hop)of the multicast tree.Experimental results prove the proposed algorithm outperforms a recently published Multi-objective Multicast Algorithm specially designed for solving the multicast routing problem.Also,it is able to find a better solution with fast convergence speed and high reliability.