期刊文献+
共找到63篇文章
< 1 2 4 >
每页显示 20 50 100
Experimental observations on the nonproportional multiaxial ratchetting of cast AZ91 magnesium alloy at room temperature
1
作者 Binghui Hu Yu Lei +3 位作者 Hang Li Ziyi Wang Chao Yu Guozheng Kang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1115-1125,共11页
The nonproportional multiaxial ratchetting of cast AZ91 magnesium (Mg) alloy was examined by performing a sequence of axial-torsional cyclic tests controlled by stress with various loading paths at room temperature (R... The nonproportional multiaxial ratchetting of cast AZ91 magnesium (Mg) alloy was examined by performing a sequence of axial-torsional cyclic tests controlled by stress with various loading paths at room temperature (RT).The evolutionary characteristics and path dependence of multiaxial ratchetting were discussed.Results illustrate that the cast AZ91 Mg alloy exhibits considerable nonproportional additional softening during cyclic loading with multiple nonproportional multiaxial loading paths;multiaxial ratchetting presents strong path dependence,and axial ratchetting strains are larger under nonproportional loading paths than under uniaxial and proportional45°linear loading paths;multiaxial ratchetting becomes increasingly pronounced as the applied stress amplitude and axial mean stress increase.Moreover,stress-strain curves show a convex and symmetrical shape in axial/torsional directions.Multiaxial ratchetting exhibits quasi-shakedown after certain loading cycles.The abundant experimental data obtained in this work can be used to develop a cyclic plasticity model of cast Mg alloys. 展开更多
关键词 cast magnesium alloy RATCHETTING multiaxial loading loading path stress level
在线阅读 下载PDF
Multiaxial fatigue life prediction of composite laminates 被引量:1
2
作者 Jingmeng WENG Tong MENG +1 位作者 Weidong WEN Shaodong WENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第12期227-237,共11页
A study of composite laminates under tension–torsion biaxial loading is presented.The focus is placed on fatigue lives of composite laminates under different tension–torsion biaxial fatigue loading paths.A macro-mes... A study of composite laminates under tension–torsion biaxial loading is presented.The focus is placed on fatigue lives of composite laminates under different tension–torsion biaxial fatigue loading paths.A macro-meso model used to predict multiaxial fatigue life of composite laminates is also presented in this paper.Firstly,a macro-scale 3 D RVE corresponding to composite laminates is established to determine strain components in the material principal direction of each layer for each biaxial stress ratio.Secondly,a meso-scale 3 D RVE corresponding to each layer with fibers distributed randomly is established,with progressive damage prediction method,biaxial strength of composite laminates can be predicted,and the final failure layer can be confirmed.Thirdly,select any one of fatigue loading path at which the final failure of composite laminates is fiber failure(matrix failure)to establish the reference curve for fiber(matrix).Finally,with reference curve,fatigue life of composite laminates under any biaxial loading path can be predicted.And numerical results show good agreements with experimental data. 展开更多
关键词 Composite laminates Fatigue damage parameter Life prediction multiaxial fatigue multiaxial strength
原文传递
LIFE PREDICTION APPROACH FOR RANDOM MULTIAXIAL FATIGUE 被引量:7
3
作者 WangLei WangDejun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第1期145-148,共4页
According to the concept of critical plane, a life prediction approach forrandom multiaxial fatigue is presented. First, the critical plane under the multiaxial randomloading is determined based on the concept of the ... According to the concept of critical plane, a life prediction approach forrandom multiaxial fatigue is presented. First, the critical plane under the multiaxial randomloading is determined based on the concept of the weight-averaged maximum shear strain direction.Then the shear and normal strain histories on the determined critical plane are calculated and takenas the subject of multiaxial load simplifying and multiaxial cycle counting. Furthermore, amultiaxial fatigue life prediction model including the parameters resulted from multiaxial cyclecounting is presented and applied to calculating the fatigue damage generated from each cycle.Finally, the cumulative damage is added up using Miner's linear rule, and the fatigue predictionlife is given. The experiments under multiaxial loading blocks are used for the verification of theproposed method. The prediction has a good correction with the experimental results. 展开更多
关键词 multiaxial fatigue Random loading Life prediction Critical plane Cyclecounting
在线阅读 下载PDF
STRENGTH CRITERION FOR PLAIN CONCRETE UNDER MULTIAXIAL STRESS BASED ON DAMAGE POISSON’S RATIO 被引量:7
4
作者 Ding Faxing Yu Zhiwu 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第4期307-315,共9页
A new unified strength criterion in the principal stress space has been proposed for use with normal strength concrete (NC) and high strength concrete (HSC) in compressioncompression-tension, compression-tension-t... A new unified strength criterion in the principal stress space has been proposed for use with normal strength concrete (NC) and high strength concrete (HSC) in compressioncompression-tension, compression-tension-tension, triaxial tension, and biaxial stress states. The study covers concrete with strengths ranging from 20 to 130 MPa. The conception of damage Poisson's ratio is defined and the expression for damage Poisson's ratio is determined basically. The failure mechanism of concrete is illustrated, which points out that damage Poisson's ratio is the key to determining the failure of concrete. Furthermore, for the concrete under biaxial stress conditions, the unified strength criterion is simplified and a simplified strength criterion in the form of curves is also proposed. The strength criterion is physically meaningful and easy to calculate, which can be applied to analytic solution and numerical solution of concrete structures. 展开更多
关键词 plain concrete high strength concrete multiaxial stress strength criterion MERIDIAN deviatoric plan
在线阅读 下载PDF
Multiaxial fatigue life prediction of composite materials 被引量:7
5
作者 Jingmeng WENG Weidong WEN Hongjian ZHANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期1012-1020,共9页
In order to analyze the stress and strain fields in the fibers and the matrix in composite materials,a fiber-scale unit cell model is established and the corresponding periodical boundary conditions are introduced.Ass... In order to analyze the stress and strain fields in the fibers and the matrix in composite materials,a fiber-scale unit cell model is established and the corresponding periodical boundary conditions are introduced.Assuming matrix cracking as the failure mode of composite materials,an energy-based fatigue damage parameter and a multiaxial fatigue life prediction method are established.This method only needs the material properties of the fibers and the matrix to be known.After the relationship between the fatigue damage parameter and the fatigue life under any arbitrary test condition is established,the multiaxial fatigue life under any other load condition can be predicted.The proposed method has been verified using two different kinds of load forms.One is unidirectional laminates subjected to cyclic off-axis loading,and the other is filament wound composites subjected to cyclic tension-torsion loading.The fatigue lives predicted using the proposed model are in good agreements with the experimental results for both kinds of load forms. 展开更多
关键词 Fatigue damage parameter Finite element analysis Life prediction multiaxial fatigue Periodical boundary condition
原文传递
VISCO-PLASTIC CONSTITUTIVE MODEL FOR UNIAXIAL AND MULTIAXIAL RATCHETING AT ELEVATED TEMPERATURES 被引量:4
6
作者 G.Z.Kang Q.Gao J.Zhang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期431-436,共6页
Based on the experimental results of the ratcheting for SS304 stainless steel, a new visco-plastic cyclic constitutive model was established to describe the uniaxial and multiaxial ratcheting of the material at room a... Based on the experimental results of the ratcheting for SS304 stainless steel, a new visco-plastic cyclic constitutive model was established to describe the uniaxial and multiaxial ratcheting of the material at room and elevated temperatures within the framework of unified visco-plasticity. In the model, the temperature dependence of the ratcheting was emphasized, and the dynamic strain aging occurred in the temperature range of 4 00-600℃ for the material was taken into account particularly. Finally, the prediction capability of the developed model was checked by comparing to the corresponding experimental results. 展开更多
关键词 constitutive model RATCHETING elevated temperature multiaxial loading
在线阅读 下载PDF
A Two-point Method for Multiaxial Fatigue Life Prediction 被引量:4
7
作者 Jianhui Liu Xuemei Pan +1 位作者 Youtang Li Xiaochuang Chen 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第2期316-327,共12页
Fatigue fracture is one of the most common failure modes of engineering compo-nents,and the combined action of geometrie discontinuity and multiaxial loading is more likely to cause severe fatigue damage of components... Fatigue fracture is one of the most common failure modes of engineering compo-nents,and the combined action of geometrie discontinuity and multiaxial loading is more likely to cause severe fatigue damage of components.This work focuses on the fatigue behavior of U-notched Q345 steel specimens with differen t notch sizes under proportional cyclic tension-torsion.Firstly,based on the concept of strain energy,the calculation method of critical plane is given and the equivalent stress of the specified path on the critical plane is extracted to char-acterize the equivalent stress distribution state and the stress gradient effect.Then,based on the high stress volume method and theory of critical distance,a simple method for determining the critical distance is given considering the contribution of stress at the dangerous point and the critical point.In addition,based on the idea of stress-distance normalization,a new stress gradient impact factor is defined and a new method for predicting the multiaxial fatigue life of notched specimens is given.The prediction results of the proposed model,the local stress-strain method and the point method of theory of critical distance are compared with the experimental results.The comparisons show that the prediction results of the proposed model are closer to experimentai life,and the calculation accuracy is higher. 展开更多
关键词 multiaxial fatigue Stress gradient Life prediction Critical distance method Local stress-strain method
原文传递
MULTIAXIAL CREEP-FATIGUE LIFE EVALUATION UNDER PROPORTIONAL LOADING 被引量:3
8
作者 Y.Noguchi M.Miyahara 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期355-360,共6页
A new method was proposed for the multiaxial creep-fatigue life evaluation under proportional loadings. Because this method was derived from the strain range partitioning method with a multiaxiality factor, it was pos... A new method was proposed for the multiaxial creep-fatigue life evaluation under proportional loadings. Because this method was derived from the strain range partitioning method with a multiaxiality factor, it was possible to consider the influence of both creep-fatigue interaction and multiaxial stress state on fatigue life. In order to predict the combined axial-torsional fatigue life the damage under combined loading was defined as linear summation of the damages under axial loading and torsional loading. Axial-torsional creep-fatigue tests were carried out using tubular specimens of 316LC austenitic stainless steel and the ferritic rotor steel. This rotor steel was developed for the permanent magnet type eddy current retarder in heavy trucks. Experimentally obtained lives of both steels were well corresponded with the lives predicted by the proposed method. It was found that the proposed method was effective in multiaxial fatigue life evaluation under proportional creep-fatigue loadings. 展开更多
关键词 multiaxial fatigue CREEP-FATIGUE proportional loading life evaluation
在线阅读 下载PDF
Mechanical properties and microstructural evolution of ultrafine grained zircaloy-4 processed through multiaxial forging at cryogenic temperature 被引量:2
9
作者 D.FULORIA S.GOEL +3 位作者 R.JAYAGANTHAN D.SRIVASTAVA G.K.DEY N.SAIBABA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2221-2229,共9页
The mechanical properties and microstructural evolution of zircaloy-4 subjected to cumulative strains of 1.48,2.96,4.44 and 5.91 through multiaxial forging(MAF) at cryogenic temperature(77 K) were investigated.The... The mechanical properties and microstructural evolution of zircaloy-4 subjected to cumulative strains of 1.48,2.96,4.44 and 5.91 through multiaxial forging(MAF) at cryogenic temperature(77 K) were investigated.The mechanical properties of the MAF treated alloy were measured through universal tensile testing and Vickers hardness testing equipment.The zircaloy-4 deformed up to a cumulative strain of 5.91 showed improvement in both ultimate tensile strength and hardness from 474 MPa to 717 MPa and from HV 190 to HV 238,respectively,as compared with the as-received alloy.However,there was a noticeable decrement in ductility(from 18%to 3.5%) due to the low strain hardening ability of deformed zircaloy-4.The improvement in strength and hardness of the deformed alloy is attributed to the grain size effect and higher dislocation density generated during multiaxial forging.The microstructural evolutions of deformed samples were characterized by optical microscopy and transmission electron microscopy(TEM).The evolved microstructure at a cumulative strain of 5.91 obtained after MAF up to 12 cycles depicted the formation of ultrafine grains with an average size of 150-250 nm. 展开更多
关键词 ZIRCALOY-4 multiaxial forging cryogenic temperature ultrafine-grain microstructural evolution mechanical properties
在线阅读 下载PDF
Fatigue Property of Additively Manufactured Ti-6Al-4V under Nonproportional Multiaxial Loading 被引量:2
10
作者 Yuya Kimura Fumio Ogawa Takamoto Itoh 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第6期76-84,共9页
The low cycle fatigue strength properties of the additively manufactured Ti-6Al-4V alloy are experimentally investi-gated under proportional and nonproportional multiaxial loading.The fatigue tests were conducted usin... The low cycle fatigue strength properties of the additively manufactured Ti-6Al-4V alloy are experimentally investi-gated under proportional and nonproportional multiaxial loading.The fatigue tests were conducted using hollow cylinder specimens with and without heat treatments,at room temperature in air.Two fatigue tests were conducted:one for proportional loading and one for nonproportional loading.The proportional loading was represented by a push-pull strain path(PP)and the nonproportional loading by a circle strain path(Cl).The failure lives of the additively manufactured specimens were clearly reduced drastically by internal voids and defects.However,the sizes of the defects were measured,and the defects were found not to cause a reduction in fatigue strength above a critical size.The fracture surface was observed using scanning electron microscopy to investigate the fracture mechanisms of the additively manufactured specimens under the two types of strain paths.Different fracture patterns were recognized for each strain paths;however,both showed retention of the crack propagation,despite the presence of numerous defects,probably because of the interaction of the defects.The crack propagation properties of the materials with numerous defects under nonproportional multiaxial loading were clarified to increase the reliability of the additively manufactured components. 展开更多
关键词 Additive manufacturing TI-6AL-4V Low cycle fatigue multiaxial stress Nonproportional loading Internal defect
在线阅读 下载PDF
Experimental Study on Uniaxial and Multiaxial Strain CyclicCharacteristics and Ratcheting of 316L Stainless Steel 被引量:8
11
作者 GuoZheng KANG, Qing GAO, Lixun CAI, Xianjie YANG and Yafang SUN Department of Applied Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第2期219-223,共5页
An experimental study was carried out on the strain cyclic characteristics and ratcheting of 316L stainless steel subjected to uniaxial and multiaxial cyclic loading. The strain cyclic characteristics were researched ... An experimental study was carried out on the strain cyclic characteristics and ratcheting of 316L stainless steel subjected to uniaxial and multiaxial cyclic loading. The strain cyclic characteristics were researched under the strain-controlled uniaxial tension-compression and multiaxial circular paths of loading. The ratcheting tests were conducted for the stress-controlled uniaxial tension-compression and multiaxial circular, rhombic and linear paths of loading with different mean stresses, stress amplitudes and histories. The experiment results show that 316L stainless steel features the cyclic hardening, and its strain cyclic characteristics depend on the strain amplitude and its history apparently. The ratcheting of 316L stainless steel depends greatly on the Values of mean stress, stress amplitude and their histories. In the meantime, the shape of load path and its history also apparently influence the ratcheting. 展开更多
关键词 Experimental Study on Uniaxial and multiaxial Strain CyclicCharacteristics and Ratcheting of 316L Stainless Steel
在线阅读 下载PDF
Review: Energy Methods for Multiaxial Fatigue Life Prediction 被引量:1
12
作者 Zheng Zhong Yingya Lu 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第2期1-9,共9页
Fatigue fracture of materials and structures is one of the most common failure modes in engineering applications.Under multiaxial non proportional loading condition,a large number of materials show non proportional ha... Fatigue fracture of materials and structures is one of the most common failure modes in engineering applications.Under multiaxial non proportional loading condition,a large number of materials show non proportional hardening characteristics,which results in a significant reduction of fatigue life.In this paper,a review on energy methods for multiaxial fatigue life prediction has been carried out.The energy methods are divided into three categories:energy based models without considering the loading path effect,energy based models combined with the critical plane method,and energy based models considering the loading path effect.Among these categories,energy based models considering the loading path effect are introduced in detail since they involve the non proportional hardening effect in multiaxial fatigue. 展开更多
关键词 multiaxial FATIGUE LIFE prediction PLASTIC WORK non proportional FACTOR
在线阅读 下载PDF
Effect of multiaxial deformation on structure, mechanical properties, and corrosion resistance of a Mg-Ca alloy 被引量:1
13
作者 N.Yu.Yurchenko N.D.Stepanov +7 位作者 G.A.Salishchev V.N.Serebryany N.S.Martynenko E.A.Lukyanova L.L.Rokhlin N.Birbilis S.V.Dobatkin Y.Z.Estrin 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第1期284-298,共15页
This article provides a report on the effect of multiaxial deformation(MAD) on the structure, texture, mechanical characteristics, and corrosion resistance of the Mg-0.8(wt.)% Ca alloy. MAD was carried out on the allo... This article provides a report on the effect of multiaxial deformation(MAD) on the structure, texture, mechanical characteristics, and corrosion resistance of the Mg-0.8(wt.)% Ca alloy. MAD was carried out on the alloy in the as-cast and the annealed states in multiple passes, with a stepwise decrease in the deformation temperature from 450 to 250 ℃ in 50 ℃ steps. The cumulative true strain at the end of the process was 22.5. In the case of the as-cast alloy, this resulted in a refined microstructure characterized by an average grain size of 2.7 μm and a fraction of high-angle boundaries(HABs) of 57.6%. The corresponding values for the annealed alloy were 2.1 μm and 68.2%. The predominant mechanism of structure formation was associated with discontinuous and continuous dynamic recrystallization acting in concert. MAD was also shown to lead to the formation of a rather sharp prismatic texture in the as-cast alloy, whilst in the case of the annealed one the texture was weakened. A displacement of the basal poles {00.4} from the periphery to the center of a pole figure was observed. These changes in the microstructure and texture gave rise to a significant improvement of the mechanical characteristics of the alloy. This included an increase of the ultimate tensile strength reaching 308 MPa for annealed material and 264 MPa for the as-cast one in conjunction with a twofold increase in ductility. A further important result of the MAD processing was a reduction of the rate of electrochemical corrosion, as indicated by a significant decrease in the corrosion current density in both microstructural states of the alloy studied. 展开更多
关键词 Metals and alloys multiaxial deformation MICROSTRUCTURE RECRYSTALLIZATION Mechanical properties CORROSION
在线阅读 下载PDF
Multiaxial fatigue life prediction of kiln roller under axis line deflection 被引量:1
14
作者 沈意平 王送来 +1 位作者 李学军 B.S.DHILLON 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第2期205-214,共10页
This paper investigates the multiaxial fatigue life of the roller in rolling contact with wheels with respect to axis line deflection. The multiaxial fatigue criteria proposed by Wang and Brown, together with the raln... This paper investigates the multiaxial fatigue life of the roller in rolling contact with wheels with respect to axis line deflection. The multiaxial fatigue criteria proposed by Wang and Brown, together with the ralnflow counting method and Miner- Palmgren's rule, are applied to the cumulative damage estimation and life prediction. As the axis line deflection of overlong kilns generally results in asymmetric load distribution on each roller, the load ratio is introduced to describe the deflection for quantitative stress analyses. The stress analyses are performed within the finite element code ANSYS. The tangential friction stress is calculated in terms :of the condition of the rolling contact area. By taking one roller as an example, the plotted fatigue life versus load ratio curve discovers how the axis line deflection affects the fatigue life. This study is significant to prevent the fatigue failure of the roller and can provide basis to adjust and optimize the axis line of the rotary kiln. 展开更多
关键词 multiaxial fatigue fatigue life axis. line deflection rolling contact
在线阅读 下载PDF
Computational Multiaxial Fatigue Modelling for Notched Components 被引量:2
15
作者 Ayhan Ince 《Modeling and Numerical Simulation of Material Science》 2013年第3期14-22,共9页
Fatigue failures of driveline and suspension notched components for ground vehicles under multiaxial loading conditions are common, since most of those components are subjected to complex multiaxial loadings in servic... Fatigue failures of driveline and suspension notched components for ground vehicles under multiaxial loading conditions are common, since most of those components are subjected to complex multiaxial loadings in service. A computational fatigue analysis methodology has been proposed here for performing multiaxial fatigue life prediction for notched components using analytical and numerical methods. The proposed multiaxial fatigue analysis methodology consists of an elastic-plastic stress/strain model and a multiaxial fatigue damage parameter. Results of the proposed multiaxial fatigue analysis methodology are compared to sets of experimental data published in the literature to verify the prediction capability of the elastic-plastic stress/strain model and the multiaxial fatigue damage parameter. Based on the comparison between calculated results and experimental data, it is found that the multiaxial elastic-plastic stress/strain model correlates well with experimental strain data for SAE 1070 steel notched shafts subjected to several non-proportional load paths. In addition, the proposed fatigue damage parameter is found to correlate reasonably well with experimental fatigue data of SAE 1045 steel notched shafts subjected to proportional and non-proportional loadings. 展开更多
关键词 multiaxial FATIGUE Life FATIGUE Damage Parameter Critical PLANE STRESS-STRAIN ANALYSIS NOTCH ANALYSIS
暂未订购
A Geometric Model of Multiaxial Warp-knitted Preform for Composite Reinforcement 被引量:1
16
作者 周荣星 李炜 +1 位作者 陈南梁 冯勋伟 《Journal of Donghua University(English Edition)》 EI CAS 2003年第1期8-14,共7页
A new geometric model of Multiaxial Warp-Knitted (MWK) performs, which is based on the experimental observations and analysis of basic stitch, is developed to relate the geometric parameters and process variables. The... A new geometric model of Multiaxial Warp-Knitted (MWK) performs, which is based on the experimental observations and analysis of basic stitch, is developed to relate the geometric parameters and process variables. The fiber volume fraction and fibre orientation of MWK reinforced composites are described in terms of structural and processing parameters in the model. And this model provides a basis for the prediction of mechanical behavior of the MWK reinforced composites. 展开更多
关键词 multiaxial Warp-Knitted (MWK) preforms geometric model basic stitch double loop pillar stitch.
在线阅读 下载PDF
Strength Regularity and Failure Criterion of High-Strength High-Performance Concrete under Multiaxial Compression 被引量:1
17
作者 何振军 宋玉普 《Journal of Southwest Jiaotong University(English Edition)》 2008年第2期144-149,共6页
Multiaxial compression tests were performed on 100 mm×100 mm×100 mm high-strength high-performance concrete (HSI-IPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were p... Multiaxial compression tests were performed on 100 mm×100 mm×100 mm high-strength high-performance concrete (HSI-IPC) cubes and normal strength concrete (NSC) cubes. The failure modes of specimens were presented, the static compressive strengths in principal directions were measured, the influence of the stress ratios was analyzed. The experimental results show that the ultimate strengths for HSHPC and NSC under multiaxial compression are greater than the uniaxial compressive strengths at all stress ratios, and the multiaxial strength is dependent on the brittleness and stiffness of concrete, the stress state and the stress ratios. In addition, the Kupfer-Gersfle and Ottosen's failure criteria for plain HSHPC and NSC under multiaxial compressive loading were modified. 展开更多
关键词 High-strength high-performance concrete (HSHPC) Normal strength concrete (NSC) Stress ratio multiaxial corn- pressive slxength Failure criterion
在线阅读 下载PDF
Multiaxial Fatigue Analysis on Reeled Deepwater Steel Catenary Risers with Girth Weld Defects 被引量:1
18
作者 杨和振 丁金鸿 +1 位作者 李清泉 李华军 《China Ocean Engineering》 SCIE EI CSCD 2014年第6期857-868,共12页
In the present study, we simulated the reel-lay installation process of deepwater steel catenary risers(SCRs) using the finite element method and proposed multiaxial fatigue analysis for reeled SCRs. The reel-lay me... In the present study, we simulated the reel-lay installation process of deepwater steel catenary risers(SCRs) using the finite element method and proposed multiaxial fatigue analysis for reeled SCRs. The reel-lay method is one of the most efficient and economical pipeline installation methods. However, material properties of reeled risers may change, especially in the weld zone, which can affect the fatigue performance. Applying finite element analysis(FEA), we simulated an installation load history through the reel, aligner, and straightener and analyzed the property variations. The impact of weld defects during the installation process, lack of penetration and lack of fusion, was also discussed. Based on the FEA results, we used the Brown-Miller criterion combined with the critical plane approach to predict the fatigue life of reeled and non-reeled models. The results indicated that a weld defect has a significant influence on the material properties of a riser, and the reel-lay method can significantly reduce the fatigue life of SCRs. The analysis conclusion can help designers understand the mechanical performance of welds during reel-lay installation. 展开更多
关键词 steel catenary riser deepwater reel-lay weld defect multiaxial fatigue installation pipeline
在线阅读 下载PDF
Investigation on the Anisotropic Transformation Surfaces of Super-Elastic NiTi Shape Memory Alloys Under Multiaxial Cyclic Loading Conditions
19
作者 Bo Qiu Qianhua Kan +2 位作者 Tianxing Zhao Xi Xie Guozheng Kang 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2018年第6期744-757,共14页
The cyclic transformation behaviors of polycrystalline super-elastic NiTi shape memory alloys (SMAs)under multiaxial loading paths with different angles between axial and torsional loading orientations were experiment... The cyclic transformation behaviors of polycrystalline super-elastic NiTi shape memory alloys (SMAs)under multiaxial loading paths with different angles between axial and torsional loading orientations were experimentally investigated.The experimental results showed that the start stresses of forward and reverse transformations decreased with the increase'in the number of cycles and exhibit obvious anisotropic evolutions.The start stresses of forward and reverse transformations in the tensile and torsional directions did not satisfy the yon Mises criterion.The shape of transformation surface during the forward and reverse transformations evolved with the increase in the number of cycles.Then,new cyclic anisotropic transformation surfaces were established by introducing an anisotropic tensor into the von Mises equivalent stress based on a typical transformation criterion related to J2 and J3.Moreover,the evolution equations of material parameters used in the proposed transformation surfaces were established to describe the subsequent evolutions of transformation surfaces.Finally,the start stresses of forward and reverse transformations predicted using the proposed transformation surfaces were compared with the experimental results.It shows that the proposed transformation surfaces can reasonably describe the start stresses of forward and reverse transformations,which are helpful for establishing a three-dimensional cyclic constitutive model to describe the cyclic transformation behaviors of super-elastic NiTi SMAs. 展开更多
关键词 Shape memory alloy ANISOTROPIC response TRANSFORMATION surface Stress invari- ANT multiaxial CYCLIC loading
原文传递
Enantiomeric hybrid high-temperature multiaxial ferroelectrics with a narrow bandgap and high piezoelectricity
20
作者 Chang-Feng Wang Na Wang +4 位作者 Lang Liu Le-Ping Miao Heng-Yun Ye Yi Zhang Chao Shi 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第8期462-466,共5页
Ferroelectric semiconductors have sparked growing attention in the field of optoelectronics,due to their unique ferroelectric photovoltaic effect.Recently,substantial efforts have been devoted to the development of fe... Ferroelectric semiconductors have sparked growing attention in the field of optoelectronics,due to their unique ferroelectric photovoltaic effect.Recently,substantial efforts have been devoted to the development of ferroelectric semiconductors,including inorganic oxides,organic-inorganic hybrids,and metal-free perovskites.Nevertheless,reports of ferroelectric semiconductors with a bandgap of less than 2 eV have been scarce.Here,in combination with the incorporation of triiodide(I_(3)−)and the introduction of chiral cations,we successfully constructed a pair of enantiomeric organic-inorganic hybrid ferroelectric semiconductors,(S-1,2-DAP·I)_(4)·I_(3)·BiI_(6)and(R-1,2-DAP·I)_(4)·I_(3)·BiI_(6)(R/S-1,2-DAP=(R/S)-(–)-1,2-diaminopropane),which possess high-temperature multiaxial ferroelectric phase transition with an Aizu notation of 422F2(s)at 405 K,a narrow bandgap of 1.56 eV comparable to that of CH3NH3PbI_(3)(∼1.5 eV),and an impressive piezoelectric response(piezoelectric coefficient,d22 of 35 pC/N)on par with PVDF(polyvinylidene fluoride,30 pC/N).With intriguing attributes,(S-1,2-DAP·I)_(4)·I_(3)·BiI_(6)and(R-1,2-DAP·I)_(4)·I_(3)·BiI_(6)exhibit great potential for application of self-power polarized-light detection and piezoelectric sensors. 展开更多
关键词 CHIRALITY Hybrid materials multiaxial ferroelectrics SEMICONDUCTORS PIEZOELECTRICITY
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部