期刊文献+
共找到1,318篇文章
< 1 2 66 >
每页显示 20 50 100
Multi-strategy improved red-billed blue magpie optimizer for Kapur multi-threshold image segmentation
1
作者 WU Jin XIONG Hao +1 位作者 LUO Wenxuan GUO Linlin 《High Technology Letters》 2025年第4期365-372,共8页
Multi-threshold image segmentation techniques based on intelligent optimization algorithms show great potential in low-cost,real-time applications.These methods are efficient even with limited computational resources.... Multi-threshold image segmentation techniques based on intelligent optimization algorithms show great potential in low-cost,real-time applications.These methods are efficient even with limited computational resources.This paper proposes a multi-strategy improved red-billed blue magpie optimizer(MIRBMO)for Kapur multi-threshold image segmentation,aiming to enhance segmentation quality.First,Sobol sequences with elite reverse learning are used to optimize the distribution of the initial population,accelerating the optimization process.Second,lens imaging reverse learning is introduced to help the algorithm escape local optima.Finally,the golden sine strategy is adopted to increase the search space diversity and explore potential optimal solutions.The algorithm’s performance is evaluated using the 8 classic benchmark test functions,and results show that MIRBMO outperforms red-billed blue magpie optimizer(RBMO)in optimization capability and demonstrates clear advantages over other intelligent optimization algorithms.When applied to Kapur multi-threshold segmentation,MIRBMO yields a threshold combination with higher entropy values and produces segmented images with superior peak signal-to-noise ratio(PSNR),structural similarity index measure(SSIM),and feature similarity index measure(FSIM)values,indicating its strong application potential. 展开更多
关键词 red-billed blue magpie optimizer image segmentation multi-threshold Kapur maximum entropy
在线阅读 下载PDF
Pattern-Moving-Based Parameter Identification of Output Error Models with Multi-Threshold Quantized Observations 被引量:2
2
作者 Xiangquan Li Zhengguang Xu +1 位作者 Cheng Han Ning Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1807-1825,共19页
This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm(M-AM-SGRPIA)for a class of single input single output(SISO)linear output error models with multi-thresho... This paper addresses a modified auxiliary model stochastic gradient recursive parameter identification algorithm(M-AM-SGRPIA)for a class of single input single output(SISO)linear output error models with multi-threshold quantized observations.It proves the convergence of the designed algorithm.A pattern-moving-based system dynamics description method with hybrid metrics is proposed for a kind of practical single input multiple output(SIMO)or SISO nonlinear systems,and a SISO linear output error model with multi-threshold quantized observations is adopted to approximate the unknown system.The system input design is accomplished using the measurement technology of random repeatability test,and the probabilistic characteristic of the explicit metric value is employed to estimate the implicit metric value of the pattern class variable.A modified auxiliary model stochastic gradient recursive algorithm(M-AM-SGRA)is designed to identify the model parameters,and the contraction mapping principle proves its convergence.Two numerical examples are given to demonstrate the feasibility and effectiveness of the achieved identification algorithm. 展开更多
关键词 Pattern moving multi-threshold quantized observations output error model auxiliary model parameter identification
在线阅读 下载PDF
Two-dimensional cross entropy multi-threshold image segmentation based on improved BBO algorithm 被引量:2
3
作者 LI Wei HU Xiao-hui WANG Hong-chuang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期42-49,共8页
In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.Whe... In order to improve the global search ability of biogeography-based optimization(BBO)algorithm in multi-threshold image segmentation,a multi-threshold image segmentation based on improved BBO algorithm is proposed.When using BBO algorithm to optimize threshold,firstly,the elitist selection operator is used to retain the optimal set of solutions.Secondly,a migration strategy based on fusion of good solution and pending solution is introduced to reduce premature convergence and invalid migration of traditional migration operations.Thirdly,to reduce the blindness of traditional mutation operations,a mutation operation through binary computation is created.Then,it is applied to the multi-threshold image segmentation of two-dimensional cross entropy.Finally,this method is used to segment the typical image and compared with two-dimensional multi-threshold segmentation based on particle swarm optimization algorithm and the two-dimensional multi-threshold image segmentation based on standard BBO algorithm.The experimental results show that the method has good convergence stability,it can effectively shorten the time of iteration,and the optimization performance is better than the standard BBO algorithm. 展开更多
关键词 two-dimensional cross entropy biogeography-based optimization(BBO)algorithm multi-threshold image segmentation
在线阅读 下载PDF
Multi-dimensional and Multi-threshold Airframe Damage Region Division Method Based on Correlation Optimization
4
作者 CAI Shuyu SHI Tao SHI Lizhong 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2021年第5期788-799,共12页
In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlatio... In order to obtain the image of airframe damage region and provide the input data for aircraft intelligent maintenance,a multi-dimensional and multi-threshold airframe damage region division method based on correlation optimization is proposed.On the basis of airframe damage feature analysis,the multi-dimensional feature entropy is defined to realize the full fusion of multiple feature information of the image,and the division method is extended to multi-threshold to refine the damage division and reduce the impact of the damage adjacent region’s morphological changes on the division.Through the correlation parameter optimization algorithm,the problem of low efficiency of multi-dimensional multi-threshold division method is solved.Finally,the proposed method is compared and verified by instances of airframe damage image.The results show that compared with the traditional threshold division method,the damage region divided by the proposed method is complete and accurate,and the boundary is clear and coherent,which can effectively reduce the interference of many factors such as uneven luminance,chromaticity deviation,dirt attachment,image compression,and so on.The correlation optimization algorithm has high efficiency and stable convergence,and can meet the requirements of aircraft intelligent maintenance. 展开更多
关键词 airframe damage region division multi-dimensional feature entropy multi-threshold correlation optimization aircraft intelligent maintenance
在线阅读 下载PDF
A Steganography Based on Optimal Multi-Threshold Block Labeling
5
作者 Shuying Xu Chin-Chen Chang Ji-Hwei Horng 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期721-739,共19页
Hiding secret data in digital images is one of the major researchfields in information security.Recently,reversible data hiding in encrypted images has attracted extensive attention due to the emergence of cloud servi... Hiding secret data in digital images is one of the major researchfields in information security.Recently,reversible data hiding in encrypted images has attracted extensive attention due to the emergence of cloud services.This paper proposes a novel reversible data hiding method in encrypted images based on an optimal multi-threshold block labeling technique(OMTBL-RDHEI).In our scheme,the content owner encrypts the cover image with block permutation,pixel permutation,and stream cipher,which preserve the in-block correlation of pixel values.After uploading to the cloud service,the data hider applies the prediction error rearrangement(PER),the optimal threshold selection(OTS),and the multi-threshold labeling(MTL)methods to obtain a compressed version of the encrypted image and embed secret data into the vacated room.The receiver can extract the secret,restore the cover image,or do both according to his/her granted authority.The proposed MTL labels blocks of the encrypted image with a list of threshold values which is optimized with OTS based on the features of the current image.Experimental results show that labeling image blocks with the optimized threshold list can efficiently enlarge the amount of vacated room and thus improve the embedding capacity of an encrypted cover image.Security level of the proposed scheme is analyzed and the embedding capacity is compared with state-of-the-art schemes.Both are concluded with satisfactory performance. 展开更多
关键词 Reversible data hiding encryption image prediction error compression multi-threshold block labeling
在线阅读 下载PDF
Multi-Threshold Algorithm Based on Havrda and Charvat Entropy for Edge Detection in Satellite Grayscale Images
6
作者 Mohamed A. El-Sayed Hamida A. M. Sennari 《Journal of Software Engineering and Applications》 2014年第1期42-52,共11页
Automatic edge detection of an image is considered a type of crucial information that can be extracted by applying detectors with different techniques. It is a main tool in pattern recognition, image segmentation, and... Automatic edge detection of an image is considered a type of crucial information that can be extracted by applying detectors with different techniques. It is a main tool in pattern recognition, image segmentation, and scene analysis. This paper introduces an edge-detection algorithm, which generates multi-threshold values. It is based on non-Shannon measures such as Havrda & Charvat’s entropy, which is commonly used in gray level image analysis in many types of images such as satellite grayscale images. The proposed edge detection performance is compared to the previous classic methods, such as Roberts, Prewitt, and Sobel methods. Numerical results underline the robustness of the presented approach and different applications are shown. 展开更多
关键词 multi-threshold EDGE Detection MEASURE ENTROPY Havrda & Charvat’s ENTROPY
在线阅读 下载PDF
Research on Kapur multi-threshold image segmentation based on improved sparrow search algorithm
7
作者 Wu Jin Feng Haoran +1 位作者 Chong Gege Xiong Hao 《The Journal of China Universities of Posts and Telecommunications》 2025年第2期31-43,共13页
Multilevel threshold image segmentation divides an image into several regions with distinct characteristics.While effective,its computational complexity increases exponentially with the number of thresholds,highlighti... Multilevel threshold image segmentation divides an image into several regions with distinct characteristics.While effective,its computational complexity increases exponentially with the number of thresholds,highlighting the need for more efficient and stable methods.An improved sparrow search algorithm(ISSA)that combines multiple strategies to address the dependency on the initial population and solution accuracy issues in the basic sparrow search algorithm(SSA)was proposed in this paper.ISSA leverages circle chaotic mapping to enhance population diversity,a tangent flight operator to improve search diversity,and a triangular random walk to perturb the optimal solution,thereby enhancing global search capability and avoiding local optima.Performance evaluations on 16 benchmark functions demonstrate that ISSA surpasses the gray wolf optimizer(GWO),whale optimization algorithm(WOA),rat swarm optimizer(RSO),moth-flame optimization(MFO),and SSA in terms of search speed,accuracy,and robustness.When applied to multilevel threshold image segmentation,ISSA excels in Kapur's maximum entropy,peak signal-to-noise ratio(PSNR),structural similarity(SSIM),and feature similarity(FSIM),highlighting its significant research value and application potential in the field of image segmentation. 展开更多
关键词 image segmentation sparrow search algorithm(SSA) multi-threshold Kapur's maximum entropy
原文传递
基于激光测距的深松作业检测技术
8
作者 侯云涛 吴泽全 +4 位作者 蔡晓华 东忠阁 程睿 李源源 祝天宇 《农机化研究》 北大核心 2026年第4期110-117,共8页
针对激光测距技术在深松作业检测中的应用进行深入研究,提出了一种自适应多门限值误差拟合方法。算法通过自适应调整多个门限值,动态寻找激光飞行时间误差最佳拟合校正方案,能够有效克服回波信号上升沿鉴别时刻因干扰脉冲产生的误差。... 针对激光测距技术在深松作业检测中的应用进行深入研究,提出了一种自适应多门限值误差拟合方法。算法通过自适应调整多个门限值,动态寻找激光飞行时间误差最佳拟合校正方案,能够有效克服回波信号上升沿鉴别时刻因干扰脉冲产生的误差。基于此方法,研发了一款智能化深松作业检测设备,其能够自主进行耕层断面数据的采集和保存,提高数据采集和处理的效率。同时,开展了测距试验,具体方法为:将SICK DL100-22AA2101激光测距仪的测距值作为标准距离,试验距离为1~4 m,取1 m作为步长,基于所研发设备,采用本文方法与双门限值时刻鉴别方法分别对同一距离进行5次测量作为实测距离,比较实测距离的标准差,以及实测距离均值与对应标准距离的误差。采用本文研发设备和人工方式分别对土壤膨松度和扰动系数进行检测,设备检测结果为土壤蓬松度27.0%、土壤扰动系数22.3%,人工方式检测结果为土壤蓬松度27.1%、土壤扰动系数22.7%。试验证明:研发设备在显著提高测量效率的前提下,得到的测量结果与传统人工测量方式几乎没有差异,具有较高的实用性和可靠性。 展开更多
关键词 深松作业检测 激光测距 自适应多门限值误差拟合算法
在线阅读 下载PDF
考虑决策惯性的城市轨道交通多交路出行选择模型
9
作者 巩亮 朱欣雨 +2 位作者 许得杰 胡晨皓 杨阳阳 《深圳大学学报(理工版)》 北大核心 2026年第1期47-56,共10页
多交路运营是中国城市轨道交通网络化运营组织的重要组成部分,研究乘客在多交路运营条件下的出行选择行为,对把握乘客出行规律、满足多样化出行需求具有重要意义.基于随机后悔最小化模型,引入乘客对路径属性感知的异质性,构建融合效用... 多交路运营是中国城市轨道交通网络化运营组织的重要组成部分,研究乘客在多交路运营条件下的出行选择行为,对把握乘客出行规律、满足多样化出行需求具有重要意义.基于随机后悔最小化模型,引入乘客对路径属性感知的异质性,构建融合效用与后悔机制的多尺度混合模型,克服了传统模型未考虑路径熟悉度导致的乘客出行行为与实际出行行为之间的决策偏差.通过整合容忍阈值与决策惯性,提出一种多交路出行选择建模方法,基于典型案例的陈述偏好(stated preference,SP)调查数据,完成模型参数估计与性能验证.研究结果表明,乘客对出行时间属性的容忍阈值为6.98 min;相较于基准模型,考虑决策惯性的模型在似然值、贝叶斯信息准则(Bayesian information criterion,BIC)及命中率指标上均表现更优,表明其具备更强的数据拟合能力;支付意愿分析进一步揭示乘客愿意为服务提升承担额外时间成本,从而验证了所提模型的有效性与实用性. 展开更多
关键词 城市轨道交通 路径选择 决策惯性 容忍阈值 多交路 混合效用-后悔模型
在线阅读 下载PDF
Spatiotemporal Variations of Meteorological Droughts in China During 1961–2014: An Investigation Based on Multi-Threshold Identification 被引量:8
10
作者 Jun He Xiaohua Yang +2 位作者 Zhe Li Xuejun Zhang Qiuhong Tang 《International Journal of Disaster Risk Science》 SCIE CSCD 2016年第1期63-76,共14页
As a major agricultural country, China suffers from severe meteorological drought almost every year.Previous studies have applied a single threshold to identify the onset of drought events, which may cause problems to... As a major agricultural country, China suffers from severe meteorological drought almost every year.Previous studies have applied a single threshold to identify the onset of drought events, which may cause problems to adequately characterize long-term patterns of droughts.This study analyzes meteorological droughts in China based on a set of daily gridded(0.5° 9 0.5°) precipitation data from 1961 to 2014. By using a multi-threshold run theory approach to evaluate the monthly percentage of precipitation anomalies index(Pa), a drought events sequence was identified at each grid cell. The spatiotemporal variations of drought in China were further investigated based on statistics of the frequency, duration,severity, and intensity of all drought events. Analysis of the results show that China has five distinct meteorological drought-prone regions: the Huang-Huai-Hai Plain, Northeast China, Southwest China, South China coastal region,and Northwest China. Seasonal analysis further indicates that there are evident spatial variations in the seasonal contribution to regional drought. But overall, most contribution to annual drought events in China come from the winter. Decadal variation analysis suggests that most of China's water resource regions have undergone an increase in drought frequency, especially in the Liaohe, Haihe, and Yellow River basins, although drought duration and severity clearly have decreased after the 1960 s. 展开更多
关键词 China Meteorological drought multi-threshold run theory method Spatiotemporal variations
原文传递
基于Dlib的驾驶员疲劳检测预警系统设计
11
作者 杨磊 郝贞利 +2 位作者 徐子涵 翁俊杰 刘朋燕 《科技创新与应用》 2026年第2期107-110,共4页
该文运用Dlib人脸检测模型与人脸检测模板匹配方法,通过计算EAR、MAR、pitch、yaw和roll参数,采用多阈值判定研究疲驾驶员疲劳状态,并将该算法在Raspberry Pi 5硬件平台实现,搭建疲劳驾驶检测预警系统,最后通过公开数据集验证该系统对... 该文运用Dlib人脸检测模型与人脸检测模板匹配方法,通过计算EAR、MAR、pitch、yaw和roll参数,采用多阈值判定研究疲驾驶员疲劳状态,并将该算法在Raspberry Pi 5硬件平台实现,搭建疲劳驾驶检测预警系统,最后通过公开数据集验证该系统对于驾驶员面部疲劳状态检测及提醒的准确性和良好的系统性能。EAR、MAR、HPE 3种判断准则在公开数据集Drowsiness、YawDD及自制数据集上分别达到95.6%、96%与96%的平均正确率;在面部无遮挡的情况下,该系统实时帧率达到20 FPS,基本可实时对驾驶员疲劳状态作出相应提醒,同时具备较高的准确率。 展开更多
关键词 疲劳驾驶 多阈值判定 Dlib EAR MAR HPE
在线阅读 下载PDF
基于Dlib与YOLO11改进的驾驶员疲劳分心检测及预警系统
12
作者 杨磊 郝贞利 +2 位作者 徐子涵 翁俊杰 刘朋燕 《科技创新与应用》 2026年第1期55-58,共4页
驾驶员在实际驾驶的过程中会存在面部遮挡场景,例如戴眼镜、戴口罩等,传统单一通过提取驾驶员面部特征进行疲劳检测的Dlib算法不再适用。该文结合Dlib与YOLO11使用多阈值判定,对传统Dlib疲劳检测算法进行改进,给出戴眼镜、戴口罩等驾驶... 驾驶员在实际驾驶的过程中会存在面部遮挡场景,例如戴眼镜、戴口罩等,传统单一通过提取驾驶员面部特征进行疲劳检测的Dlib算法不再适用。该文结合Dlib与YOLO11使用多阈值判定,对传统Dlib疲劳检测算法进行改进,给出戴眼镜、戴口罩等驾驶员面部遮挡场景的疲劳检测算法,并在Raspberry Pi 5硬件平台,使用公开数据集验证改进算法对于驾驶员疲劳检测的准确性。另外,改进算法还可以对吸烟、打电话等这类分心驾驶行为进行检测和语音提醒,对疲劳和分心行为实现更全面的检测和预警。 展开更多
关键词 疲劳驾驶 Dlib YOLO11 Raspberry Pi 5 多阈值判定
在线阅读 下载PDF
P2混合动力商用车能量管理策略研究
13
作者 郑伟光 李燕青 +1 位作者 李骏 杨昌波 《机械设计与制造》 北大核心 2026年第1期99-104,共6页
介绍了电机辅助控制策略的工作原理,并在此基础上为某款构型为P2并联混合动力汽车设计并改进了一种基于逻辑门限值的整车控制策略,控制策略中逻辑门限值的协调优化是提高整车运行性能的关键。针对现有遗传算法、粒子群算法、模拟退火算... 介绍了电机辅助控制策略的工作原理,并在此基础上为某款构型为P2并联混合动力汽车设计并改进了一种基于逻辑门限值的整车控制策略,控制策略中逻辑门限值的协调优化是提高整车运行性能的关键。针对现有遗传算法、粒子群算法、模拟退火算法运行周期长,且容易陷入局部寻优问题,提出了一种基于多岛遗传算法的控制策略参数优化方法,并在Isight平台上进行集成优化。在中国商用车工况C-WTVC下进行仿真测试,结果表明在保证电池SOC平稳、整车速度跟随的前提下,与电机辅助策略相比,采用多岛遗传算法优化结果在整车油耗、CO_(2)排放量都得到了有效改善。 展开更多
关键词 电机辅助策略 P2混合动力系统 逻辑门限策略 Isight仿真平台 多岛遗传算法
在线阅读 下载PDF
基于计算机视觉算法的零部件缺陷智能检测系统
14
作者 何银银 《汽车电器》 2026年第1期111-113,共3页
随着汽车产业向高端制造转型,现有自动化缺陷检测设备在应对曲面工件、反光材质及复合型缺陷时存在明显不足。为此,本文设计并实现一种融合计算机视觉算法的智能检测系统。成像环节采用多相机阵列协同+景深扩展算法,实现曲面工件全域覆... 随着汽车产业向高端制造转型,现有自动化缺陷检测设备在应对曲面工件、反光材质及复合型缺陷时存在明显不足。为此,本文设计并实现一种融合计算机视觉算法的智能检测系统。成像环节采用多相机阵列协同+景深扩展算法,实现曲面工件全域覆盖;图像处理环节引入色相-饱和度-明度(Hue-Saturation-Value,HSV)颜色空间转换、自适应直方图均衡算法,有效抑制反光与光照不均问题;缺陷检测环节融合深度学习模型与阈值分割算法,实现微小缺陷的精准定位。经测试,该系统对0.2 mm级划痕的检出率达98.7%,气泡与油渍的误判率仅为0.3%;单件检测耗时稳定在420 ms,环境温漂影响控制在3%误差带内。 展开更多
关键词 计算机视觉 缺陷检测 多角度成像系统 阈值分割算法
在线阅读 下载PDF
高效的多阈值图像分割算法
15
作者 龙建武 邹婉婷 《重庆理工大学学报(自然科学)》 北大核心 2025年第9期156-165,共10页
多阈值分割是图像分割中常用的技术之一。然而,现有的多阈值方法随着灰度级和阈值数量增加,导致搜索空间急剧扩大,搜索效率下降,并且需要人为指定阈值数,限制了其应用。为了减少搜索范围,避免无效搜索并实现阈值数自适应选择,将采取提... 多阈值分割是图像分割中常用的技术之一。然而,现有的多阈值方法随着灰度级和阈值数量增加,导致搜索空间急剧扩大,搜索效率下降,并且需要人为指定阈值数,限制了其应用。为了减少搜索范围,避免无效搜索并实现阈值数自适应选择,将采取提高搜索效率和快速全局搜索2个策略,提出了一种高效且自适应的多阈值图像分割算法。利用动态规划算法和分治算法降低搜索的时间复杂度,并将阈值搜索问题转化为查找矩阵最值问题,提高分割实效性。在提升效率的基础上,进行不同阈值数的全局搜索,从而确定全局最佳阈值数。实验表明,该算法在BSDS500数据集上的平均运行时间(0.0112 s)显著优于DP+AMasi、HGJO等方法,且在UM、RI、PSNR和SSIM等指标上均表现优异,有效缓解了多阈值分割的速度与精度矛盾。 展开更多
关键词 图像分割 多阈值分割 矩阵搜索算法 OTSU
在线阅读 下载PDF
自适应多阈值图像分割算法
16
作者 龙建武 李继豪 曾谁飞 《通信学报》 北大核心 2025年第8期241-255,共15页
针对当前大部分多阈值分割方法存在最优阈值组合定位难、阈值增多导致计算复杂度指数增长的问题,提出了一种自适应多阈值图像分割算法。首先,通过双边滤波对直方图进行平滑处理,采用谷底筛选策略有效压缩阈值搜索空间;接着,基于动态规... 针对当前大部分多阈值分割方法存在最优阈值组合定位难、阈值增多导致计算复杂度指数增长的问题,提出了一种自适应多阈值图像分割算法。首先,通过双边滤波对直方图进行平滑处理,采用谷底筛选策略有效压缩阈值搜索空间;接着,基于动态规划算法,将多阈值搜索问题转化为矩阵极值搜索问题,并结合四边形不等式特性,使用分治策略搜索代价矩阵最大值,进一步提高搜索效率;此外,构建基于直方图谷底特征的目标函数,自动确定最佳分割类数,同时将RGB这3个通道直方图各自得到的最佳分割类数进行合并,以获得最佳阈值进而完成彩色图像分割问题;最后,在BSDS500与MSRC数据集上进行系统性实验,验证其在处理不同场景时的有效性与适用性。 展开更多
关键词 多阈值分割 矩阵搜索 动态规划 分治策略
在线阅读 下载PDF
基于多模阈值分割的电视制导图像处理系统设计
17
作者 王月新 刘明君 +2 位作者 贾一剑 古雅荣 郭红英 《电视技术》 2025年第10期14-16,共3页
针对传统电视制导图像处理在复杂背景下存在的识别精度偏低与实时性欠佳问题,聚焦基于多模阈值分割的图像处理系统研究,提出多级自适应阈值选择策略与目标特征融合机制,并通过高效并行处理技术实现系统性能优化。该方案可显著提升电视... 针对传统电视制导图像处理在复杂背景下存在的识别精度偏低与实时性欠佳问题,聚焦基于多模阈值分割的图像处理系统研究,提出多级自适应阈值选择策略与目标特征融合机制,并通过高效并行处理技术实现系统性能优化。该方案可显著提升电视制导图像处理系统在复杂环境下的识别健壮性与实时响应能力,为精确制导技术的持续发展提供坚实的技术支撑与实践参考。 展开更多
关键词 多模阈值分割 电视制导 图像处理
在线阅读 下载PDF
Optimal performance design of bat algorithm:An adaptive multi-stage structure
18
作者 Helong Yu Jiuman Song +4 位作者 Chengcheng Chen Ali Asghar Heidari Yuntao Ma Huiling Chen Yudong Zhang 《CAAI Transactions on Intelligence Technology》 2025年第3期755-814,共60页
The bat algorithm(BA)is a metaheuristic algorithm for global optimisation that simulates the echolocation behaviour of bats with varying pulse rates of emission and loudness,which can be used to find the globally opti... The bat algorithm(BA)is a metaheuristic algorithm for global optimisation that simulates the echolocation behaviour of bats with varying pulse rates of emission and loudness,which can be used to find the globally optimal solutions for various optimisation problems.Knowing the recent criticises of the originality of equations,the principle of BA is concise and easy to implement,and its mathematical structure can be seen as a hybrid particle swarm with simulated annealing.In this research,the authors focus on the performance optimisation of BA as a solver rather than discussing its originality issues.In terms of operation effect,BA has an acceptable convergence speed.However,due to the low proportion of time used to explore the search space,it is easy to converge prematurely and fall into the local optima.The authors propose an adaptive multi-stage bat algorithm(AMSBA).By tuning the algorithm's focus at three different stages of the search process,AMSBA can achieve a better balance between exploration and exploitation and improve its exploration ability by enhancing its performance in escaping local optima as well as maintaining a certain convergence speed.Therefore,AMSBA can achieve solutions with better quality.A convergence analysis was conducted to demonstrate the global convergence of AMSBA.The authors also perform simulation experiments on 30 benchmark functions from IEEE CEC 2017 as the objective functions and compare AMSBA with some original and improved swarm-based algorithms.The results verify the effectiveness and superiority of AMSBA.AMSBA is also compared with eight representative optimisation algorithms on 10 benchmark functions derived from IEEE CEC 2020,while this experiment is carried out on five different dimensions of the objective functions respectively.A balance and diversity analysis was performed on AMSBA to demonstrate its improvement over the original BA in terms of balance.AMSBA was also applied to the multi-threshold image segmentation of Citrus Macular disease,which is a bacterial infection that causes lesions on citrus trees.The segmentation results were analysed by comparing each comparative algorithm's peak signal-to-noise ratio,structural similarity index and feature similarity index.The results show that the proposed BA-based algorithm has apparent advantages,and it can effectively segment the disease spots from citrus leaves when the segmentation threshold is at a low level.Based on a comprehensive study,the authors think the proposed optimiser has mitigated the main drawbacks of the BA,and it can be utilised as an effective optimisation tool. 展开更多
关键词 bat-inspired algorithm Citrus Macular disease global optimization multi-threshold image segmentation Otsu algorithm
在线阅读 下载PDF
基于空中计算CoMAC架构的不同计算场景叠加符号判决算法
19
作者 秦晓卫 周子涵 陈力 《中山大学学报(自然科学版)(中英文)》 CAS 北大核心 2025年第1期61-70,共10页
本文研究不同场景下基于空中计算的多址信道计算(CoMAC)架构的覆盖符号决策算法。首先,从理论上分析了XOR、ADD、MOD三种场景中加性高斯白噪声(AWGN)多址接入信道下叠加符号的概率密度分布,提出了一种基于先验概率的最优门限判决策略。... 本文研究不同场景下基于空中计算的多址信道计算(CoMAC)架构的覆盖符号决策算法。首先,从理论上分析了XOR、ADD、MOD三种场景中加性高斯白噪声(AWGN)多址接入信道下叠加符号的概率密度分布,提出了一种基于先验概率的最优门限判决策略。其次,推导了系统最优门限及对应误码率的理论表达式。最后,通过仿真验证了不同信噪比、传感器节点个数及先验概率对于该门限判决方案的鲁棒性和可靠性的影响。与通信计算相分离的传统方案相比,空中计算判决方案具有更好的检测性能,为多址接入信道下的信号识别提供了新的参考方案。 展开更多
关键词 空中计算 多址接入信道 最优门限判决 检测性能
在线阅读 下载PDF
改进爬行动物搜索算法在多阈值图像分割的应用
20
作者 张小萍 《太原师范学院学报(自然科学版)》 2025年第4期9-17,共9页
爬行动物搜索算法(Reptile Search Algorithm,RSA)存在易陷入局部最优、收敛精度不足、收敛速度慢等问题.针对该问题,提出一个改进爬行动物搜索算法(Improved Reptile Search Algorithm IRSA),并将其应用于多阈值图像分割领域.IRSA采用... 爬行动物搜索算法(Reptile Search Algorithm,RSA)存在易陷入局部最优、收敛精度不足、收敛速度慢等问题.针对该问题,提出一个改进爬行动物搜索算法(Improved Reptile Search Algorithm IRSA),并将其应用于多阈值图像分割领域.IRSA采用拉丁超立方抽样优化种群初始化以增强多样性,引入莱维飞行利用其长步长与随机方向特性有助于跳出局部最优,同时结合正余弦算法的更新策略来平衡全局探索与局部开发.实验选取Berkeley图像库中的3幅图片,将IRSA与其他四个优化算法进行对比.结果表明,IRSA在收敛速度、收敛精度方面优于对比算法,在峰值信噪比(Peak Signal-to-Noise Ratio,PSNR)、结构相似性指数(Structural Similarity Index Measure,SSIM)和特征相似性指数(Feature Similarity Index Measure,FSiM)三个图像质量评价指标上也优势明显,验证了其在多阈值分割图像任务中的有效性与优越性. 展开更多
关键词 爬行动物搜索算法 多阈值分割 拉丁超立方抽样 莱维飞行 正余弦算法
在线阅读 下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部