Multi-electron and multi-orbital effects play a crucial role in the interaction of strong laser fields with complex molecules.Here,multi-electron effects encompass not only electron-electron Coulomb interactions and e...Multi-electron and multi-orbital effects play a crucial role in the interaction of strong laser fields with complex molecules.Here,multi-electron effects encompass not only electron-electron Coulomb interactions and exchangecorrelation effects but also the interference between the dynamics of different electron wave packets.展开更多
Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feat...Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feature representation.However,existing methods often rely on the single-scale deep feature,neglecting shallow and deeper layer features,which poses challenges when predicting objects of varying scales within the same image.Although some studies have explored multi-scale features,they rarely address the flow of information between scales or efficiently obtain class-specific precise representations for features at different scales.To address these issues,we propose a two-stage,three-branch Transformer-based framework.The first stage incorporates multi-scale image feature extraction and hierarchical scale attention.This design enables the model to consider objects at various scales while enhancing the flow of information across different feature scales,improving the model’s generalization to diverse object scales.The second stage includes a global feature enhancement module and a region selection module.The global feature enhancement module strengthens interconnections between different image regions,mitigating the issue of incomplete represen-tations,while the region selection module models the cross-modal relationships between image features and labels.Together,these components enable the efficient acquisition of class-specific precise feature representations.Extensive experiments on public datasets,including COCO2014,VOC2007,and VOC2012,demonstrate the effectiveness of our proposed method.Our approach achieves consistent performance gains of 0.3%,0.4%,and 0.2%over state-of-the-art methods on the three datasets,respectively.These results validate the reliability and superiority of our approach for multi-label image classification.展开更多
To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illuminat...To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illumination is processed by contrast-limited adaptive histogram equalization(CLAHE),adaptive complementary gamma function(ACG),and adaptive detail preserving S-curve(ADPS),respectively,to obtain three components.Then,the fusion-relevant features,exposure,and color contrast are selected as the weight maps.Subsequently,these components and weight maps are fused through multi-scale to generate enhanced illumination.Finally,the enhanced images are obtained by multiplying the enhanced illumination and reflectance.Compared with existing approaches,this proposed method achieves an average increase of 0.81%and 2.89%in the structural similarity index measurement(SSIM)and peak signal-to-noise ratio(PSNR),and a decrease of 6.17%and 32.61%in the natural image quality evaluator(NIQE)and gradient magnitude similarity deviation(GMSD),respectively.展开更多
Recently,Luolai Group released its Q12025 quarterly report.As a leading Chinese home textile enterprise listed on the Shenzhen Stock Exchange in 2009,the company covers the research,design,production,and sales of home...Recently,Luolai Group released its Q12025 quarterly report.As a leading Chinese home textile enterprise listed on the Shenzhen Stock Exchange in 2009,the company covers the research,design,production,and sales of home textile products,and has multiple brands covering different consumer markets.It has expanded its online and offline comprehensive multichannel sales system and is committed to creating a win-win home furnishings and textile industry ecosystem.展开更多
Motivation.As artificial intelligence(AI)workloads escalate exponentially,ultra-thin,high-efficiency voltage regulator modules(VRMs)with exceptional power density become essential for backside-mounted configurations[1...Motivation.As artificial intelligence(AI)workloads escalate exponentially,ultra-thin,high-efficiency voltage regulator modules(VRMs)with exceptional power density become essential for backside-mounted configurations[1].Thus,highdensity multiphase DC−DC converters are pivotal for implementing vertical power delivery(VPD)architectures in XPU platforms.Strategically positioning these converters beneath processors and maximizing spatial utilization enables core rail currents exceeding 2 kA while significantly reducing the power distribution network(PDN)losses compared to conventional solutions.The VPD configuration elevates system-level energy efficiency with>100 W power saving per processor,yielding megawatt-scale savings in a datacenter that uses~100000 processors.The synergy of 48 V power conversion architectures and advanced packaging techniques enables the industry’s commitment to balancing computational demands with CO_(2)emission reduction and environmental sustainability.展开更多
The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can caus...The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.展开更多
An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyram...An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.展开更多
On the evening of May 3Oth,the parallel forum"Equality and Inclusiveness&Harmonious Coexistence:Multi-dimensional Narratives of Civilisations from Writers'Perspective",as part of the 4th Dialogue on ...On the evening of May 3Oth,the parallel forum"Equality and Inclusiveness&Harmonious Coexistence:Multi-dimensional Narratives of Civilisations from Writers'Perspective",as part of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Dunhuang.The forum was organised by the China Writers Association and co-organised by China National Publications Import&Export(Group)Corporation.展开更多
0 INTRODUCTION The lunar surface lacks an atmosphere and is continuously subjected to a combination of space weathering factors such as cosmic rays,solar wind,and micrometeorite impacts,forming a several-meter-thick l...0 INTRODUCTION The lunar surface lacks an atmosphere and is continuously subjected to a combination of space weathering factors such as cosmic rays,solar wind,and micrometeorite impacts,forming a several-meter-thick lunar regolith(Sorokin et al.,2020).展开更多
Correction to:Nuclear Science and Techniques(2025)36:100 https://doi.org/10.1007/s41365-025-01692-6 In this article,Fig.9 appeared incorrectly and have now been corrected in the original publication.For completeness a...Correction to:Nuclear Science and Techniques(2025)36:100 https://doi.org/10.1007/s41365-025-01692-6 In this article,Fig.9 appeared incorrectly and have now been corrected in the original publication.For completeness and transparency,both correct and incorrect versions are displayed below.展开更多
To overcome external environmental disturbances,inertial parameter uncertainties and vibration of flexible modes in the process of attitude tracking,a comprehensively effective predefined-time guaranteed performance c...To overcome external environmental disturbances,inertial parameter uncertainties and vibration of flexible modes in the process of attitude tracking,a comprehensively effective predefined-time guaranteed performance controller based on multi⁃observers for flexible spacecraft is proposed.First,to prevent unwinding phenomenon in attitude description,the rotation matrix is used to represent the spacecraft’s attitude.Second,the flexible modes observer which can guarantee predefined⁃time convergence is designed,for the case where flexible vibrations are unmeasurable in practice.What’s more,the disturbance observer is applied to estimate and compensate the lumped disturbances to improve the robustness of attitude control.A predefined-time controller is proposed to satisfy the prescribed performance and stabilize the attitude tracking system via barrier Lyapunov function.Finally,through comparative numerical simulations,the proposed controller can achieve high-precision convergence compared with the existing finite-time attitude tracking controller.This paper provides certain references for the high-precision predefined-time prescribed performance attitude tracking of flexible spacecraft with multi-disturbance.展开更多
Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technologic...Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technological Research Council of Turkey(TÜB˙ITAK)for receiving financial support for this work through the 2221 Fellowship Program for Visiting Scientists and Scientists on Sabbatical Leave(Grant ID:E 21514107-115.02-228864).Sasan YAZDANI also expresses his gratitude to Sahand University of Technology for granting him sabbatical leave to facilitate the completion of this research.展开更多
Polyploidization is a commonly employed strategy in crop breeding to augment genetic diversity,particularly leveraging the distinctive benefits of additional progressive heterosis or multi-generation heterosis unique ...Polyploidization is a commonly employed strategy in crop breeding to augment genetic diversity,particularly leveraging the distinctive benefits of additional progressive heterosis or multi-generation heterosis unique to polyploidy.Despite genetic disparities between polyploids and diploids,challenges stem from reproductive anomalies,complicating genetic investigations in polyploid systems.Through nearly two decades of intensive research,our team has effectively generated a series of fertile tetraploid lines known as neo-tetraploid rice(NTR),facilitating comparative genetic studies between diploid and tetraploid rice.In this study,we identified diploid counterparts(H3d and H8d)for two NTR lines[Huaduo 3(H3)and Huaduo 8(H8)]and utilized them to create diploid and tetraploid fertile F_(2) populations to assess genotype segregation ratios,recombination rates,and their impact on QTL mapping via bulked segregant analysis combined with sequencing(BSA-seq).Additionally,we assessed yield heterosis in F_(1) and F_(2) generations of two tetraploid populations(H3×H8 and T449×H1),revealing evidence of multi-generation heterosis in polyploid rice.These findings provide valuable insights into the advantages and challenges of polyploid rice breeding.展开更多
The spin-exchange relaxation-free atomic gyroscope,with its exceptionally high theoretical precision,demonstrates immense potential to become the next-generation strategic-grade gyroscope.However,due to technological ...The spin-exchange relaxation-free atomic gyroscope,with its exceptionally high theoretical precision,demonstrates immense potential to become the next-generation strategic-grade gyroscope.However,due to technological noise,there is still a significant gap between its actual precision and theoretical precision.This study identifies the key factor limiting the precision of the SERF gyroscope as coupling noise.By optimizing the detection loop structure,a distinction between the dual-axis signals'response to optical and magnetic fields was achieved-where the optical errors responded similarly,while the response to magnetic noise was opposite.Based on the differences in the optical-magnetic response of the dual-axis signals,empirical mode decomposition was used to decompose the dual-axis gyroscope signals into multiple intrinsic mode functions,and Allan deviation analysis was applied to analyze the noise characteristics of the intrinsic mode functions over various periods.This study successfully reveals that optical errors caused by thermal-optical coupling and long-period magnetic noise induced by thermal-magnetic coupling are the dominant factors limiting the long-term stability of the SERF gyroscope.Based on these analyses,the study concludes that to achieve strategic-grade precision for the SERF gyroscope,it is essential to effectively address the noise issues caused by multi-physical field couplings.展开更多
Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the ...Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the continuous fault-tolerant control protocol via observer design is developed. In addition, it is strictly proved that the multi-agent system driven by the designed controllers can still achieve bipartite consensus tracking after faults occur.展开更多
Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present so...Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.展开更多
Dear Editor,This letter investigates predefined-time optimization problems(OPs) of multi-agent systems(MASs), where the agent of MASs is subject to inequality constraints, and the team objective function accounts for ...Dear Editor,This letter investigates predefined-time optimization problems(OPs) of multi-agent systems(MASs), where the agent of MASs is subject to inequality constraints, and the team objective function accounts for impulse effects. Firstly, to address the inequality constraints,the penalty method is introduced. Then, a novel optimization strategy is developed, which only requires that the team objective function be strongly convex.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFE0134200)the National Natural Science Foundation of China(Grant No.12204214)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.GK202207012)QCYRCXM-2022-241。
文摘Multi-electron and multi-orbital effects play a crucial role in the interaction of strong laser fields with complex molecules.Here,multi-electron effects encompass not only electron-electron Coulomb interactions and exchangecorrelation effects but also the interference between the dynamics of different electron wave packets.
基金supported by the National Natural Science Foundation of China(62302167,62477013)Natural Science Foundation of Shanghai(No.24ZR1456100)+1 种基金Science and Technology Commission of Shanghai Municipality(No.24DZ2305900)the Shanghai Municipal Special Fund for Promoting High-Quality Development of Industries(2211106).
文摘Multi-label image classification is a challenging task due to the diverse sizes and complex backgrounds of objects in images.Obtaining class-specific precise representations at different scales is a key aspect of feature representation.However,existing methods often rely on the single-scale deep feature,neglecting shallow and deeper layer features,which poses challenges when predicting objects of varying scales within the same image.Although some studies have explored multi-scale features,they rarely address the flow of information between scales or efficiently obtain class-specific precise representations for features at different scales.To address these issues,we propose a two-stage,three-branch Transformer-based framework.The first stage incorporates multi-scale image feature extraction and hierarchical scale attention.This design enables the model to consider objects at various scales while enhancing the flow of information across different feature scales,improving the model’s generalization to diverse object scales.The second stage includes a global feature enhancement module and a region selection module.The global feature enhancement module strengthens interconnections between different image regions,mitigating the issue of incomplete represen-tations,while the region selection module models the cross-modal relationships between image features and labels.Together,these components enable the efficient acquisition of class-specific precise feature representations.Extensive experiments on public datasets,including COCO2014,VOC2007,and VOC2012,demonstrate the effectiveness of our proposed method.Our approach achieves consistent performance gains of 0.3%,0.4%,and 0.2%over state-of-the-art methods on the three datasets,respectively.These results validate the reliability and superiority of our approach for multi-label image classification.
基金supported by the National Key R&D Program of China(No.2022YFB3205101)NSAF(No.U2230116)。
文摘To improve image quality under low illumination conditions,a novel low-light image enhancement method is proposed in this paper based on multi-illumination estimation and multi-scale fusion(MIMS).Firstly,the illumination is processed by contrast-limited adaptive histogram equalization(CLAHE),adaptive complementary gamma function(ACG),and adaptive detail preserving S-curve(ADPS),respectively,to obtain three components.Then,the fusion-relevant features,exposure,and color contrast are selected as the weight maps.Subsequently,these components and weight maps are fused through multi-scale to generate enhanced illumination.Finally,the enhanced images are obtained by multiplying the enhanced illumination and reflectance.Compared with existing approaches,this proposed method achieves an average increase of 0.81%and 2.89%in the structural similarity index measurement(SSIM)and peak signal-to-noise ratio(PSNR),and a decrease of 6.17%and 32.61%in the natural image quality evaluator(NIQE)and gradient magnitude similarity deviation(GMSD),respectively.
文摘Recently,Luolai Group released its Q12025 quarterly report.As a leading Chinese home textile enterprise listed on the Shenzhen Stock Exchange in 2009,the company covers the research,design,production,and sales of home textile products,and has multiple brands covering different consumer markets.It has expanded its online and offline comprehensive multichannel sales system and is committed to creating a win-win home furnishings and textile industry ecosystem.
文摘Motivation.As artificial intelligence(AI)workloads escalate exponentially,ultra-thin,high-efficiency voltage regulator modules(VRMs)with exceptional power density become essential for backside-mounted configurations[1].Thus,highdensity multiphase DC−DC converters are pivotal for implementing vertical power delivery(VPD)architectures in XPU platforms.Strategically positioning these converters beneath processors and maximizing spatial utilization enables core rail currents exceeding 2 kA while significantly reducing the power distribution network(PDN)losses compared to conventional solutions.The VPD configuration elevates system-level energy efficiency with>100 W power saving per processor,yielding megawatt-scale savings in a datacenter that uses~100000 processors.The synergy of 48 V power conversion architectures and advanced packaging techniques enables the industry’s commitment to balancing computational demands with CO_(2)emission reduction and environmental sustainability.
基金Projects(U22B2084,52275483,52075142)supported by the National Natural Science Foundation of ChinaProject(2023ZY01050)supported by the Ministry of Industry and Information Technology High Quality Development,China。
文摘The gears of new energy vehicles are required to withstand higher rotational speeds and greater loads,which puts forward higher precision essentials for gear manufacturing.However,machining process parameters can cause changes in cutting force/heat,resulting in affecting gear machining precision.Therefore,this paper studies the effect of different process parameters on gear machining precision.A multi-objective optimization model is established for the relationship between process parameters and tooth surface deviations,tooth profile deviations,and tooth lead deviations through the cutting speed,feed rate,and cutting depth of the worm wheel gear grinding machine.The response surface method(RSM)is used for experimental design,and the corresponding experimental results and optimal process parameters are obtained.Subsequently,gray relational analysis-principal component analysis(GRA-PCA),particle swarm optimization(PSO),and genetic algorithm-particle swarm optimization(GA-PSO)methods are used to analyze the experimental results and obtain different optimal process parameters.The results show that optimal process parameters obtained by the GRA-PCA,PSO,and GA-PSO methods improve the gear machining precision.Moreover,the gear machining precision obtained by GA-PSO is superior to other methods.
基金supported by the National Natural Science Foundation of China(No.62241109)the Tianjin Science and Technology Commissioner Project(No.20YDTPJC01110)。
文摘An improved model based on you only look once version 8(YOLOv8)is proposed to solve the problem of low detection accuracy due to the diversity of object sizes in optical remote sensing images.Firstly,the feature pyramid network(FPN)structure of the original YOLOv8 mode is replaced by the generalized-FPN(GFPN)structure in GiraffeDet to realize the"cross-layer"and"cross-scale"adaptive feature fusion,to enrich the semantic information and spatial information on the feature map to improve the target detection ability of the model.Secondly,a pyramid-pool module of multi atrous spatial pyramid pooling(MASPP)is designed by using the idea of atrous convolution and feature pyramid structure to extract multi-scale features,so as to improve the processing ability of the model for multi-scale objects.The experimental results show that the detection accuracy of the improved YOLOv8 model on DIOR dataset is 92%and mean average precision(mAP)is 87.9%,respectively 3.5%and 1.7%higher than those of the original model.It is proved the detection and classification ability of the proposed model on multi-dimensional optical remote sensing target has been improved.
文摘On the evening of May 3Oth,the parallel forum"Equality and Inclusiveness&Harmonious Coexistence:Multi-dimensional Narratives of Civilisations from Writers'Perspective",as part of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Dunhuang.The forum was organised by the China Writers Association and co-organised by China National Publications Import&Export(Group)Corporation.
基金supported by the National Major Scientific and Technological Infrastructure Project“Space Environment Simulation and Research Infrastructure”financially supported in part by the National Natural Science Foundation of China(No.52275241)the Fund for National Key Laboratory of Space Environment and Matter Behaviors(No.2023059)。
文摘0 INTRODUCTION The lunar surface lacks an atmosphere and is continuously subjected to a combination of space weathering factors such as cosmic rays,solar wind,and micrometeorite impacts,forming a several-meter-thick lunar regolith(Sorokin et al.,2020).
文摘Correction to:Nuclear Science and Techniques(2025)36:100 https://doi.org/10.1007/s41365-025-01692-6 In this article,Fig.9 appeared incorrectly and have now been corrected in the original publication.For completeness and transparency,both correct and incorrect versions are displayed below.
基金supported by the National Natural Science Foundation of China(No.12472045)the Shanghai Aerospace Science and Technology Innovation Fund(No.SAST2022-036)。
文摘To overcome external environmental disturbances,inertial parameter uncertainties and vibration of flexible modes in the process of attitude tracking,a comprehensively effective predefined-time guaranteed performance controller based on multi⁃observers for flexible spacecraft is proposed.First,to prevent unwinding phenomenon in attitude description,the rotation matrix is used to represent the spacecraft’s attitude.Second,the flexible modes observer which can guarantee predefined⁃time convergence is designed,for the case where flexible vibrations are unmeasurable in practice.What’s more,the disturbance observer is applied to estimate and compensate the lumped disturbances to improve the robustness of attitude control.A predefined-time controller is proposed to satisfy the prescribed performance and stabilize the attitude tracking system via barrier Lyapunov function.Finally,through comparative numerical simulations,the proposed controller can achieve high-precision convergence compared with the existing finite-time attitude tracking controller.This paper provides certain references for the high-precision predefined-time prescribed performance attitude tracking of flexible spacecraft with multi-disturbance.
文摘Because of an unfortunate mistake during the production of this article,the Acknowledgements have been omitted.The Acknowledgements are added as follows:Sasan YAZDANI would like to thank the Scientific and Technological Research Council of Turkey(TÜB˙ITAK)for receiving financial support for this work through the 2221 Fellowship Program for Visiting Scientists and Scientists on Sabbatical Leave(Grant ID:E 21514107-115.02-228864).Sasan YAZDANI also expresses his gratitude to Sahand University of Technology for granting him sabbatical leave to facilitate the completion of this research.
基金supported by the National Key Resarch and Development Program of China(Grant No.2023YFD1200802)the Base Bank of Lingnan Rice Germplasm Resources Project,China(Grant No.2024B1212060009).
文摘Polyploidization is a commonly employed strategy in crop breeding to augment genetic diversity,particularly leveraging the distinctive benefits of additional progressive heterosis or multi-generation heterosis unique to polyploidy.Despite genetic disparities between polyploids and diploids,challenges stem from reproductive anomalies,complicating genetic investigations in polyploid systems.Through nearly two decades of intensive research,our team has effectively generated a series of fertile tetraploid lines known as neo-tetraploid rice(NTR),facilitating comparative genetic studies between diploid and tetraploid rice.In this study,we identified diploid counterparts(H3d and H8d)for two NTR lines[Huaduo 3(H3)and Huaduo 8(H8)]and utilized them to create diploid and tetraploid fertile F_(2) populations to assess genotype segregation ratios,recombination rates,and their impact on QTL mapping via bulked segregant analysis combined with sequencing(BSA-seq).Additionally,we assessed yield heterosis in F_(1) and F_(2) generations of two tetraploid populations(H3×H8 and T449×H1),revealing evidence of multi-generation heterosis in polyploid rice.These findings provide valuable insights into the advantages and challenges of polyploid rice breeding.
基金supported by Hefei National Laboratory,Innovation Program for Quantum Science and Technology(2021ZD0300400/2021ZD0300402)the Beijing Natural Science Foundation(3252013)the China Postdoctoral Science Foundation(2024T171116).
文摘The spin-exchange relaxation-free atomic gyroscope,with its exceptionally high theoretical precision,demonstrates immense potential to become the next-generation strategic-grade gyroscope.However,due to technological noise,there is still a significant gap between its actual precision and theoretical precision.This study identifies the key factor limiting the precision of the SERF gyroscope as coupling noise.By optimizing the detection loop structure,a distinction between the dual-axis signals'response to optical and magnetic fields was achieved-where the optical errors responded similarly,while the response to magnetic noise was opposite.Based on the differences in the optical-magnetic response of the dual-axis signals,empirical mode decomposition was used to decompose the dual-axis gyroscope signals into multiple intrinsic mode functions,and Allan deviation analysis was applied to analyze the noise characteristics of the intrinsic mode functions over various periods.This study successfully reveals that optical errors caused by thermal-optical coupling and long-period magnetic noise induced by thermal-magnetic coupling are the dominant factors limiting the long-term stability of the SERF gyroscope.Based on these analyses,the study concludes that to achieve strategic-grade precision for the SERF gyroscope,it is essential to effectively address the noise issues caused by multi-physical field couplings.
基金supported by the National Natural Science Foundation of China(62325304,U22B2046,62073079,62376029)the Jiangsu Provincial Scientific Research Center of Applied Mathematics(BK20233002)the China Postdoctoral Science Foundation(2023M730255,2024T171123)
文摘Dear Editor,This letter studies the bipartite consensus tracking problem for heterogeneous multi-agent systems with actuator faults and a leader's unknown time-varying control input. To handle such a problem, the continuous fault-tolerant control protocol via observer design is developed. In addition, it is strictly proved that the multi-agent system driven by the designed controllers can still achieve bipartite consensus tracking after faults occur.
基金supported in part by the National Natural Science Foundation of China(62273255,62350003,62088101)the Shanghai Science and Technology Cooperation Project(22510712000,21550760900)+1 种基金the Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities
文摘Dear Editor,This letter is concerned with the problem of time-varying formation tracking for heterogeneous multi-agent systems(MASs) under directed switching networks. For this purpose, our first step is to present some sufficient conditions for the exponential stability of a particular category of switched systems.
基金supported in part by the National Natural Science Foundation of China(62276119)the Natural Science Foundation of Jiangsu Province(BK20241764)the Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX22_2860)
文摘Dear Editor,This letter investigates predefined-time optimization problems(OPs) of multi-agent systems(MASs), where the agent of MASs is subject to inequality constraints, and the team objective function accounts for impulse effects. Firstly, to address the inequality constraints,the penalty method is introduced. Then, a novel optimization strategy is developed, which only requires that the team objective function be strongly convex.