Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon...Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.展开更多
Methanol oxidation reaction(MOR)is a key process in direct methanol fuel cells(DMFCs),determining both energy efficiency and stability.Despite efforts,the impact of dynamic structural changes of Pt-based catalysts on ...Methanol oxidation reaction(MOR)is a key process in direct methanol fuel cells(DMFCs),determining both energy efficiency and stability.Despite efforts,the impact of dynamic structural changes of Pt-based catalysts on MOR performance remains poorly understood.Here,we report on the impact mechanism of dynamic changes on MOR performance in the Pd-Pt concave nanocubes(CNCs)system.Pt with high-index facets exposed abundant active sites for methanol oxidation,resulting in an exceptional mass activity of 0.89 A·mg_(Pt)^(-1).Pd underwent an oxidationredeposition process during MOR,dynamically restructuring the catalyst and producing a volcano-type activity.Pd^(δ+)species generated during oxidative etching promoted OH*formation,accelerating CO oxidation on Pt sites,thus mitigating poisoning.With continued cycling,redeposited Pd partially blocked Pt sites,counteracting the positive effect of the generated Pd^(δ+).The dynamic balance of Pd oxidation and redeposition governed the activity evolution while sustaining the exceptional durability of Pd-Pt CNCs during prolonged cycling.展开更多
1.Introduction Ethylene and propylene are the cornerstones of the chemical industry,with more than 75%of chemical products as their downstream derivatives.They are conventionally produced via naphtha steam cracking an...1.Introduction Ethylene and propylene are the cornerstones of the chemical industry,with more than 75%of chemical products as their downstream derivatives.They are conventionally produced via naphtha steam cracking and fluid catalytic cracking(FCC),in which oil is mainly used as feedstock.China,however,relies heavily on imports for crude oil.The Dalian Institute of Chemical Physics(DICP),together with China Petroleum&Chemical Corporation(Sinopec)Luoyang Petrochemical Engineering Company and SYN Energy Technology Co.,Ltd.,have developed a methanol-to-olefins technology—namely DMTO—which opens up an alternative path to synthesize light olefins from methanol,a platform chemical that can be readily derived from coal[1].As coal is relatively abundant in China,the success of DMTO is of practical significance in balancing the supply and demand of light olefins,reducing China’s dependence on imports for crude oil,and promoting national energy security.This report outlines the catalyst,fluidized-bed reactor,and process of DMTO technology,with an emphasis on the key technologies involved in commercial units and sustainable development for future applications.展开更多
Methanol-to-olefins(MTO)is industrially applied to produce ethylene and propylene using methanol converted from coal,synthetic gas,and biomass.SAPO-34 zeolites,as the most efficient catalyst in MTO process,are subject...Methanol-to-olefins(MTO)is industrially applied to produce ethylene and propylene using methanol converted from coal,synthetic gas,and biomass.SAPO-34 zeolites,as the most efficient catalyst in MTO process,are subject to the rapid deactivation due to coke deposition.Recent work shows that steam regeneration can provide advantages such as low carbon dioxide emission and enhanced light olefins yield in MTO process,compared to that by air regeneration.A kinetic study on the steam regeneration of spent SAPO-34 catalyst has been carried out in this work.In doing so,we first investigated the effect of temperature on the regeneration performance by monitoring the crystal structure,acidity,residual coke properties and other structural parameters.The results show that with the increase of regeneration temperature,the compositions of residual coke on the catalyst change from pyrene and phenanthrene to naphthalene,which are normally considered as active hydrocarbon pool species in MTO reaction.However,when the regeneration temperature is too high,nitrogen oxides can be found in the residual coke.Meanwhile,as the regeneration temperature increases,the quantity of residual coke reduces and the acidity,BET surface area and pore structure of the regenerated samples can be better recovered,resulting in prolonging catalyst lifetime.We have further derived the kinetics of steam regeneration,and obtained an activation energy of about 177.8 kJ·mol^(-1).Compared that with air regeneration,the activation energy of steam regeneration is higher,indicating that the steam regeneration process is more difficult to occur.展开更多
A kinetic model of MTO process over the SAPO-34 catalyst considering the effect of water and coke deposition has been proposed.The model takes into account three steps of the MTO reaction in which the products cover 5...A kinetic model of MTO process over the SAPO-34 catalyst considering the effect of water and coke deposition has been proposed.The model takes into account three steps of the MTO reaction in which the products cover 5 lumped components.The water in the feed not only reduces the concentration of methanol but also alleviates the deactivation of SAPO-34 catalyst.The kinetic parameters have been estimated by the least square method.It has been proved that the calculated values in the kinetic model are in good agreement with the experimental values.展开更多
Recently the State MTO Engineering Laboratory (Department of Low-carbon Catalysis and Engineering Studies of National Clean Energy Laboratory) of the CAS Dalian Institute of Chemical Physics (DICP) has made breakthrou...Recently the State MTO Engineering Laboratory (Department of Low-carbon Catalysis and Engineering Studies of National Clean Energy Laboratory) of the CAS Dalian Institute of Chemical Physics (DICP) has made breakthroughs and progress in studying the methanol conversion mechanism.展开更多
Converting CO_(2)with green hydrogen to methanol as a carbon-neutral liquid fuel is a promising route for the long-term storage and distribution of intermittent renewable energy.Nevertheless,attaining highly efficient...Converting CO_(2)with green hydrogen to methanol as a carbon-neutral liquid fuel is a promising route for the long-term storage and distribution of intermittent renewable energy.Nevertheless,attaining highly efficient methanol synthesis catalysts from the vast composition space remains a significant challenge.Here we present a machine learning framework for accelerating the development of high space-time yield(STY)methanol synthesis catalysts.A database of methanol synthesis catalysts has been compiled,consisting of catalyst composition,preparation parameters,structural characteristics,reaction conditions and their corresponding catalytic performance.A methodology for constructing catalyst features based on the intrinsic physicochemical properties of the catalyst components has been developed,which significantly reduced the data dimensionality and enhanced the efficiency of machine learning operations.Two high-precision machine learning prediction models for the activities and product selectivity of catalysts were trained and obtained.Using this machine learning framework,an efficient search was achieved within the catalyst composition space,leading to the successful identification of high STY multielement oxide methanol synthesis catalysts.Notably,the CuZnAlTi catalyst achieved high STYs of 0.49 and 0.65 g_(MeOH)/(g_(catalyst)h)for CO_(2)and CO hydrogenation to methanol at 250℃,respectively,and the STY was further increased to 2.63 g_(Me OH)/(g_(catalyst)h)in CO and CO_(2)co-hydrogenation.展开更多
The increasingly serious climate issue compels urgent greenhouse gas mitigation strategies.As a budget,plentiful,renewable feedstock and major contributor to global warming,the large-scale catalytic transformation of ...The increasingly serious climate issue compels urgent greenhouse gas mitigation strategies.As a budget,plentiful,renewable feedstock and major contributor to global warming,the large-scale catalytic transformation of CO_(2)has attracted widespread attention from society due to its potential as a solution to the environment and energy crises.At present,catalytic hydrogenation of carbon dioxide to organic chemicals is the primary approach in its industrial applications.In recent decades,various materials containing Cu-,precious metal-,In-,Zn-,and Ga-based catalysts have been designed for CO_(2)hydrogenation to methanol.Likewise,great advances have been made in CO_(2)-to-chemicals,such as olefins,aromatics,and gasoline by combining CO_(2)-to-CH3OH with methanol transformation or tandem reaction of reverse water-gas shift and Fischer-Tropsch(FT)synthesis.This review exhibits the recent advances in the hydrogenation of CO_(2)-to-CH3OH including the catalyst system,CO_(2)activation,nature of active sites,intermediate species(formate or carboxyl),structure-activity relationship,and reaction mechanism.Finally,challenges and outlooks in CO_(2)hydrogenation to methanol are summarized.展开更多
Alloying and interface effects are effective strategies for enhancing the performance of electrocatalysts in energy-related devices.Herein,dendritic Au-doped platinum-palladium alloy/dumbbell-like bismuth telluride he...Alloying and interface effects are effective strategies for enhancing the performance of electrocatalysts in energy-related devices.Herein,dendritic Au-doped platinum-palladium alloy/dumbbell-like bismuth telluride heterostructures(denoted PtPdAu/BiTe)were synthesized using a visible-light-assisted strategy.The coupling alloy and interfacial effects of PtPdAu/BiTe significantly improved the performance and stability of both the ethanol oxidation reaction(EOR)and methanol oxidation reaction(MOR).Introducing a small amount of Au effectively enhanced the CO tolerance of PtPdAu/BiTe compared to dendritic platinum-palladium alloy/dumbbell-like bismuth telluride heterostructures.PtPdAu/BiTe exhibited mass activities of 31.5 and 13.3 A·mg_(Pt)^(-1)in EOR and MOR,respectively,which were 34.4 and 13.2 times higher than those of commercial Pt black,revealing efficient Pt atom utilization.In-situ Fourier transform infrared spectroscopy demonstrated complete 12e^(-)and 6e^(-)oxidation of ethanol and methanol on PtPdAu/BiTe.The PtPdAu/BiTe/C achieved mass peak power densities of 131 and 156 mW·mg_(Pt)^(-1),which were 2.4 and 2.2 times higher than those of Pt/C in practical direct ethanol fuel cell(DEFC)and direct methanol fuel cell(DMFC),respectively,highlighting their potential application in DEFC and DMFC.This study introduces an effective strategy for designing efficient and highly CO tolerant anodic electrocatalysts for practical DEFC and DMFC applications.展开更多
Unraveling the essence of electronic structure effected by d-d orbital coupling of transition metal and methanol oxidation reaction(MOR)performance can fundamentally guide high efficient catalyst design.Herein,density...Unraveling the essence of electronic structure effected by d-d orbital coupling of transition metal and methanol oxidation reaction(MOR)performance can fundamentally guide high efficient catalyst design.Herein,density functional theory(DFT)calculations were performed at first to study the d–d orbital interaction of metallic Pt Pd Cu,revealing that the incorporation of Pd and Cu atoms into Pt system can enhance d-d electron interaction via capturing antibonding orbital electrons of Pt to fill the surrounding Pd and Cu atoms.Under the theoretical guidance,Pt Pd Cu medium entropy alloy aerogels(Pt Pd Cu MEAAs)catalysts have been designed and systematically screened for MOR under acid,alkaline and neutral electrolyte.Furthermore,DFT calculation and in-situ fourier transform infrared spectroscopy analysis indicate that Pt Pd Cu MEAAs follow the direct pathway via formate as the reactive intermediate to be directly oxidized to CO_(2).For practical direct methanol fuel cells(DMFCs),the Pt Pd Cu MEAAs-integrated ultra-thin catalyst layer(4–5μm thickness)as anode exhibits higher peak power density of 35 m W/cm^(2) than commercial Pt/C of 20 m W/cm^(2)(~40μm thickness)under the similar noble metal loading and an impressive stability retention at a 50-m A/cm^(2) constant current for 10 h.This work clearly proves that optimizing the intermediate adsorption capacity via d-d orbital coupling is an effective strategy to design highly efficient catalysts for DMFCs.展开更多
China has abundant renewable energy resources.With the establishment of carbon peaking and carbon neutrality goals,renewable energy sources such as wind power and photovoltaics have undergone tremendous development.Ho...China has abundant renewable energy resources.With the establishment of carbon peaking and carbon neutrality goals,renewable energy sources such as wind power and photovoltaics have undergone tremendous development.However,because of the randomness and volatility of wind and photovoltaic power,the large-scale development of renewable energy faces challenges with accommodation and transmission.At present,the bundling of wind–photovoltaic–thermal power with ultra-high voltage transmission projects is the main development approach for renewable energy bases in western and northern China.Nonetheless,solving the problems of high carbon dioxide emission,carbon dioxide capture,and the utilization of thermal power is still necessary.Based on power-to-hydrogen,powerto-methanol,and oxygen-enriched combustion power generation technologies,this article proposes a power-to-hydrogen-andmethanol model based on the collaborative optimization of energy flow and material flow,which is expected to simultaneously solve the problems of renewable energy accommodation and low-carbon transformation of thermal power.Models with different ways of linking power to hydrogen and methanol are established,and an 8760-hour-time-series operation simulation is incorporated into the planning model.A case study is then conducted on renewable energy bases in the deserts of western and northern China.The results show that the power-to-hydrogen-and-methanol model based on the collaborative optimization of energy flow and material flow can greatly reduce the demand for hydrogen storage and energy storage,reduce the cost of carbon capture,make full use of by-product oxygen and captured carbon dioxide,and produce high-value chemical raw materials,thus exhibiting significant economic advantages.展开更多
The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation...The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts.展开更多
Cu/ZnO-based catalysts are widely employed for methanol synthesis via CO_(2) hydrogenation.The preparation procedure is sensitive to the particle size and interfacial structure,which are considered as potential active...Cu/ZnO-based catalysts are widely employed for methanol synthesis via CO_(2) hydrogenation.The preparation procedure is sensitive to the particle size and interfacial structure,which are considered as potential active centers influencing the rate of both methanol and CO formation.The particle size and the interaction between Cu and the support materials are influenced by the coprecipitation conditions,let alone that the mechanistic divergence remains unclear.In this work,a series of Cu/ZnO/ZrO_(2) catalysts were prepared via co-precipitation at different pH value and systematically characterized.The structure has been correlated with kinetic results to establish the structure-performance relationship.Kinetic analysis demonstrates that methanol synthesis follows a single-site Langmuir-Hinshelwood(L-H)mechanism,i.e.,Cu serves as the active site where CO_(2) and H_(2) competitively adsorb and react to form methanol.In contrast,CO formation proceeds via a dual-site L-H mechanism,where CO_(2) adsorbs onto ZnO and H_(2) onto Cu,with the reaction occurring at the Cu/ZnO interface.Therefore,for the direct formation of methanol,solely reducing the particle size of Cu would not be beneficial.展开更多
基金Supported by the National Key Research and Development Program of China(2023YFB4104500,2023YFB4104502)the National Natural Science Foundation of China(22138013)the Taishan Scholar Project(ts201712020).
文摘Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies.
基金supported by the National Natural Science Foundation of China(Nos.12222508 and 12475325)the National Key Research and Development Program of China(Nos.2024YFA1509201 and 2023YFA1506304)the beamlines BL10B(No.31131.02.HLS.PES)and BL01B(No.31131.02.HLS.IRSM)in NSRL,and BL11B(No.31124.02.SSRF.BL11B)in SSRF for synchrotron radiation measurements.
文摘Methanol oxidation reaction(MOR)is a key process in direct methanol fuel cells(DMFCs),determining both energy efficiency and stability.Despite efforts,the impact of dynamic structural changes of Pt-based catalysts on MOR performance remains poorly understood.Here,we report on the impact mechanism of dynamic changes on MOR performance in the Pd-Pt concave nanocubes(CNCs)system.Pt with high-index facets exposed abundant active sites for methanol oxidation,resulting in an exceptional mass activity of 0.89 A·mg_(Pt)^(-1).Pd underwent an oxidationredeposition process during MOR,dynamically restructuring the catalyst and producing a volcano-type activity.Pd^(δ+)species generated during oxidative etching promoted OH*formation,accelerating CO oxidation on Pt sites,thus mitigating poisoning.With continued cycling,redeposited Pd partially blocked Pt sites,counteracting the positive effect of the generated Pd^(δ+).The dynamic balance of Pd oxidation and redeposition governed the activity evolution while sustaining the exceptional durability of Pd-Pt CNCs during prolonged cycling.
文摘1.Introduction Ethylene and propylene are the cornerstones of the chemical industry,with more than 75%of chemical products as their downstream derivatives.They are conventionally produced via naphtha steam cracking and fluid catalytic cracking(FCC),in which oil is mainly used as feedstock.China,however,relies heavily on imports for crude oil.The Dalian Institute of Chemical Physics(DICP),together with China Petroleum&Chemical Corporation(Sinopec)Luoyang Petrochemical Engineering Company and SYN Energy Technology Co.,Ltd.,have developed a methanol-to-olefins technology—namely DMTO—which opens up an alternative path to synthesize light olefins from methanol,a platform chemical that can be readily derived from coal[1].As coal is relatively abundant in China,the success of DMTO is of practical significance in balancing the supply and demand of light olefins,reducing China’s dependence on imports for crude oil,and promoting national energy security.This report outlines the catalyst,fluidized-bed reactor,and process of DMTO technology,with an emphasis on the key technologies involved in commercial units and sustainable development for future applications.
基金the National Natural Science Foundation of China(91834302)。
文摘Methanol-to-olefins(MTO)is industrially applied to produce ethylene and propylene using methanol converted from coal,synthetic gas,and biomass.SAPO-34 zeolites,as the most efficient catalyst in MTO process,are subject to the rapid deactivation due to coke deposition.Recent work shows that steam regeneration can provide advantages such as low carbon dioxide emission and enhanced light olefins yield in MTO process,compared to that by air regeneration.A kinetic study on the steam regeneration of spent SAPO-34 catalyst has been carried out in this work.In doing so,we first investigated the effect of temperature on the regeneration performance by monitoring the crystal structure,acidity,residual coke properties and other structural parameters.The results show that with the increase of regeneration temperature,the compositions of residual coke on the catalyst change from pyrene and phenanthrene to naphthalene,which are normally considered as active hydrocarbon pool species in MTO reaction.However,when the regeneration temperature is too high,nitrogen oxides can be found in the residual coke.Meanwhile,as the regeneration temperature increases,the quantity of residual coke reduces and the acidity,BET surface area and pore structure of the regenerated samples can be better recovered,resulting in prolonging catalyst lifetime.We have further derived the kinetics of steam regeneration,and obtained an activation energy of about 177.8 kJ·mol^(-1).Compared that with air regeneration,the activation energy of steam regeneration is higher,indicating that the steam regeneration process is more difficult to occur.
文摘A kinetic model of MTO process over the SAPO-34 catalyst considering the effect of water and coke deposition has been proposed.The model takes into account three steps of the MTO reaction in which the products cover 5 lumped components.The water in the feed not only reduces the concentration of methanol but also alleviates the deactivation of SAPO-34 catalyst.The kinetic parameters have been estimated by the least square method.It has been proved that the calculated values in the kinetic model are in good agreement with the experimental values.
文摘Recently the State MTO Engineering Laboratory (Department of Low-carbon Catalysis and Engineering Studies of National Clean Energy Laboratory) of the CAS Dalian Institute of Chemical Physics (DICP) has made breakthroughs and progress in studying the methanol conversion mechanism.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(LDT23E06012E06)National Key R&D Program of China(2023YFC3710800)+3 种基金the National EnergySaving and Low-Carbon Materials Production and Application Demonstration Platform Program(TC220H06N)Pioneer R&D Program of Zhejiang Province-China(2024SSYS0066,2023C03016)National Natural Science Foundation of China(42341208)Zhejiang Energy Group Research Fund(ZNKJ-2023-100)。
文摘Converting CO_(2)with green hydrogen to methanol as a carbon-neutral liquid fuel is a promising route for the long-term storage and distribution of intermittent renewable energy.Nevertheless,attaining highly efficient methanol synthesis catalysts from the vast composition space remains a significant challenge.Here we present a machine learning framework for accelerating the development of high space-time yield(STY)methanol synthesis catalysts.A database of methanol synthesis catalysts has been compiled,consisting of catalyst composition,preparation parameters,structural characteristics,reaction conditions and their corresponding catalytic performance.A methodology for constructing catalyst features based on the intrinsic physicochemical properties of the catalyst components has been developed,which significantly reduced the data dimensionality and enhanced the efficiency of machine learning operations.Two high-precision machine learning prediction models for the activities and product selectivity of catalysts were trained and obtained.Using this machine learning framework,an efficient search was achieved within the catalyst composition space,leading to the successful identification of high STY multielement oxide methanol synthesis catalysts.Notably,the CuZnAlTi catalyst achieved high STYs of 0.49 and 0.65 g_(MeOH)/(g_(catalyst)h)for CO_(2)and CO hydrogenation to methanol at 250℃,respectively,and the STY was further increased to 2.63 g_(Me OH)/(g_(catalyst)h)in CO and CO_(2)co-hydrogenation.
基金supported by the National Key R&D Program of China(2022YFA1504500,2022YFB4003100)the National Natural Science Foundation of China(U21B2092,22072162,22202213,22402210)+1 种基金the International Partnership Program of Chinese Academy of Sciences(172GJHZ2022028MI)Hua Dian Liaoning Energy Development CO.,LTD.(CHDKJ24-04-02-223).
文摘The increasingly serious climate issue compels urgent greenhouse gas mitigation strategies.As a budget,plentiful,renewable feedstock and major contributor to global warming,the large-scale catalytic transformation of CO_(2)has attracted widespread attention from society due to its potential as a solution to the environment and energy crises.At present,catalytic hydrogenation of carbon dioxide to organic chemicals is the primary approach in its industrial applications.In recent decades,various materials containing Cu-,precious metal-,In-,Zn-,and Ga-based catalysts have been designed for CO_(2)hydrogenation to methanol.Likewise,great advances have been made in CO_(2)-to-chemicals,such as olefins,aromatics,and gasoline by combining CO_(2)-to-CH3OH with methanol transformation or tandem reaction of reverse water-gas shift and Fischer-Tropsch(FT)synthesis.This review exhibits the recent advances in the hydrogenation of CO_(2)-to-CH3OH including the catalyst system,CO_(2)activation,nature of active sites,intermediate species(formate or carboxyl),structure-activity relationship,and reaction mechanism.Finally,challenges and outlooks in CO_(2)hydrogenation to methanol are summarized.
基金supported by the National Natural Science Foundation of China(No.22465009)the Education Department of Guizhou Province(No.2021312)the Foundation of Guizhou Province(No.2019-5666).
文摘Alloying and interface effects are effective strategies for enhancing the performance of electrocatalysts in energy-related devices.Herein,dendritic Au-doped platinum-palladium alloy/dumbbell-like bismuth telluride heterostructures(denoted PtPdAu/BiTe)were synthesized using a visible-light-assisted strategy.The coupling alloy and interfacial effects of PtPdAu/BiTe significantly improved the performance and stability of both the ethanol oxidation reaction(EOR)and methanol oxidation reaction(MOR).Introducing a small amount of Au effectively enhanced the CO tolerance of PtPdAu/BiTe compared to dendritic platinum-palladium alloy/dumbbell-like bismuth telluride heterostructures.PtPdAu/BiTe exhibited mass activities of 31.5 and 13.3 A·mg_(Pt)^(-1)in EOR and MOR,respectively,which were 34.4 and 13.2 times higher than those of commercial Pt black,revealing efficient Pt atom utilization.In-situ Fourier transform infrared spectroscopy demonstrated complete 12e^(-)and 6e^(-)oxidation of ethanol and methanol on PtPdAu/BiTe.The PtPdAu/BiTe/C achieved mass peak power densities of 131 and 156 mW·mg_(Pt)^(-1),which were 2.4 and 2.2 times higher than those of Pt/C in practical direct ethanol fuel cell(DEFC)and direct methanol fuel cell(DMFC),respectively,highlighting their potential application in DEFC and DMFC.This study introduces an effective strategy for designing efficient and highly CO tolerant anodic electrocatalysts for practical DEFC and DMFC applications.
基金financially supported by the National Natural Science Foundation of China(Nos.52073214 and 22075211)Guangxi Natural Science Fund for Distinguished Young Scholars(No.2024GXNSFFA010008)+5 种基金Natural Science Foundation of Shandong Province(Nos.ZR2023MB049 and ZR2021QB129)China Postdoctoral Science Foundation(No.2020M670483)Science Foundation of Weifang University(No.2023BS11)supported by the open research fund of the Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry at Kashi Universitysupported by the Tianhe Qingsuo Open Research Fund of TSYS in 2022 and NSCC-TJNankai University Large-scale Instrument Experimental Technology R&D Project(No.21NKSYJS09)。
文摘Unraveling the essence of electronic structure effected by d-d orbital coupling of transition metal and methanol oxidation reaction(MOR)performance can fundamentally guide high efficient catalyst design.Herein,density functional theory(DFT)calculations were performed at first to study the d–d orbital interaction of metallic Pt Pd Cu,revealing that the incorporation of Pd and Cu atoms into Pt system can enhance d-d electron interaction via capturing antibonding orbital electrons of Pt to fill the surrounding Pd and Cu atoms.Under the theoretical guidance,Pt Pd Cu medium entropy alloy aerogels(Pt Pd Cu MEAAs)catalysts have been designed and systematically screened for MOR under acid,alkaline and neutral electrolyte.Furthermore,DFT calculation and in-situ fourier transform infrared spectroscopy analysis indicate that Pt Pd Cu MEAAs follow the direct pathway via formate as the reactive intermediate to be directly oxidized to CO_(2).For practical direct methanol fuel cells(DMFCs),the Pt Pd Cu MEAAs-integrated ultra-thin catalyst layer(4–5μm thickness)as anode exhibits higher peak power density of 35 m W/cm^(2) than commercial Pt/C of 20 m W/cm^(2)(~40μm thickness)under the similar noble metal loading and an impressive stability retention at a 50-m A/cm^(2) constant current for 10 h.This work clearly proves that optimizing the intermediate adsorption capacity via d-d orbital coupling is an effective strategy to design highly efficient catalysts for DMFCs.
基金the financial support provided by the Major Program of Xiangjiang Laboratory(No.23XJ01006).
文摘China has abundant renewable energy resources.With the establishment of carbon peaking and carbon neutrality goals,renewable energy sources such as wind power and photovoltaics have undergone tremendous development.However,because of the randomness and volatility of wind and photovoltaic power,the large-scale development of renewable energy faces challenges with accommodation and transmission.At present,the bundling of wind–photovoltaic–thermal power with ultra-high voltage transmission projects is the main development approach for renewable energy bases in western and northern China.Nonetheless,solving the problems of high carbon dioxide emission,carbon dioxide capture,and the utilization of thermal power is still necessary.Based on power-to-hydrogen,powerto-methanol,and oxygen-enriched combustion power generation technologies,this article proposes a power-to-hydrogen-andmethanol model based on the collaborative optimization of energy flow and material flow,which is expected to simultaneously solve the problems of renewable energy accommodation and low-carbon transformation of thermal power.Models with different ways of linking power to hydrogen and methanol are established,and an 8760-hour-time-series operation simulation is incorporated into the planning model.A case study is then conducted on renewable energy bases in the deserts of western and northern China.The results show that the power-to-hydrogen-and-methanol model based on the collaborative optimization of energy flow and material flow can greatly reduce the demand for hydrogen storage and energy storage,reduce the cost of carbon capture,make full use of by-product oxygen and captured carbon dioxide,and produce high-value chemical raw materials,thus exhibiting significant economic advantages.
基金the Canadian NRCan OERD Energy Innovation Programthe Natural Sciences and Engineering Research Council of Canada,and the Carbon Solution Program for their financial support.
文摘The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts.
基金supported by Research Grant from China Petroleum and Chemical Corp。
文摘Cu/ZnO-based catalysts are widely employed for methanol synthesis via CO_(2) hydrogenation.The preparation procedure is sensitive to the particle size and interfacial structure,which are considered as potential active centers influencing the rate of both methanol and CO formation.The particle size and the interaction between Cu and the support materials are influenced by the coprecipitation conditions,let alone that the mechanistic divergence remains unclear.In this work,a series of Cu/ZnO/ZrO_(2) catalysts were prepared via co-precipitation at different pH value and systematically characterized.The structure has been correlated with kinetic results to establish the structure-performance relationship.Kinetic analysis demonstrates that methanol synthesis follows a single-site Langmuir-Hinshelwood(L-H)mechanism,i.e.,Cu serves as the active site where CO_(2) and H_(2) competitively adsorb and react to form methanol.In contrast,CO formation proceeds via a dual-site L-H mechanism,where CO_(2) adsorbs onto ZnO and H_(2) onto Cu,with the reaction occurring at the Cu/ZnO interface.Therefore,for the direct formation of methanol,solely reducing the particle size of Cu would not be beneficial.