期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Enhancing Urban Intelligence Energy Management: Innovative Load Forecasting Techniques for Electrical Networks 被引量:2
1
作者 Zeinab Farrokhi Kamran Hassanpouri Baesmat Emma E. Regentova 《Journal of Power and Energy Engineering》 2024年第11期72-88,共17页
Energy sustains the world, yet fossil fuels, a finite resource, are dwindling. This necessitates a shift towards more sustainable energy sources, such as electricity. Accurate load forecasting is crucial in today’s g... Energy sustains the world, yet fossil fuels, a finite resource, are dwindling. This necessitates a shift towards more sustainable energy sources, such as electricity. Accurate load forecasting is crucial in today’s global energy landscape, as it helps predict various aspects such as production, revenue, consumption, economic conditions, weather impacts, power system utilization, customer demand, and economic growth. For instance, an increase in electricity demand within a country often signifies a boost in industry and production, leading to economic progress and reduced unemployment. This project aims to enhance prediction accuracy through meticulous input filtering, taking into account factors like population growth, planned loads, inflation, and competitive pricing pressures from producers. Despite inherent prediction errors, efforts are made to minimize these discrepancies. This paper introduces a novel combined method for mid-term energy forecasting. To demonstrate its efficacy, real data from the past ten months, collected from subscribers of the Kerman distribution company, was used to forecast energy consumption over the next ten days. The innovative method, which integrates multiple forecasting techniques and robust filters, significantly improves forecasting precision. The following error metrics were recorded for the proposed method: MSE: 0.009, MAE: 0.083, MAPE: 0.776, RMSE: 0.095, AE: 0.013. 展开更多
关键词 Energy Prediction Forecasting Regression Neural Network mtlf
在线阅读 下载PDF
基于深度神经网络的中期电力负荷预测 被引量:14
2
作者 王军 《重庆工商大学学报(自然科学版)》 2018年第6期17-21,共5页
电力负荷预测的精确度对于电厂的实际发电量、配电、系统维护以及与电价相关的能源供应商运营计划等都有着极大地影响;研究了前馈深度神经网络和递归深度神经网络在中期电力负荷预测中的应用及其准确性和计算能力分析;首先,针对收集的... 电力负荷预测的精确度对于电厂的实际发电量、配电、系统维护以及与电价相关的能源供应商运营计划等都有着极大地影响;研究了前馈深度神经网络和递归深度神经网络在中期电力负荷预测中的应用及其准确性和计算能力分析;首先,针对收集的原始数据集进行预处理,提出了一种时域-频域分析特征提取方法,该方法可以充分地挖掘隐藏在原始数据集中的深层信息;然后利用前馈深度神经网络和递归深度神经网络模型进行中期电力负荷预测;最后,利用某城市5年期间的实际负荷数据,预测未来1年中不同季节的负荷;通过仿真结果表明:时域-频域分析法和深度神经网络协同使用于中期负荷预测具有更高的准确性。 展开更多
关键词 中期负荷预测 前馈深度神经网络 递归深度神经网络 时域-频域分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部