期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
CMS-YOLO:An Automated Multi-Category Brain Tumor Detection Algorithm Based on Improved YOLOv10s
1
作者 Li Li Xiao Wang +3 位作者 Ran Ding Linlin Luo Qinmu Wu Zhiqin He 《Computers, Materials & Continua》 2025年第10期1287-1309,共23页
Brain tumors are neoplastic diseases caused by the proliferation of abnormal cells in brain tissues,and their appearance may lead to a series of complex symptoms.However,current methods struggle to capture deeper brai... Brain tumors are neoplastic diseases caused by the proliferation of abnormal cells in brain tissues,and their appearance may lead to a series of complex symptoms.However,current methods struggle to capture deeper brain tumor image feature information due to the variations in brain tumor morphology,size,and complex background,resulting in low detection accuracy,high rate of misdiagnosis and underdiagnosis,and challenges in meeting clinical needs.Therefore,this paper proposes the CMS-YOLO network model for multi-category brain tumor detection,which is based on the You Only Look Once version 10(YOLOv10s)algorithm.This model innovatively integrates the Convolutional Medical UNet extended block(CMUNeXt Block)to design a brand-new CSP Bottleneck with 2 convolutions(C2f)structure,which significantly enhances the ability to extract features of the lesion area.Meanwhile,to address the challenge of complex backgrounds in brain tumor detection,a Multi-Scale Attention Aggregation(MSAA)module is introduced.The module integrates features of lesions at different scales,enabling the model to effectively capture multi-scale contextual information and enhance detection accuracy in complex scenarios.Finally,during the model training process,the Shape-IoU loss function is employed to replace the Complete-IoU(CIoU)loss function for optimizing bounding box regression.This ensures that the predicted bounding boxes generated by the model closely match the actual tumor contours,thereby further enhancing the detection precision.The experimental results show that the improved method achieves 94.80%precision,93.60%recall,96.20%score,and 79.60%on the MRI for Brain Tumor with Bounding Boxes dataset.Compared to the YOLOv10s model,this represents improvements of 1.0%,1.1%,1.0%,and 1.1%,respectively.The method can achieve automatic detection and localization of three distinct categories of brain tumors—glioma,meningioma,and pituitary tumor,which can accurately detect and identify brain tumors,assist doctors in early diagnosis,and promote the development of early treatment. 展开更多
关键词 Brain tumor deep learning automatic detection YOLOv10s CMUNeXt Block MSAA Shape-IoU
在线阅读 下载PDF
MSAA3蛋白功能片段及其修饰肽对HT29细胞MUC3表达的影响 被引量:1
2
作者 潘琼 彭志红 +1 位作者 陈文生 汪荣泉 《解放军医学杂志》 CAS CSCD 北大核心 2011年第10期1062-1064,共3页
目的观察MSAA3蛋白功能片段TFLK合成肽(10-TFLK)及其MAP4修饰肽对高分化状态HT29细胞表达黏蛋白3(MUC3)的影响。方法将10-TFLK和10-TFLK修饰肽以不同浓度(0、50、100、200、400、800μg/ml)和时间(0.5、1、3h)分别刺激促分化后的HT29细... 目的观察MSAA3蛋白功能片段TFLK合成肽(10-TFLK)及其MAP4修饰肽对高分化状态HT29细胞表达黏蛋白3(MUC3)的影响。方法将10-TFLK和10-TFLK修饰肽以不同浓度(0、50、100、200、400、800μg/ml)和时间(0.5、1、3h)分别刺激促分化后的HT29细胞,采用实时荧光定量PCR检测各组细胞MUC3mRNA的表达变化,并用Western blotting分析不同肽刺激后MUC3蛋白的表达量。结果 HT29细胞MUC3mRNA表达量随处理浓度和时间的不同而不同,以200μg/ml刺激1h后的表达量为最高。10-TFLK刺激后,MUC3mRNA表达量是对照组的3.22±0.24倍,修饰肽10-TFLK-MAP刺激后,MUC3mRNA表达量是对照组的7.37±0.81倍(P<0.01)。10-TFLK和修饰肽10-TFLK-MAP处理后MUC3蛋白表达量分别是对照组的1.52±0.22和4.72±0.51倍(P<0.01)。结论 200μg/ml修饰肽10-TFLK-MAP作用1h对HT29细胞MUC3表达的刺激效果显著强于10-TFLK。MAP4修饰肽可优先应用于动物模型试验中。 展开更多
关键词 MSAA3蛋白 肽类 基因 MUC3
暂未订购
MSAA四维螺旋循环认知模式的构建
3
作者 薛丽芳 《厦门理工学院学报》 2010年第4期93-97,共5页
以元认知知识中自我效能理论为依托,从皮亚杰发生认识论原理的视角,研究自我效能过程中同化与顺应的双主互动效能机制,构建一种不断产生新能量、不断获取新知识的"元认知—自我效能—同化—顺应"四维螺旋循环认知模式,并采用... 以元认知知识中自我效能理论为依托,从皮亚杰发生认识论原理的视角,研究自我效能过程中同化与顺应的双主互动效能机制,构建一种不断产生新能量、不断获取新知识的"元认知—自我效能—同化—顺应"四维螺旋循环认知模式,并采用此模式进行实证跟踪研究,论证了"MSAA四维螺旋循环认知模式"是语言学习者的最佳认知结构。 展开更多
关键词 认知模式 MSAA四维螺旋循环认知模式 元认知与自我效能理论 同化与顺应理论
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部