This article investigates the combination of magnetic data from the MSS-1 and Swarm satellites for improved investigations of Earth’s magnetic field and Geospace.The study highlights the complementary nature of polar...This article investigates the combination of magnetic data from the MSS-1 and Swarm satellites for improved investigations of Earth’s magnetic field and Geospace.The study highlights the complementary nature of polar-orbiting(Swarm)and low-inclination(MSS-1)satellites in geomagnetic modelling and monitoring large-scale magnetospheric contributions.Data from close encounters between MSS-1 and Swarm(intersatellite distance<100 km)confirm the excellent data quality of the two satellite missions(<1 nT median difference in scalar intensity F)and allow for data calibration and validation and investigations of in-situ ionospheric currents.The reason for a small but consistent difference(F as measured by MSS-1 is 0.5 to 1.0 nT larger than that measured by Swarm)is unknown.Combining MSS-1’s low-inclination data with Swarm’s near-polar observations significantly enhances the spatial-temporal resolution of Earth’s magnetic field models,allowing for new opportunities for studying both rapid core field variations at low latitudes and the local-time dependence of large-scale magnetospheric current systems.A joint analysis of magnetic data from six satellites during the May 2024 geomagnetic storm reveals a clear dawn-dusk asymmetry,with equatorial magnetic disturbances during dusk being approximately 150 nT more negative than during dawn.展开更多
Measurements from geomagnetic satellites continue to underpin advances in geomagnetic field models that describe Earth's internally generated magnetic field.Here,we present a new field model,MSCM,that integrates v...Measurements from geomagnetic satellites continue to underpin advances in geomagnetic field models that describe Earth's internally generated magnetic field.Here,we present a new field model,MSCM,that integrates vector and scalar data from the Swarm,China Seismo-Electromagnetic Satellite(CSES),and Macao Science Satellite-1(MSS-1)missions.The model spans from 2014.0 to 2024.5,incorporating the core,lithospheric,and magnetospheric fields,and it shows characteristics similar to other published models based on different data.For the first time,we demonstrate that it is possible to successfully construct a geomagnetic field model that incorporates CSES vector data,albeit one in which the radial and azimuthal CSES vector components are Huber downweighted.We further show that data from the MSS-1 can be integrated within an explicitly smoothed,fully time-dependent model description.Using the MSCM,we identify new behavior of the South Atlantic Anomaly,the broad region of low magnetic field intensity over the southern Atlantic.This prominent feature appears split into a western part and an eastern part,each with its own intensity minimum.Since 2015,the principal western minimum has undergone only modest intensity decreases of 290 nT and westward motion of 20 km per year,whereas the recently formed eastern minimum has shown a 2–3 times greater intensity drop of 730 nT with no apparent east-west motion.展开更多
By combining data from the Challenging Minisatellite Payload(CHAMP),Swarm-A,and newest Macao Science Satellite-1(MSS-1) missions,we constructed a lithospheric magnetic field model up to spherical harmonic degree N = 1...By combining data from the Challenging Minisatellite Payload(CHAMP),Swarm-A,and newest Macao Science Satellite-1(MSS-1) missions,we constructed a lithospheric magnetic field model up to spherical harmonic degree N = 100.To isolate the lithospheric magnetic field signals,we utilized the latest CHAOS-8(CHAMP,Φrsted,and SAC-C 8) model and MGFM(Multisource Geomagnetic Field Model) to remove nonlithospheric sources,including the core field,magnetospheric field,ocean tidal field,and ocean circulation field.Subsequently,orbit-by-orbit processing was applied to both scalar and vector data,such as spherical harmonic high-pass filtering,singular spectrum analysis,and line leveling,to suppress noise and residual signals along the satellite tracks.With an orbital inclination of only 41°,MSS-1 effectively captures fine-scale lithospheric magnetic field signals in mid-to low-latitude regions.Its data exhibit a root mean square error of only 0.77 nT relative to the final model,confirming the high quality and utility of lithospheric field modeling.The resulting model exhibits excellent consistency with the MF7(Magnetic Field Model 7),maintaining a high correlation up to N = 90 and still exceeding 0.65 at N = 100.These results demonstrate the reliability and value of MSS-1 data in global lithospheric magnetic field modeling.展开更多
High-precision magnetic field measurements are crucial for understanding Earth’s internal structure,space environment,and dynamic geomagnetic variations.Data from the Fluxgate Magnetometer (FGM) on the Macao Science ...High-precision magnetic field measurements are crucial for understanding Earth’s internal structure,space environment,and dynamic geomagnetic variations.Data from the Fluxgate Magnetometer (FGM) on the Macao Science Satellite-1A (MSS-1A),added to data from other space-based magnetometers,should increase significantly the ability of scientists to observe changes in Earth’s magnetic field over time and space.Additionally,the MSS-1A’s FGM is intended to help identify magnetic disturbances affecting the spacecraft itself.This report focuses on the in-flight calibration of the MSS-1 FGM.A scalar calibration,independent of geomagnetic field models,was performed to correct offsets,sensitivities,and misalignment angles of the FGM.Using seven months of data,we find that the in-flight calibration parameters show good stability.We determined Euler angles describing the rotational relationship between the FGM and the Advanced Stellar Compass (ASC) coordinate system using two approaches:calibration with the CHAOS-7 geomagnetic field model,and simultaneous estimation of Euler angles and Gaussian spherical harmonic coefficients through self-consistent modeling.The accuracy of Euler angles describing the rotation was better than 18 arcsec.The calibrated FGM data exhibit good agreement with the calibrated data of the Vector Field Magnetometer (VFM),which is the primary vector magnetometer of the satellite.These calibration efforts have significantly improved the accuracy of the FGM measurements,which are now providing reliable data for geomagnetic field studies that promise to advance our understanding of the Earth’s magnetic environment.展开更多
Strong flares and/or coronal mass ejections(CMEs) could bring us disastrous space weather,destroy crucial technology in space,and cause a large-scale blackout during some extreme cases.They frequently cause geomagneti...Strong flares and/or coronal mass ejections(CMEs) could bring us disastrous space weather,destroy crucial technology in space,and cause a large-scale blackout during some extreme cases.They frequently cause geomagnetic storms,which is a sudden disturbance of the Earth's magnetosphere.It is well accepted that CMEs play a dominant role in causing geomagnetic storms by a direct impact,but it is still not very clear regarding their association with solar flares.The association would be helpful for forecasting geomagnetic storms directly from flares,which are much easier to observe.The Macao Science Satellite-1(MSS-1) mission,with the scientific aim of studying the origin and evolution of the geomagnetic field,is able to accurately measure the vector geomagnetic field.Besides,it measures rapid spectral evolution of the solar X-ray irradiance of solar flares.In this study,we analyzed measurements by MSS-1 during a series of X-class flares in October of 2024,and saw the relationship between the flares and the associated geomagnetic storms.The observations support that the major geomagnetic storms tend to be associated with flares' duration in addition to flare class.We also find that long duration ones have radiated more energy in the extreme ultraviolet waveband.Being equally important,our results show that the magnetic fields measured by MSS-1,especially its external(e_(1)^(0)) coefficient,can well be used for monitoring the geomagnetic disturbance.展开更多
The Euler angle estimation is a calibration method for vector data measured by the magnetometer on a satellite.It is used to find the relative rotation between the coordinate system of the magnetometer and the satelli...The Euler angle estimation is a calibration method for vector data measured by the magnetometer on a satellite.It is used to find the relative rotation between the coordinate system of the magnetometer and the satellite(usually determined by Star Imagers).Before launch of the low-orbit,low-inclination Macao Science Satellite-1(known as MSS-1),we simulated the estimation of Euler angles by using the magnetic measurements of the in-orbit Swarm and China Seismo-Electromagnetic Satellite(noted as CSES),with various data combinations.In this study,11 data sets were designed to analyze the estimation results for the MSS-1 orbit by using a joint estimation method of the geomagnetic field model parameters and Euler angles.For the model results,we found that all the spatial power spectral lines showed behavior consistent with that of the CHAOS-7.8 model at low degrees(corresponding to large-scale magnetic signals).The spectra of models without global data coverage deviated much more(by a maximum of~10^(4) nT^(2))from those of the CHAOS-7.8 model at higher degrees.For models with global data coverage and with various data combinations,the spectral lines were distributed similarly.Moreover,the models with accordant power spectral distributions demonstrated different Euler angle estimations.As more vector data at higher latitudes were included,the estimated Euler angles varied monotonically in all three directions.The models with vector data in the same latitude range showed similar Euler angle results,regardless of whether the poleward scalar data were included.The largest value difference was found between the models using vector data within±40°latitudes and those using vector data within±60°latitudes,which reached to~28″.Therefore,we concluded that the inversion of the spherical harmonic Gauss coefficients in our tests was mainly affected by the spatial coverage range of the data,whereas the estimation of Euler angles largely depended on the latitude range where the vector data could be obtained.These results can be used for future in-flight data testing.We expect the estimation of Euler angles to improve as other methods are adopted.展开更多
The solar X-ray detector(SXD)onboard the Macao Science Satellite-1B was designed to monitor solar flare bursts and to study the solar activity in the 25th solar cycle.The SXD includes two parts:a soft X-ray detection ...The solar X-ray detector(SXD)onboard the Macao Science Satellite-1B was designed to monitor solar flare bursts and to study the solar activity in the 25th solar cycle.The SXD includes two parts:a soft X-ray detection unit and a hard X-ray detection unit.Both the soft X-ray detection unit and the hard X-ray detection unit include two collimators,two X-ray detectors(a silicon drift detector and a cadmium-zinc-telluride detector),and a processing circuit.Compared with similar instruments,the energy range of the SXD is wider(1–600 ke V)and the energy resolution is better(150 e V at 5.9 ke V,12%at 59.5 ke V,and 3%at 662 keV).展开更多
The movement of global ocean circulation in the Earth’s main magnetic field generates a measurable induced magnetic field(about 2 nT at geomagnetic satellite altitudes).However,this ocean circulation-induced magnetic...The movement of global ocean circulation in the Earth’s main magnetic field generates a measurable induced magnetic field(about 2 nT at geomagnetic satellite altitudes).However,this ocean circulation-induced magnetic field has not been previously estimated or incorporated into geomagnetic field models,potentially causing leakage into the core field model.Here,we present a method to account for the circulation-induced magnetic field during geomagnetic field modeling.First,a forward model of the circulation-induced magnetic field is constructed by numerically solving electromagnetic induction equations based on a realistic ocean circulation model.Then,this forward model is subtracted from the observed data.Finally,the core and lithospheric fields,magnetospheric and Earth’s mantle-induced fields,and the ocean tide-induced magnetic field are co-estimated.Applying our method to over 20 years of MSS-1,Swarm,CryoSat-2,and CHAMP satellite magnetic data,we derive a new multisource geomagnetic field model(MGFM).We find that incorporating a forward model of the circulation-induced magnetic field marginally improves the fit to the data.Furthermore,we demonstrate that neglecting the circulation-induced magnetic field in geomagnetic field modeling results in leakage into the core field model.The highlights of the MGFM model include:(i)a good agreement with the widely used CHAOS model series;(ii)the incorporation of magnetic fields induced by both ocean tides and circulation;and(iii)the suppression of leakage of the circulation-induced magnetic field into the core field model.展开更多
The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.Howeve...The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.展开更多
Ground and space-based observations of the geomagnetic field are usually a superposition of different sources from the Earth’s core,lithosphere,ocean,ionosphere,and magnetosphere,and also from field-aligned currents ...Ground and space-based observations of the geomagnetic field are usually a superposition of different sources from the Earth’s core,lithosphere,ocean,ionosphere,and magnetosphere,and also from field-aligned currents coupling the ionosphere and magnetosphere—the meridional currents that connect the two hemispheres and the induced currents due to the variations of fields over time.The fluctuation of magnetic fields generated by these highly dynamic space currents greatly limits the accuracy of the geomagnetic models.In order to better accomplish the scientific objectives of Macao Science Satellite-1(MSS-1),and to improve existing geomagnetic field models,we present here for the first time a self-consistent coupling of solar wind,magnetosphere,and ionosphere,which represents the most developed numerical simulation method for space physics research so far,making it possible to quantify the contribution of different current systems to the total observed magnetic field(B).The results show that numerical simulation can capture main magnetic disturbance characteristics with significant precision.Partial ring current is a major contributor to the latitudinal magnetic perturbation near the equator.Magnetopause and magnetotail currents affect the radial magnetic perturbation around the mid-latitudes.Field-aligned and Pedersen currents produce significant longitudinal and latitudinal magnetic perturbations at high latitudes.展开更多
The Earth’s“lithosphere”is its outer shell,made up of the Earth’s crust and outermost mantle.The part of the Earth’s magnetic field that originates in the lithosphere consists of a superposition of magnetic anoma...The Earth’s“lithosphere”is its outer shell,made up of the Earth’s crust and outermost mantle.The part of the Earth’s magnetic field that originates in the lithosphere consists of a superposition of magnetic anomalies with a broad spectrum of sizes and intensities,which arise from geological and tectonic features.The lithospheric magnetic field is known from surface observations,and on larger scales from above-surface measurements.The increase in recent decades of satellites dedicated to measuring the Earth’s magnetic field has improved significantly our models of the Earth’s magnetic environment.Based on these increasing observations,a number of comprehensive field models have been constructed,some of which focus solely on the lithosphere,such as the MF model series.We present a map of lithospheric magnetic anomalies at 400 km altitude,based on a vertically integrated magnetization model.This height was chosen because it is the expected orbital altitude of the Macao Science Satellite-1(MSS-1)mission.The model presented herein indicates that the amplitude of the lithospheric anomalies at 400 km altitude is between-14.8 n T and 18.2 n T.This information is useful because it provides a reference for the lithospheric source of the Earth’s magnetic field that contributes to the magnetic measurements made from satellite instruments.The low inclination orbit of the MSS-1 mission will provide information that is sensitive to lateral variation within the lithosphere;these variations arise from plate tectonic features with longitudinal extent.In conclusion,the new MSS-1mission will provide valuable information in detecting compositional variations in the lithosphere,and in delineating large-scale geological structures.展开更多
基金the China National Space Administration (CNSA) and the Macao Foundation for operating the MSS-1satelliteThis work has been carried out as part of ESA’s Swarm DISC activities funded by ESA contract no.4000109587.
文摘This article investigates the combination of magnetic data from the MSS-1 and Swarm satellites for improved investigations of Earth’s magnetic field and Geospace.The study highlights the complementary nature of polar-orbiting(Swarm)and low-inclination(MSS-1)satellites in geomagnetic modelling and monitoring large-scale magnetospheric contributions.Data from close encounters between MSS-1 and Swarm(intersatellite distance<100 km)confirm the excellent data quality of the two satellite missions(<1 nT median difference in scalar intensity F)and allow for data calibration and validation and investigations of in-situ ionospheric currents.The reason for a small but consistent difference(F as measured by MSS-1 is 0.5 to 1.0 nT larger than that measured by Swarm)is unknown.Combining MSS-1’s low-inclination data with Swarm’s near-polar observations significantly enhances the spatial-temporal resolution of Earth’s magnetic field models,allowing for new opportunities for studying both rapid core field variations at low latitudes and the local-time dependence of large-scale magnetospheric current systems.A joint analysis of magnetic data from six satellites during the May 2024 geomagnetic storm reveals a clear dawn-dusk asymmetry,with equatorial magnetic disturbances during dusk being approximately 150 nT more negative than during dawn.
基金supported by the National Natural Science Foundation of China(Grant No.42274003)PWL was supported by Swarm DISC(Swarm Data,Innovation,and Science Cluster)+2 种基金funded by the European Space Agency(ESAContract No.4000109587)HFR acknowledges funding from the UK Natural Environment Research Council(Grant No.NE/V010867/1)。
文摘Measurements from geomagnetic satellites continue to underpin advances in geomagnetic field models that describe Earth's internally generated magnetic field.Here,we present a new field model,MSCM,that integrates vector and scalar data from the Swarm,China Seismo-Electromagnetic Satellite(CSES),and Macao Science Satellite-1(MSS-1)missions.The model spans from 2014.0 to 2024.5,incorporating the core,lithospheric,and magnetospheric fields,and it shows characteristics similar to other published models based on different data.For the first time,we demonstrate that it is possible to successfully construct a geomagnetic field model that incorporates CSES vector data,albeit one in which the radial and azimuthal CSES vector components are Huber downweighted.We further show that data from the MSS-1 can be integrated within an explicitly smoothed,fully time-dependent model description.Using the MSCM,we identify new behavior of the South Atlantic Anomaly,the broad region of low magnetic field intensity over the southern Atlantic.This prominent feature appears split into a western part and an eastern part,each with its own intensity minimum.Since 2015,the principal western minimum has undergone only modest intensity decreases of 290 nT and westward motion of 20 km per year,whereas the recently formed eastern minimum has shown a 2–3 times greater intensity drop of 730 nT with no apparent east-west motion.
基金the support of the National Natural Science Foundation of China (Nos. 42250103, 41974073, and 41404053)the Macao Foundation and the preresearch project of Civil Aerospace Technologies (Nos. D020308 and D020303)funded by China’s National Space Administration, and the Specialized Research Fund for State Key Laboratories。
文摘By combining data from the Challenging Minisatellite Payload(CHAMP),Swarm-A,and newest Macao Science Satellite-1(MSS-1) missions,we constructed a lithospheric magnetic field model up to spherical harmonic degree N = 100.To isolate the lithospheric magnetic field signals,we utilized the latest CHAOS-8(CHAMP,Φrsted,and SAC-C 8) model and MGFM(Multisource Geomagnetic Field Model) to remove nonlithospheric sources,including the core field,magnetospheric field,ocean tidal field,and ocean circulation field.Subsequently,orbit-by-orbit processing was applied to both scalar and vector data,such as spherical harmonic high-pass filtering,singular spectrum analysis,and line leveling,to suppress noise and residual signals along the satellite tracks.With an orbital inclination of only 41°,MSS-1 effectively captures fine-scale lithospheric magnetic field signals in mid-to low-latitude regions.Its data exhibit a root mean square error of only 0.77 nT relative to the final model,confirming the high quality and utility of lithospheric field modeling.The resulting model exhibits excellent consistency with the MF7(Magnetic Field Model 7),maintaining a high correlation up to N = 90 and still exceeding 0.65 at N = 100.These results demonstrate the reliability and value of MSS-1 data in global lithospheric magnetic field modeling.
文摘High-precision magnetic field measurements are crucial for understanding Earth’s internal structure,space environment,and dynamic geomagnetic variations.Data from the Fluxgate Magnetometer (FGM) on the Macao Science Satellite-1A (MSS-1A),added to data from other space-based magnetometers,should increase significantly the ability of scientists to observe changes in Earth’s magnetic field over time and space.Additionally,the MSS-1A’s FGM is intended to help identify magnetic disturbances affecting the spacecraft itself.This report focuses on the in-flight calibration of the MSS-1 FGM.A scalar calibration,independent of geomagnetic field models,was performed to correct offsets,sensitivities,and misalignment angles of the FGM.Using seven months of data,we find that the in-flight calibration parameters show good stability.We determined Euler angles describing the rotational relationship between the FGM and the Advanced Stellar Compass (ASC) coordinate system using two approaches:calibration with the CHAOS-7 geomagnetic field model,and simultaneous estimation of Euler angles and Gaussian spherical harmonic coefficients through self-consistent modeling.The accuracy of Euler angles describing the rotation was better than 18 arcsec.The calibrated FGM data exhibit good agreement with the calibrated data of the Vector Field Magnetometer (VFM),which is the primary vector magnetometer of the satellite.These calibration efforts have significantly improved the accuracy of the FGM measurements,which are now providing reliable data for geomagnetic field studies that promise to advance our understanding of the Earth’s magnetic environment.
基金funded by NSFC under grants 12250014, 42250101 and 12403068supported by youth funding of Jiangsu province BK20241707+1 种基金supported by the Macao FoundationXinjiang Uygur Autonomous Region for the support through “Tianchi Talent” special expert project。
文摘Strong flares and/or coronal mass ejections(CMEs) could bring us disastrous space weather,destroy crucial technology in space,and cause a large-scale blackout during some extreme cases.They frequently cause geomagnetic storms,which is a sudden disturbance of the Earth's magnetosphere.It is well accepted that CMEs play a dominant role in causing geomagnetic storms by a direct impact,but it is still not very clear regarding their association with solar flares.The association would be helpful for forecasting geomagnetic storms directly from flares,which are much easier to observe.The Macao Science Satellite-1(MSS-1) mission,with the scientific aim of studying the origin and evolution of the geomagnetic field,is able to accurately measure the vector geomagnetic field.Besides,it measures rapid spectral evolution of the solar X-ray irradiance of solar flares.In this study,we analyzed measurements by MSS-1 during a series of X-class flares in October of 2024,and saw the relationship between the flares and the associated geomagnetic storms.The observations support that the major geomagnetic storms tend to be associated with flares' duration in addition to flare class.We also find that long duration ones have radiated more energy in the extreme ultraviolet waveband.Being equally important,our results show that the magnetic fields measured by MSS-1,especially its external(e_(1)^(0)) coefficient,can well be used for monitoring the geomagnetic disturbance.
基金funded by the Macao Foundation,the pre-research project of Civil Aerospace Technologies(Nos.D020308 and D020303)funded by the China National Space Administration,Macao Science and Technology Development Fund(FDCT+1 种基金No.0001/2019/A1)the opening fund of the State Key Laboratory of Lunar and Planetary Sciences(Macao University of Science and Technology,Macao FDCT No.119/2017/A3)。
文摘The Euler angle estimation is a calibration method for vector data measured by the magnetometer on a satellite.It is used to find the relative rotation between the coordinate system of the magnetometer and the satellite(usually determined by Star Imagers).Before launch of the low-orbit,low-inclination Macao Science Satellite-1(known as MSS-1),we simulated the estimation of Euler angles by using the magnetic measurements of the in-orbit Swarm and China Seismo-Electromagnetic Satellite(noted as CSES),with various data combinations.In this study,11 data sets were designed to analyze the estimation results for the MSS-1 orbit by using a joint estimation method of the geomagnetic field model parameters and Euler angles.For the model results,we found that all the spatial power spectral lines showed behavior consistent with that of the CHAOS-7.8 model at low degrees(corresponding to large-scale magnetic signals).The spectra of models without global data coverage deviated much more(by a maximum of~10^(4) nT^(2))from those of the CHAOS-7.8 model at higher degrees.For models with global data coverage and with various data combinations,the spectral lines were distributed similarly.Moreover,the models with accordant power spectral distributions demonstrated different Euler angle estimations.As more vector data at higher latitudes were included,the estimated Euler angles varied monotonically in all three directions.The models with vector data in the same latitude range showed similar Euler angle results,regardless of whether the poleward scalar data were included.The largest value difference was found between the models using vector data within±40°latitudes and those using vector data within±60°latitudes,which reached to~28″.Therefore,we concluded that the inversion of the spherical harmonic Gauss coefficients in our tests was mainly affected by the spatial coverage range of the data,whereas the estimation of Euler angles largely depended on the latitude range where the vector data could be obtained.These results can be used for future in-flight data testing.We expect the estimation of Euler angles to improve as other methods are adopted.
基金the China National Space Administration(CNSA)the Macao University of Science and Technology Foundation for their support of this paper。
文摘The solar X-ray detector(SXD)onboard the Macao Science Satellite-1B was designed to monitor solar flare bursts and to study the solar activity in the 25th solar cycle.The SXD includes two parts:a soft X-ray detection unit and a hard X-ray detection unit.Both the soft X-ray detection unit and the hard X-ray detection unit include two collimators,two X-ray detectors(a silicon drift detector and a cadmium-zinc-telluride detector),and a processing circuit.Compared with similar instruments,the energy range of the SXD is wider(1–600 ke V)and the energy resolution is better(150 e V at 5.9 ke V,12%at 59.5 ke V,and 3%at 662 keV).
基金supported by the National Natural Science Foundation of China(42250101,42250102)the Macao Foundation.
文摘The movement of global ocean circulation in the Earth’s main magnetic field generates a measurable induced magnetic field(about 2 nT at geomagnetic satellite altitudes).However,this ocean circulation-induced magnetic field has not been previously estimated or incorporated into geomagnetic field models,potentially causing leakage into the core field model.Here,we present a method to account for the circulation-induced magnetic field during geomagnetic field modeling.First,a forward model of the circulation-induced magnetic field is constructed by numerically solving electromagnetic induction equations based on a realistic ocean circulation model.Then,this forward model is subtracted from the observed data.Finally,the core and lithospheric fields,magnetospheric and Earth’s mantle-induced fields,and the ocean tide-induced magnetic field are co-estimated.Applying our method to over 20 years of MSS-1,Swarm,CryoSat-2,and CHAMP satellite magnetic data,we derive a new multisource geomagnetic field model(MGFM).We find that incorporating a forward model of the circulation-induced magnetic field marginally improves the fit to the data.Furthermore,we demonstrate that neglecting the circulation-induced magnetic field in geomagnetic field modeling results in leakage into the core field model.The highlights of the MGFM model include:(i)a good agreement with the widely used CHAOS model series;(ii)the incorporation of magnetic fields induced by both ocean tides and circulation;and(iii)the suppression of leakage of the circulation-induced magnetic field into the core field model.
基金supported by the National Natural Science Foundation of China(Grant Nos.42250103 and 42174090)the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(Grant No.GLAB2023ZR02)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(Grant No.MSFGPMR2022-4).
文摘The equivalent source(ES)method in the spherical coordinate system has been widely applied to processing,reduction,field modeling,and geophysical and geological interpretation of satellite magnetic anomaly data.However,the inversion for the ES model suffers from nonuniqueness and instability,which remain unresolved.To mitigate these issues,we introduce both the minimum and flattest models into the model objective function as an alternative regularization approach in the spherical ES method.We first present the methods,then analyze the accuracy of forward calculation and test the proposed ES method in this study by using synthetic data.The experimental results from simulation data indicate that our proposed regularization effectively suppresses the Backus effect and mitigates inversion instability in the low-latitude region.Finally,we apply the proposed method to magnetic anomaly data from China Seismo-Electromagnetic Satellite-1(CSES-1)and Macao Science Satellite-1(MSS-1)magnetic measurements over Africa by constructing an ES model of the large-scale lithospheric magnetic field.Compared with existing global lithospheric magnetic field models,our ES model demonstrates good consistency at high altitudes and predicts more stable fields at low altitudes.Furthermore,we derive the reduction to the pole(RTP)magnetic anomaly fields and the apparent susceptibility contrast distribution based on the ES model.The latter correlates well with the regional tectonic framework in Africa and surroundings.
基金supported by the B-type Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)Natural Science Foundation of Shanghai’s Science and Technology Innovation Action Plan(General Program:No.22ZR1472900)+4 种基金Study on the Environment and Dynamics of Earth’s Inner Magnetospheric Particles and the Needs of Space-based Exploration(Grant No.D-2022-09-13-001)Hong Kong-Macao-Taiwan Cooperation Funding of Shanghai Committee of Science and Technology(Grant No.19590761300)Shanghai 2022“Science and Technology Innovation Action Plan”Hong Kong,Macao and Taiwan Science and Technology Cooperation Project(Grant No.22590760900)Shanghai Postdoctoral Daily Funding(Grant No.K-2021-12-16001)。
文摘Ground and space-based observations of the geomagnetic field are usually a superposition of different sources from the Earth’s core,lithosphere,ocean,ionosphere,and magnetosphere,and also from field-aligned currents coupling the ionosphere and magnetosphere—the meridional currents that connect the two hemispheres and the induced currents due to the variations of fields over time.The fluctuation of magnetic fields generated by these highly dynamic space currents greatly limits the accuracy of the geomagnetic models.In order to better accomplish the scientific objectives of Macao Science Satellite-1(MSS-1),and to improve existing geomagnetic field models,we present here for the first time a self-consistent coupling of solar wind,magnetosphere,and ionosphere,which represents the most developed numerical simulation method for space physics research so far,making it possible to quantify the contribution of different current systems to the total observed magnetic field(B).The results show that numerical simulation can capture main magnetic disturbance characteristics with significant precision.Partial ring current is a major contributor to the latitudinal magnetic perturbation near the equator.Magnetopause and magnetotail currents affect the radial magnetic perturbation around the mid-latitudes.Field-aligned and Pedersen currents produce significant longitudinal and latitudinal magnetic perturbations at high latitudes.
基金supported by the Macao Foundationby the Preresearch Project on Civil Aerospace Technologies No.D020308/D020303 funded by China National Space Administration+1 种基金by the Macao Science and Technology Development Fund,grant No.0001/2019/A1PF Liu is funded by the Science and Technology Development Fund,Macao SAR(File No.0002/2019/APD)。
文摘The Earth’s“lithosphere”is its outer shell,made up of the Earth’s crust and outermost mantle.The part of the Earth’s magnetic field that originates in the lithosphere consists of a superposition of magnetic anomalies with a broad spectrum of sizes and intensities,which arise from geological and tectonic features.The lithospheric magnetic field is known from surface observations,and on larger scales from above-surface measurements.The increase in recent decades of satellites dedicated to measuring the Earth’s magnetic field has improved significantly our models of the Earth’s magnetic environment.Based on these increasing observations,a number of comprehensive field models have been constructed,some of which focus solely on the lithosphere,such as the MF model series.We present a map of lithospheric magnetic anomalies at 400 km altitude,based on a vertically integrated magnetization model.This height was chosen because it is the expected orbital altitude of the Macao Science Satellite-1(MSS-1)mission.The model presented herein indicates that the amplitude of the lithospheric anomalies at 400 km altitude is between-14.8 n T and 18.2 n T.This information is useful because it provides a reference for the lithospheric source of the Earth’s magnetic field that contributes to the magnetic measurements made from satellite instruments.The low inclination orbit of the MSS-1 mission will provide information that is sensitive to lateral variation within the lithosphere;these variations arise from plate tectonic features with longitudinal extent.In conclusion,the new MSS-1mission will provide valuable information in detecting compositional variations in the lithosphere,and in delineating large-scale geological structures.