In-depth profile control is a crucial technique employed to enhance oil recovery in fractured-vuggy carbonate reservoirs.However,it is a challenge to achieve in-depth profile control.In this paper,two types of organic...In-depth profile control is a crucial technique employed to enhance oil recovery in fractured-vuggy carbonate reservoirs.However,it is a challenge to achieve in-depth profile control.In this paper,two types of organic gel systems,namely s-MPG and MSRG,tailored for fractured-vuggy reservoirs with 140℃ and 22×10^(4) mg/L have been developed.FTIR was used to analyze the functional groups of s-MPG and MSRG.Additionally,the quality retention rates of s-MPG and MSRG were assessed using TG-DSC,yielding results of 92.85%and 92.65%,respectively.The dilution rates of s-MPG and MSRG are found to be 18.69%and 26.69%,respectively,demonstrating excellent compatibility and adaptability.The enhancement performance depends on the synergistic effect that the anti-dilution s-MPG effectively separates bottom water,while high-strength MSRG separates the oil layer.Moreover,the EOR perfor-mances of s-MPG synergy with MSRG in various types of fractured-vuggy carbonate models were also evaluated.The highest oil recovery of 12%is achieved in fracture network model.Laboratory results indicate that the synergistic combination of s-MPG and MSRG for water plugging in fractured-vuggy carbonate reservoirs results in a more effective enhancement of oil recovery compared to using a sin-gle gel system for plugging.Finally,the s-MPG synergy with MSRG has been applied in actual fractured-vuggy carbonate reservoirs.As expected,the water cut of typical well is reduced from 100%to 30%and the increased oil production is 1142 t totally.Therefore,this study presents a novel approach to achieving in-depth profile control by leveraging the synergistic effect of s-MPG with MSRG in fractured-vuggy carbonate reservoirs.展开更多
Hardware implementation of Linear Feedback Shift Register (LFSR) plays a great and very important role in communication systems, and in many security devices. In this paper, a design of LFSR with offset mask has been ...Hardware implementation of Linear Feedback Shift Register (LFSR) plays a great and very important role in communication systems, and in many security devices. In this paper, a design of LFSR with offset mask has been presented, for Direct Sequence Code Division Multiple Access (DS-CDMA) applications. Integrated electronic components have been used. An accessible model facilitating the synthesis on Printed Circuit Boards (PCB) and implementation on Field Programmable Gate Array (FPGA) is offered. In addition, a temporal and spectral analysis of the circuit is performed in order to validate the design. This latter facilitates the generation of pseudo-random codes based on LFSR and their integration into electronic systems.展开更多
基金support of Sinopec Northwest Oilfield Company,Xinjiang Urumqi(Grant No.KJ202336).
文摘In-depth profile control is a crucial technique employed to enhance oil recovery in fractured-vuggy carbonate reservoirs.However,it is a challenge to achieve in-depth profile control.In this paper,two types of organic gel systems,namely s-MPG and MSRG,tailored for fractured-vuggy reservoirs with 140℃ and 22×10^(4) mg/L have been developed.FTIR was used to analyze the functional groups of s-MPG and MSRG.Additionally,the quality retention rates of s-MPG and MSRG were assessed using TG-DSC,yielding results of 92.85%and 92.65%,respectively.The dilution rates of s-MPG and MSRG are found to be 18.69%and 26.69%,respectively,demonstrating excellent compatibility and adaptability.The enhancement performance depends on the synergistic effect that the anti-dilution s-MPG effectively separates bottom water,while high-strength MSRG separates the oil layer.Moreover,the EOR perfor-mances of s-MPG synergy with MSRG in various types of fractured-vuggy carbonate models were also evaluated.The highest oil recovery of 12%is achieved in fracture network model.Laboratory results indicate that the synergistic combination of s-MPG and MSRG for water plugging in fractured-vuggy carbonate reservoirs results in a more effective enhancement of oil recovery compared to using a sin-gle gel system for plugging.Finally,the s-MPG synergy with MSRG has been applied in actual fractured-vuggy carbonate reservoirs.As expected,the water cut of typical well is reduced from 100%to 30%and the increased oil production is 1142 t totally.Therefore,this study presents a novel approach to achieving in-depth profile control by leveraging the synergistic effect of s-MPG with MSRG in fractured-vuggy carbonate reservoirs.
文摘Hardware implementation of Linear Feedback Shift Register (LFSR) plays a great and very important role in communication systems, and in many security devices. In this paper, a design of LFSR with offset mask has been presented, for Direct Sequence Code Division Multiple Access (DS-CDMA) applications. Integrated electronic components have been used. An accessible model facilitating the synthesis on Printed Circuit Boards (PCB) and implementation on Field Programmable Gate Array (FPGA) is offered. In addition, a temporal and spectral analysis of the circuit is performed in order to validate the design. This latter facilitates the generation of pseudo-random codes based on LFSR and their integration into electronic systems.