期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Land use/cover change and ecological network in Gansu Province,China during 2000-2020 and their simulations in 2050 被引量:1
1
作者 MA Xinshu XIN Cunlin +6 位作者 CHEN Ning XIN Shunjie CHEN Hongxiang ZHANG Bo KANG Ligang WANG Yu JIAO Jirong 《Journal of Arid Land》 2025年第1期43-57,共15页
Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and t... Land use/cover change(LUCC)constitutes the spatial and temporal patterns of ecological security,and the construction of ecological networks is an effective way to ensure ecological security.Exploring the spatial and temporal change characteristics of ecological network and analyzing the integrated relationship between LUCC and ecological security are crucial for ensuring regional ecological security.Gansu is one of the provinces with fragile ecological environment in China,and rapid changes in land use patterns in recent decades have threatened ecological security.Therefore,taking Gansu Province as the study area,this study simulated its land use pattern in 2050 using patch-generating land use simulation(PLUS)model based on the LUCC trend from 2000 to 2020 and integrated the LUCC into morphological spatial pattern analysis(MSPA)to identify ecological sources and extract the ecological corridors to construct ecological network using circuit theory.The results revealed that,according to the prediction results in 2050,the areas of cultivated land,forest land,grassland,water body,construction land,and unused land would be 63,447.52,39,510.80,148,115.18,4605.21,8368.89,and 161,752.40 km^(2),respectively.The number of ecological sources in Gansu Province would increase to 80,with a total area of 99,927.18 km^(2).The number of ecological corridors would increase to 191,with an estimated total length of 6120.66 km.Both ecological sources and ecological corridors showed a sparse distribution in the northwest and dense distribution in the southeast of the province at the spatial scale.The number of ecological pinch points would reach 312 and the total area would expect to increase to 842.84 km^(2),with the most pronounced increase in the Longdong region.Compared with 2020,the number and area of ecological barriers in 2050 would decrease significantly by 63 and 370.71 km^(2),respectively.In general,based on the prediction results,the connectivity of ecological network of Gansu Province would increase in 2050.To achieve the predicted ecological network in 2050,emphasis should be placed on the protection of cultivated land and ecological land,the establishment of ecological sources in desert areas,the reinforcement of the protection for existing ecological sources,and the construction of ecological corridors to enhance the stability of ecological network.This study provides valuable theoretical support and references for the future construction of ecological networks and regional land resource management decision-making. 展开更多
关键词 patch-generating land use simulation(PLUS)model morphological spatial pattern analysis(mspa) circuit theory ecological source ecological resistance surface ecological corridor ecological pinch point
在线阅读 下载PDF
Identification and classification of ecological restoration areas in the territorial land space of the Qaidam Basin,China
2
作者 CHENG Lanhua YANG Xianming +1 位作者 PAN Xumei AN Jingfeng 《Journal of Arid Land》 2025年第10期1402-1424,共23页
Territorial spatial ecological restoration is a crucial prerequisite for optimizing the territorial spatial patterns,enhancing the ecosystem functions,and achieving sustainable development at the regional scale.The Qa... Territorial spatial ecological restoration is a crucial prerequisite for optimizing the territorial spatial patterns,enhancing the ecosystem functions,and achieving sustainable development at the regional scale.The Qaidam Basin,located in the alpine arid region of the Qinghai–Xizang Plateau,China,is experiencing desertification,biodiversity loss,soil erosion,and environmental pollution.Selecting the Qaidam Basin as the study area,we identified 9 ecological sources in the region using the Morphological Spatial Pattern Analysis(MSPA)method and the landscape connectivity assessment,and extracted 10 significant corridors and 26 general corridors using the Minimum Cumulative Resistance(MCR)and Gravity models.Then,we determined 114 ecological"pinch points"and 42 ecological barrier points by employing the Circuit Theory,thereby constructing the ecological security pattern of the area.Further,we evaluated the ecosystem health of the Qaidam Basin during 2003–2023 using the Vitality–Organization–Resilience–Service(VORS)model.Finally,we integrated ecosystem health assessment and ecological security pattern to comprehensively identify the key areas for ecological restoration in the Qaidam Basin.The results revealed that the ecosystem in the basin fluctuated toward a healthier state from 2003 to 2023.The average ecosystem health index(EHI)for the basin decreased from 0.34 in 2003 to 0.28 in 2013,followed by a substantial recovery to 0.36 in 2023.Higher EHI values were found in the northeastern,southeastern,and southwestern fringes and lower values were located in the basin interior and northwestern region.During 2003–2023,the areas that exhibited a decrease in EHI were primarily located in the interior and northwestern regions of the basin,while those that exhibited an increase in EHI were located in the northeastern,southeastern,and southwestern fringes,demonstrating expanded spatial differences.This may be attributed to the fact that once an eco-environment is damaged,the ecological recovery of the vulnerable areas within the eco-environment will be slow and difficult.This study identified four types of ecological restoration areas,including corridor connectivity,artificial restoration,ecological recovery,and ecological enhancement zones,covering a total area of 6034.7 km2,and proposed targeted ecological restoration strategies according to these different categories.Our findings can serve as a valuable reference for optimizing the territorial spatial patterns,enhancing the ecosystem functions,and promoting sustainable development in the Qaidam Basin. 展开更多
关键词 ecological security pattern ecosystem health ecological restoration Morphological Spatial Pattern analysis(mspa) Minimum Cumulative Resistance(MCR) Vitality-Organization-Resilience-Service(VORS)model Qaidam Basin
在线阅读 下载PDF
Debris Flow Hazard Assessment Using Set Pair Analysis Models:Take Beichuan County as an Example 被引量:11
3
作者 YANG Feng-guang LIANG Yue +6 位作者 SINGH Vijay P. WANG Wen-sheng ZHOU Xiao-quan LIU Xing-nian CAO Shu-you HUANG Er WU Yan-hua 《Journal of Mountain Science》 SCIE CSCD 2014年第4期1015-1022,共8页
Assessment of debris flow hazards is important for developing measures to mitigate the loss of life and property and to minimize environmental damage. Two modified uncertainty models, Set Pair Analysis (SPA) and mod... Assessment of debris flow hazards is important for developing measures to mitigate the loss of life and property and to minimize environmental damage. Two modified uncertainty models, Set Pair Analysis (SPA) and modified Set Pair Analysis (mSPA), were suggested to assess the regional debris flow hazard. A ease study was conducted in seven towns of the Beichuan county, Sichuan Province, China, to test and compare the application of these two models in debris flow hazard assessment. The results showed that mSPA only can fit for value-variables, but not for non value-variable assessment indexes, Furthermore, as for a given assessment index xi, mSPA only considers two cases, namely, when grade value increases with xi and when grade value decreases with xi. Thus, mSPA can not be used for debris flow hazard assessment but SPA is credible for the assessment because there are no limitations when using SPA model to assess the debris flow hazard. Therefore, in this study SPA is proposed for assessing debris flow hazard. 展开更多
关键词 Set Pair analysis (SPA) Modified SetPair analysis mspa Debris flow Hazardassessment Connection degree
原文传递
Integrating morphological spatial pattern analysis and the minimal cumulative resistance model to optimize urban ecological networks: a case study in Shenzhen City, China 被引量:14
4
作者 Yang‑Yang Li Yu‑Zhe Zhang +6 位作者 Zhi‑Yun Jiang Cheng‑Xuan Guo Ming‑Yue Zhao Zhi‑Guang Yang Ming‑Yan Guo Bing‑Yue Wu Quan‑Ling Chen 《Ecological Processes》 SCIE EI 2021年第1期862-876,共15页
Background:With the increasing fragmentation of landscape induced by rapid urbanization,the construction of ecological networks is of great signifcance to alleviate the degradation of urban habitats and protect natura... Background:With the increasing fragmentation of landscape induced by rapid urbanization,the construction of ecological networks is of great signifcance to alleviate the degradation of urban habitats and protect natural envi‑ronments.However,there is considerable uncertainty when constructing ecological networks,especially the difer‑ent approaches to selecting ecological sources.We used the southern Chinese city of Shenzhen as a study area to construct and optimize ecological networks using a coupling approach.Ecological source areas were extracted using morphological spatial pattern analysis(MSPA)and the landscape index method.Ecological networks were con‑structed using the minimal cumulative resistance(MCR)model and the gravity model.Stepping stones and ecological fault points were added in corridors to optimize the ecological network.Results:Ten core areas with maximum importance patch values were extracted by the landscape index method as ecological source areas according to MSPA,after which corridors between ecological sources were constructed based on the MCR model.The constructed ecological networks were optimized using 35 stepping stones and 17 ecologi‑cal fault points.The optimized ecological networks included 11 important corridors,34 general corridors,and seven potential corridors.The results of corridor landscape-type analysis showed that a suitable ecological corridor is 60 to 200 m wide.Conclusions:Overall,our results imply that ecological source areas can be identifed virtually,and that ecological networks can be signifcantly optimized by combining MSPA and MCR models.These results provide a methodologi‑cal reference for constructing ecological networks,and they will be useful for urban planning and biodiversity protec‑tion in Shenzhen and other similar regions around the world. 展开更多
关键词 mspa analysis MCR model Ecological corridor Ecological resistance surface Shenzhen City
原文传递
Ecosystem Service Value Accounting and Ecological Security Pattern Construction in Hubei Province during 1992-2022
5
作者 CHU Yun FANG Shiming TANG Sumin 《Journal of Resources and Ecology》 2025年第5期1403-1418,共16页
Accurately assessing the value of ecosystem services and establishing an ecological security pattern to identify the future trends and characteristics of changes in the ecological security pattern and maintain regiona... Accurately assessing the value of ecosystem services and establishing an ecological security pattern to identify the future trends and characteristics of changes in the ecological security pattern and maintain regional ecological security is of great significance for promoting regional sustainability.Based on the calculation of the ecosystem service value in Hubei Province,the study identified the ecological source areas in combination with the types of landscape patterns.It selected the resistance factors that fit the characteristics of the study area in combination with previous studies to establish the ecological resistance surface.The McR model was used to extract the potential ecological corridors in the study area and identify the ecological nodes.Construct the ecological security pattern of Hubei Province from 1992 to 2022 and analyze its spatio-temporal dynamic change characteristics.The research results show that:(1)The value of ecosystem services in Hubei Province has generally shown a fluctuating upward trend from 1992 to 2022.Among the types of ecosystem services,the value of regulatory services accounts for the largest proportion.Among different land use types,the value of ecosystem services provided by forest land types is the highest.(2)A total of 10 ecological sources were extracted in the study.It is mainly distributed in Shennongjia Forestry District,Shiyan City and Enshi City,with a small portion found in the northeastern and southeastern parts of Hubei Province.(3)The 35 potential ecological corridors identified are mainly closed circular structures,presenting a distribution feature of"more in the east and less in the west".(4)Build an ecological security pattern with Jingmen City as the center,connecting Shiyan City,Shennongjia Forestry District,Xianyang City,Huanggang City and Suizhou City.The research put forward optimization suggestions in response to the specific problems existing in the ecological security pattern and the actual ecological conditions of Hubei Province.The research results can provide ideas and methods for the optimization of the ecological security pattern and the high-quality development of the ecosystem in Hubei Province,and at the same time offer reference value for the protection and optimization of ecosystems at other provincial levels. 展开更多
关键词 LUCC ecosystem service value(ESV) ecological security pattern minimum cumulative resistance model(MCR) morphological spatial pattern analysis(mspa) Hybei Province
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部